Variabilities in Urban Ambient Noise Before, During, and After Covid-19 Lockdown in the Peruvian Capital

Cristobal Condori, George Sand França, Susanne Maciel, Orlando Macedo, Lady D. Quispe, Yawar Hussain

Abstract


ABSTRACT. Recent studies have shown that urban ambient noise (UAN) decreased at many sites due to a slowdown in human activities brought by the SARS-CoV-2 (COVID-19) pandemic lockdowns. Such understanding is inferred from the historical record of the noise levels, which may also help us disambiguate noise sources as required for ambient noise tomography, microseismic and other seismic based studies. As UAN is site-specific, and its analysis enables passive situational awareness, therefore, in the present study, we analyzed the temporal variations in UAN before, during and after the social isolation in the metropolitan region of Lima, the capital of Peru, for the very first time. We used continuous waveforms recorded from February 1st to August 31st, 2020, at the Ñaña (NNA) broadband seismic station for the analysis. Results show the temporal changes occur in different frequency ranges; for example, at frequencies >1 Hz, significant changes in the mean daytime amplitudes are observed, which are absent in the lower frequency range (0.1–1, 1–3, 3–5 Hz). A maximum noise reduction of 37% is observed and should be considered for any future application of UAN. The results were verified by comparing with Community Mobility Reports (CMR) provided by Google using statistical change-point analysis.


Keywords


Urban ambient noise; root mean square; filtering; change-point analysis; COVID-19

Full Text:

PDF

References


Arroyo-Solórzano, M., Castro-Rojas, D., Massin, F., Linkimer, L., Arroyo, I., Yani, R., 2021. COVID-19 lockdown effects on the seismic recordings of Central America. Solid Earth Discuss. doi: 10.5194/se-2021-25

Ashayeri, I., Sadr, A., Biglari, M., Haghshenas, E., 2020. Comprehensive ambient noise analyses for seismic microzonation of Sarpol-e-zahab after the Mw 7.3 2017 Iran earthquake. Eng. Geol. 272, 105636. doi: 10.1016/j.enggeo.2020.105636.

Bent, A., 2013. Global Seismograph Network (GSN). In: Bobrowsky, P.T. (Ed.). Encyclopedia of Natural Hazards. Encyclopedia of Earth Sciences Series. Springer, Dordrecht. p. 417–418. doi: 10.1007/978-1-4020-4399-4_161.

Condori, C., 2021. Estudo e caracterização das variações da estrutura da crosta e dinâmica do Manto Superior sob o Norte do Peru, com métodos sismológicos. PhD Thesis on Applied Geosciences. Universidade de Brasília.

De Plaen, R.S.M., Cannata, A., Cannavo’, F., Caudron, C., Lecocq, T., Francis, O., 2019. Temporal Changes of Seismic Velocity Caused by Volcanic Activity at Mt. Etna Revealed by the Autocorrelation of Ambient Seismic Noise. Front. Earth Sci. 6:251. doi: 10.3389/feart.2018.00251.

De Plaen, R.S.M., Márquez-Ramírez, V.H., Pérez-Campos, X., Zuñiga, F.R., Rodríguez-Pérez, Q., Gómez González, J.M., Capra, L., 2021. Seismic signature of the COVID-19 lockdown at the city scale: a case study with low-cost seismometers in the city of Querétaro, Mexico. Solid Earth 12, 713–724. doi: 10.5194/se-12-713-2021.

Dias, F.L., Assumpção, M., Peixoto, P.S., Bianchi, M.B., Collaço, B., Calhau, J., 2020. Using Seismic Noise Levels to Monitor Social Isolation: An Example From Rio de Janeiro, Brazil. Geophys. Res. Lett., 47, e2020GL088748. doi: 10.1029/2020GL088748.

Diaz, J., Ruiz, M., Jara, J.-A., 2021. Seismic monitoring of urban activity in Barcelona during the COVID-19 lockdown. Solid Earth 12, 725–739. doi: 10.5194/se-12-725-2021.

Gibney, E., 2020. Coronavirus lockdowns have changed the way Earth moves. Nature 580, 176–177. doi: 10.1038/d41586-020-00965-x.

Godano, C., Convertito, V., Pino, N.A., 2021. The Signal to Noise Ratio and the Completeness Magnitude: The Effect of the COVID-19 Lockdown. Atmosphere (Basel). 12, 525. doi: 10.3390/atmos12050525.

Google LLC, 2020. Google COVID-19 Community Mobility Reports [WWW Document]. Available from https://www.google.com/covid19/mobility/.

Grecu, B., Borleanu, F., Tiganescu, A., Poiata, N., Dinescu, R., Tataru, D., 2021. The effect of 2020 COVID-19 lockdown measures on seismic noise recorded in Romania. Solid Earth 12, 2351–2368. doi: 10.5194/se-12-2351-2021.

