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Abstract 

Automated matching of a patient’s 12-lead ECG within 
a large 12-lead ECG database to find similar ECGs has 
many potential applications including searching for 
examples, diagnosing ECG by probability estimation, or 
confirming patient identification. We created a 
morphology-similarity matching algorithm and reported 
the performance in this study.  

The study set consisted of 24,262 ECGs from 8,663 
subjects. Similar ECGs were found by two methods, 
exhaustive search of pair-wise template matching and fast 
query using a k-dimensional tree architecture and a 
processed version of the ECG signal as feature vector. Two 
ECGs were similar if they came from the same patient. For 
each ECG in the study set, 20 nearest neighbors were 
extracted from the database. Sensitivities were calculated 
for finding any and all of the ECGs from the same patient 
in the set of 20 nearest neighbors. 

In the exhaustive search, sensitivities were 68% and 
37% for finding any and all of the ECGs from the same 
patient respectively. With the fast query, sensitivities were 
48% (any) and 30% (all). Sensitivity for the fast query 
increased to 56% (any) and 37% (all) when extracting 50 
nearest neighbors.  

We conclude that a low complexity but fast query can 
be used to find similar 12-lead ECGs from a large 
database. 

1. Introduction

Fast query of similar ECGs has many potential 
applications including the following 1) assistance with 
ECG interpretation by viewing examples, 2) statistical 
diagnosis from the probabilities given by the matching 
ECGs and 3) finding previous ECGs of a patient with 
incorrect identifying information.  

The idea of similarity in ECG by morphology has been 
used mainly within a patient’s recording to find similar 
beats for averaging and to reject or classify ectopic beats 
(1). Cross correlation or template matching is typically 
used to decide if a new heart beat matches normal or 

abnormal templates constructed from previous beats. 
Similarity of ECG has also been studied as a biometric like 
finger prints or retina scan (2).  

Bousseljot et al. introduced statistical interpretation of 
ECGs not by statistical rules but by direct estimation of 
probability of diagnosis from the interpretation of a set of 
matching ECGs (3).  Bousseljot used cross correlation to 
test each new ECG to every ECG in the 10,000 ECG 
database. Since cross correlation is a computationally 
expensive operation and testing for a match against every 
ECG in the database limits the size of the database, our 
goal is to find an inexpensive way to match ECGs by 
waveform morphology to allow fast query with large 
databases. 

2. Methods

2.1. Study population 

From a single teaching hospital, patients were selected 
over a three year period. Patients with multiple 12-lead 
ECGs were included. Excluded were patients with error in 
study identification number. The resulting test set 
consisted of 24,262 ECGs from 8,663 patients. The 
training set came from the publicly available PhysioNet 
PTB dataset (4). The PTB dataset consisted of 549 15-lead 
ECG recordings from 294 subjects. 

2.2. Algorithm development 

The basis for the similar ECG query is a k-dimensional 
(KD) tree (5). The first step is to build a tree or set of trees 
from an initial database. For each new ECG in question, 
the KD tree is queried for nearest neighbors. Two different 
methods were employed for feature selection to use in the 
KD tree. The first method involved selecting common 
ECG features like QRS axis and QRS duration that had a 
statistically significant contribution to a linear regression 
estimate of template match score. The lower the template 
match score, the better the match because template match 
involves subtracting the waveform in question from the 
template. For a perfect match, the difference is zero. The 
second method for feature selection involved using a 
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processed version of the actual signal as the feature vector. 
This second method was far superior. To reduce the feature 
vector size, several steps were required to reduce the 
number of points while maintaining the shape information. 
An average beat was generated from the dominant 
morphology of each ECG. The average beat was 
transformed from 12-leads to 3 orthogonal Frank leads 
(vectorcardiogram or VCG) with the Kors transformation 
for a 3:8 reduction in samples (6). To reduce the number 
of samples further while retaining the shape information, 
the approximation was taken from the 4th level wavelet 
decomposition (7). The X, Y and Z leads were 
concatenated to make the final feature vector. Figure 1 
below shows an example feature vector where the QT 
interval is clearly visible in the concatenated X, Y and Z 
leads. 