Hong, T.-K., Lee, J., Lee, G., Lee, J., Park, S., 2020. Correlation between Ambient Seismic Noises and Economic Growth. Seismol. Res. Lett. 91, 2343–2354. doi: 10.1785/0220190369.

Hussain, Y., Cardenas-Soto, M., Martino, S., Moreira, C., Borges, W., Hamza, O., Prado, R., Uagoda, R., Rodríguez-Rebolledo, J., Silva, R., Martinez-Carvajal, H., 2019. Multiple Geophysical Techniques for Investigation and Monitoring of Sobradinho Landslide, Brazil. Sustainability 11, 6672. doi: 10.3390/su11236672.

Iannucci, R., Martino, S., Paciello, A., D’Amico, S., Galea, P., 2018. Engineering geological zonation of a complex landslide system through seismic ambient noise measurements at the Selmun Promontory (Malta). Geophys. J. Int. 213, 1146–1161. doi: 10.1093/gji/ggy025.

INEI, 2022. Lima supera los 10 millones de habitantes al año 2022, Nota de Prensa. Instituto Nacional de Estadística e Informática, Peru.

Kil, D., Hong, T., Chung, D., Kim, B., Lee, J., Park, S., 2021. Ambient Noise Tomography of Upper Crustal Structures and Quaternary Faults in the Seoul Metropolitan Area and Its Geological Implications. Earth Space. Sci., 8(11): e2021EA001983. doi: 10.1029/2021EA001983.

Killick, R., Fearnhead, P., Eckley, I.A., 2012. Optimal Detection of Changepoints With a Linear Computational Cost. J. Am. Stat. Assoc. 107, 1590–1598. doi: 10.1080/01621459.2012.737745.

Kuponiyi, A.P., Kao, H.., 2021. Temporal Variation in Cultural Seismic Noise and Noise Correlation Functions during COVID-19 Lockdown in Canada. Seismol. Res. Lett. 92(5), 3024–3034. doi: 10.1785/0220200330.

Lecocq, T., Hicks, S.P., Van Noten, K., van Wijk, K., Koelemeijer, P., De Plaen, R.S.M., Massin, F., Hillers, G., Anthony, R.E., Apoloner, M.-T., Arroyo-Solórzano, M., Assink, J.D., Büyükakp?nar, P., Cannata, A., Cannavo, F., Carrasco, S., Caudron, C., Chaves, E.J., Cornwell, D.G., Craig, D., den Ouden, O.F.C., Diaz, J., Donner, S., Evangelidis, C.P., Evers, L., Fauville, B., Fernandez, G.A., Giannopoulos, D., Gibbons, S.J., Girona, T., Grecu, B., Grunberg, M., Hetényi, G., Horleston, A., Inza, A., Irving, J.C.E., Jamalreyhani, M., Kafka, A., Koymans, M.R., Labedz, C.R., Larose, E., Lindsey, N.J., McKinnon, M., Megies, T., Miller, M.S., Minarik, W., Moresi, L., Márquez-Ramírez, V.H., Möllhoff, M., Nesbitt, I.M., Niyogi, S., Ojeda, J., Oth, A., Proud, S., Pulli, J., Retailleau, L., Rintamäki, A.E., Satriano, C., Savage, M.K., Shani-Kadmiel, S., Sleeman, R., Sokos, E., Stammler, K., Stott, A.E., Subedi, S., Sørensen, M.B., Taira, T., Tapia, M., Turhan, F., van der Pluijm, B., Vanstone, M., Vergne, J., Vuorinen, T.A.T., Warren, T., Wassermann, J., Xiao, H., 2020a. Global quieting of high-frequency seismic noise due to COVID-19 pandemic lockdown measures. Science, 369(6509): 1338–1343. doi: 10.1126/science.abd2438.

Lecocq, T., Massin, F., Satriano, C., Vanstone, M., Megies, T., 2020b. SeismoRMS – A simple Python/Jupyter Notebook package for studying seismic noise changes. Version 1.0. Zenodo [code] https://zenodo.org/record/3820046#.Yt8FlnXMK00.

Maciel, S.T.R., Rocha, M.P., Schimmel, M., 2021. Urban seismic monitoring in Brasília, Brazil. PLoS One 16, e0253610. doi: 10.1371/journal.pone.0253610.

Nimiya, H., Ikeda, T., Tsuji, T., 2021. Temporal changes in anthropogenic seismic noise levels associated with economic and leisure activities during the COVID-19 pandemic. Sci. Rep. 11, 20439. doi: 10.1038/s41598-021-00063-6.

Ojeda, J., Ruiz, S., 2021. Seismic noise variability as an indicator of urban mobility during the COVID-19 pandemic in the Santiago metropolitan region, Chile. Solid Earth 12, 1075–1085. doi: 10.5194/se-12-1075-2021.

Pandey, A.P., Singh, A.P., Bansal, B.K., Suresh, G., Prajapati, S.K., 2020. Appraisal of seismic noise scenario at national seismological network of India in COVID-19 lockdown situation. Geomat. Nat. Hazards Risk, 11, 2095–2122. doi: 10.1080/19475705.2020.1830187.

Pérez-Campos, X., Espíndola, V.H., González-Ávila, D., Zanolli Fabila, B., Márquez-Ramírez, V.H., De Plaen, R.S.M., Montalvo-Arrieta, J.C., Quintanar, L., 2021. The effect of confinement due to COVID-19 on seismic noise in Mexico. Solid Earth 12, 1411–1419. doi: 10.5194/se-12-1411-2021.

Piccinini, D., Giunchi, C., Olivieri, M., Frattini, F., Di Giovanni, M., Prodi, G., Chiarabba, C., 2020. COVID-19 lockdown and its latency in Northern Italy: seismic evidence and socio-economic interpretation. Sci. Rep. 10, 16487. doi: 10.1038/s41598-020-73102-3.

Poli, P., Boaga, J., Molinari, I., Cascone, V., Boschi, L., 2020. The 2020 coronavirus lockdown and seismic monitoring of anthropic activities in Northern Italy. Sci. Rep. 10, 9404. doi: 10.1038/s41598-020-66368-0.

?cis?o, ?., ?acny, ?., Guinchard, M., 2022. COVID-19 lockdown impact on CERN seismic station ambient noise levels. Open Eng. 12, 62–69. doi: 10.1515/eng-2022-0005.

Shen, J., Zhu, T., 2021. Seismic Noise Recorded by Telecommunication Fiber Optics Reveals the Impact of COVID-19 Measures on Human Activity. Seism. Rec. 1, 46–55. doi: 10.1785/0320210008.

Somala, S.N., 2020. Seismic noise changes during COVID-19 pandemic: a case study of Shillong, India. Nat. Hazards 103, 1623–1628. doi: 10.1007/s11069-020-04045-1.

Stutzmann, E., M. Schimmel, G. Patau, and A. Maggi 2009, Global climate imprint on seismic noise, Geochem. Geophys. Geosyst.,10, Q11004, doi: 10.1029/2009GC002619.

Tribaldos, V. R., Ajo?Franklin, B. J., 2021. Aquifer Monitoring Using Ambient Seismic Noise Recorded With Distributed Acoustic Sensing (DAS) Deployed on Dark Fiber. J. Geophys. Res. Solid Earth 126. doi: 10.1029/2020JB021004.

Truong, C., Oudre, L., Vayatis, N., 2020. Selective review of offline change point detection methods. Signal Processing 167, 107299. doi: 10.1016/j.sigpro.2019.107299.

Wathelet, M., Chatelain, J.-L., Cornou, C., Giulio, G. Di, Guillier, B., Ohrnberger, M., Savvaidis, A., 2020. Geopsy: A User-Friendly Open-Source Tool Set for Ambient Vibration Processing. Seismol. Res. Lett. 91, 1878–1889. doi: 10.1785/0220190360.

Welch, P., 1967. The use of fast Fourier transform for the estimation of power spectra: A method based on time averaging over short, modified periodograms. IEEE Trans. Audio Electroacoust. 15, 70–73. doi: 10.1109/TAU.1967.1161901.

Yabe, S., Imanishi, K., Nishida, K., 2020. Two-step seismic noise reduction caused by COVID-19 induced reduction in social activity in metropolitan Tokyo, Japan. Earth, Planets Sp. 72, 167. doi: 10.1186/s40623-020-01298-9.

Zambon, G., Roman, H., Smiraglia, M., Benocci, R., 2018. Monitoring and Prediction of Traffic Noise in Large Urban Areas. Appl. Sci. 8, 251. doi: 10.3390/app8020251.




DOI: http://dx.doi.org/10.22564/brjg.v40i3.2178

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.







>> Brazilian Journal of Geophysics - BrJG (online version): ISSN 2764-8044
a partir do v.37n.4 (2019) até o presente

Revista Brasileira de Geofísica - RBGf (online version): ISSN 1809-4511
v.15n.1 (1997) até v.37n.3 (2019)

Revista Brasileira de Geofísica - RBGf (printed version): ISSN 0102-261X
v.1n.1 (1982) até v.33n.1 (2015)

 

Brazilian Journal of Geophysics - BrJG
Sociedade Brasileira de Geofísica - SBGf
Av. Rio Branco 156 sala 2509
Rio de Janeiro, RJ, Brazil
Phone/Fax: +55 21 2533-0064
E-mail: editor@sbgf.org.br

 

Creative Commons