Since a patient’s heart rate may vary among the patient’s 
multiple ECGs, QT interval heart rate correction was 
applied to normalize the STT region to a heart rate of 60 
bpm. The corrected QT interval was calculated according 
to the Hodges formula (8) and the difference between QT 
and corrected QT was used as a scale factor to linearly 
correct the waveform from the end of the QRS beyond the 
end of the T-wave. QT interval correction was applied in a 
similar way for the pairwise template match comparison of 
ECGs except that the correction was based on the heart rate 
difference between the ECG pair. 

. 

Figure 1 Example Frank lead feature vector from subject 
s0001 of the PhysioNet PTB database. The X, Y and Z 
signals are concatenated into one vector. Only the QT 
region is used. 

2.3. Test method 

To test the ability of the similar-ECG algorithm to return 
ECGs that are truly similar in shape, 20 nearest neighbor 
ECGs were retrieved from the database for each ECG in 
the test set. The first step was to build the KD tree from the 
test set. The number 20 was chosen for the number of 
nearest neighbors because it is an empirical upper limit for 

a reasonable number of ECGs a user might review when 
using similar ECGs as helpful examples. The returned set 
from a query was compared to that patient’s list of ECGs 
to arrive at two sensitivity numbers, a sensitivity to detect 
any of the patient’s other ECGs and a sensitivity to detect 
all of the patient’s other ECGs. 

As a performance reference, the same procedure was 
performed using template matching and exhaustive search. 
Each ECG was compared to every other ECG to get an N 
x N matrix of template match scores. For each ECG, the 20 
best matches were returned as nearest neighbors.  

In addition, the test was repeated 200 times with a 
random number of patients to see the effect of the number 
of patients on the sensitivity for finding a patient’s other 
ECGs. The choice of patients was also random for each 
resampling. 

3. Results

Table 1 below shows the sensitivity for detecting the 
patient’s other ECGs when performing similar-ECG 
queries. The main result is found in the top two rows of the 
table, the KD tree fast query and the template match 
exhaustive search. The additional rows show how the 
sensitivity increases by increasing the number of nearest 
neighbors in the KD tree query. While the exhaustive 
search gives the highest sensitivity to find any other ECG, 
the KD tree method approaches closely by increasing the 
number of nearest neighbors in the query. 

Table 1. Sensitivity (SE) for detecting the subject’s other 
ECGs. N stands for the number of nearest neighbors 
requested in the similar-ECG query. 

Query method N SE (%) 
Any ECG 

SE (%) 
All ECGs 

Exhaustive search 20 68 37 
KD tree 20 48 28 
KD tree 30 52 33 
KD tree 40 55 35 
KD tree 50 56 37 

Figure 2 shows an example of the output from a 
similarity search of the test database. The example ECG is 
shown in the left column and a similar ECG from a 
different patient is shown on the right. 

4. Discussion

Several important questions need to be answered in 
retrieval of similar ECGs from a database. How similar is 
similar? How to measure ECG similarity? How much 
computational resource is needed for such an application? 
Is the application practical? In this paper, we attempt to 
answer the degree of similarity question not by a 

 

 

  



morphology metric but by an objective measure, that is 
whether the ECGs belonging to the same patient. We 
believe this approach is better because it is not an arbitrary 
choice of shape metric and threshold. In addition, it is more 
challenge since the ECGs were recorded at different times 
so there are a variety of shape-based differences due to 
quality of recording technique and physiological changes. 
The computational requirement was not tested specifically 
but elements of the algorithm were designed with focus on 

low computational alternatives by design, reduced feature 
vector size, and efficient comparisons due to KD tree 
architecture. 

Template matching of 500 sps data over the entire QT 
interval was used as the reference for waveform 
morphology matching of 12-lead ECG in the exhaustive 
search. Template matching is an expensive operation in 
CPU cycles. Cross correlation is even more expensive 
since it involves multiplies in addition to subtraction. KD 
tree query is quite different however. Muja found the 
speed-up factor for KD trees compared to linear search was 
somewhere between 57 and 110 (9). Muja’s result is based 
on a single feature vector comparison. Template match 
often involves many time shift and feature vector compare 
operations. The results by tree based query versus 
exhaustive template match search are close enough to say 
the fast tree based query is equivalent given the fact that 
exhaustive search is not practical.  

The clean definition of “similar shape” - the patient’s 
other ECGs – comes with a downside. As can be seen in 
Figure 3, the sensitivity when using this similar shape 
criterion decreases as the number of patients in the 
database increases. This does not mean the algorithm gets 
worse with more patients. It just means that with more 
patients comes a higher probability of similar shape from 
other patients. Intuitively, we expect similarity in shape to 
increase or at least stay the same when the number of 
patients increases. This is not a problem with the nearest 
neighbor algorithm, just a problem with the definition of 
similar shape used in this study. On the other hand, search 
complexity increases with longer feature vectors. There is 
a tradeoff between shape information and feature vector 
length. As we reduce the feature vector size by higher 
levels of wavelet approximation, we reduce shape 
information. The fine detail is smoothed out.  

The sensitivity for shape match against a reference of 
same patient’s ECG was not as high as expected by the 
authors. Several factors contributed to the modest 
sensitivity. Primarily, the ECGs for each patient were not 
taken at the same time with the same electrode positions. 
In many cases, a patient’s ECGs were spaced by months 
and even years. In addition, no correction was made for 
change in health status which can change the ECG 
morphology drastically. In an analysis of ECG 
reconstruction from reduced leads, Gregg et al. found that 
time duration had a small contribution but the remaining 
contribution to ECG variation was much larger (10). The 
remaining variation could be due to potentially electrode 
placement deviation or health status change. 

As seen in the performance results of Table 1, 
increasing the number of nearest neighbors in the KD tree 
query increases the sensitivity for finding a patient’s other 
ECGs. Presumably, this allows a design tradeoff between 
sensitivity and complexity. More nearest neighbors can be 
queried and then winnowed with a pairwise shape based 
operation or other features. 

Figure 2. Subject ECG (left) and matching ECG (right) 
from a different subject. Limb leads are shown in Cabrera 
order. The ECGs are not exactly the same, just similar. 

 

 

  



A comparison of results between this study and that of 
Bousseljot (3) is not possible because the strategies were 
completely different. While Bousseljot used a fixed shape 
metric and threshold and a variable number of nearest 
neighbors, we used a fixed number of nearest neighbors 
and a variable level of similarity by shape.  

Since we used the other ECGs of a patient as the 
similarity reference, it makes sense to compare to studies 
using ECG as an identifying biometric. However, we want 
to find ECGs with a similar shape purposely focusing what 
is similar about different patients rather than focusing on 
what makes different patients unique. The error rate of the 
ECG biometric techniques is lower than ours in general but 
those great results come from training and testing with 
healthy subjects during the same session (2). For an 
equivalent comparison, the error rate of our technique is 1 
– sensitivity and the number of patients must be reduced to
200. For equivalence, we must compare to Odinaka’s 
results for 16 beats, training in one session and testing in 
another session. Our error rate of 10 to 30% (see Figure 3, 
lowest number of patients) is in the range of methods 
reported by Odinaka where the average error rate was 23% 
(16 to 47%) across 20 different methods.  

Since our morphology-similarity metric was based on a 
patient’s other ECGs, and ECGs in the test set were 
recorded over a period of several years in a hospital 
population, the validation was designed to account for 
ECG morphology variations due to time, recording 
techniques such as electrode placement, and health status 
changes. 

5. Conclusion

We conclude that using a low complexity similarity 
query for 12-lead ECG can achieve similar performance 
level as an expensive shape metric and exhaustive search. 
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Figure 3. Sensitivity versus number of patients in the 
database by bootstrap. The sensitivity of finding a patient’s 
other ECGs falls as the number of patients grows. 

 

 

  

http://www.vlfeat.org/

	086-171



