
Derivative-based Inference for Cell and Channel Electrophysiology Models

Michael Clerx1, David Augustin2, Alister R Dale-Evans2, Gary R Mirams1

1University of Nottingham, UK. 2University of Oxford, UK

Abstract

Models of ionic currents or of the cardiac action po-
tential (AP) are frequently calibrated by defining an error
function that quantifies the mismatch between simulations
and data, and using numerical optimisation to find the pa-
rameter values that minimise this function. Many optimi-
sation algorithms assume knowledge of the derivatives of
the error function with respect to the parameters, but for
models formulated as differential equations these are typi-
cally unknown.

In this study we extend our simulation tool, Myokit, with
the capability to rapidly calculate derivatives of simula-
tion output and couple it to our inference tool, PINTS, to
calculate the derivatives of the error function. We mea-
sure the added overhead of the sensitivity calculations in a
model of the ion current IKr and in a model of a stem-cell
AP. Next we compare the performance of a state-of-the art
derivative-free optimiser with that of a popular derivative-
using method. For both problems, the derivative-based
method requires fewer function evaluations, but this is off-
set by a significant increase in the computational cost of
each evaluation. The derivative-free method is much faster
for the IKr case, while the derivative-using method outper-
forms on the AP case. However, the derivative-free method
is more robust on both problems: providing the correct an-
swer on a greater percentage of runs.

1. Introduction

Models of cardiac cell and channel electrophysiology
are commonly formulated as systems of ordinary differ-
ential equations (ODEs)

dy

dt
= f(y, t, p), y(t = 0) = y0, (1)

where y is a vector of state variables, t is time, and p is a
vector of model parameters. Values for p can be found by
defining an error function, E(p), to quantify the mismatch
between simulation and experiment, and then minimising
E using numerical optimisation [1, 2]. A simple choice is

E(p) =
∑
i

(m(ti)− vi)2 , (2)

where vi are experimental measurements taken at time ti,
while m(ti) is the corresponding simulation output. For
example, y may contain variables describing ion channel
states and ionic concentrations, while m is a current calcu-
lated from y and p.

Many classical algorithms for numerical optimisation
utilise the derivatives ∂E/∂p, but because evaluating E
requires solving an initial value problem (running a sim-
ulation) these are not usually available. In this study we
extend existing modelling tools with methods to calculate
∂E/∂p, measure the overhead of the extra calculations,
and compare the performance of a method that uses deriva-
tives and a derivative-free one. Two test cases are used,
each based on real experiments but with synthetically gen-
erated data.

2. Methods

All experiments were run using Python 3.9.13. Results,
simulation code, and figure-generating scripts are provided
at https://github.com/CardiacModelling/fitting-with-deri
vatives-cinc.

2.1. Test case: IKr

The first test case is a model of the ionic current IKr as
a function of membrane potential (V), as detailed in [2].
Here y consists of two states, each described by a forward
and backward reaction rate of the form ki = ai exp(biV)
where ai and bi are parameters. The output m is a func-
tion of y and a conductance parameter, so that there are 9
parameters in total. The input V is a time-variant signal
based on the “staircase protocol” from [3]. For simplicity,
the initial state y0 is assumed known.

Lower and upper limits are defined on the individual pa-
rameters and on the rates, optimisation is performed in a
space where the ai parameters are log-transformed, and
starting points for each optimisation are sampled randomly
from within the (log-transformed) boundaries [2]. The
“experimental data” to fit to was generated by running a
simulation with parameters based on [2] and adding nor-
mally distributed noise with σ = 0.025A/F.

Computing in Cardiology 2022; Vol 49 Page 1 ISSN: 2325-887X DOI: 10.22489/CinC.2022.287

https://github.com/CardiacModelling/fitting-with-derivatives-cinc
https://github.com/CardiacModelling/fitting-with-derivatives-cinc

2.2. Test case: AP

The second test case is a model of the action potential
(AP) in human induced pluripotent stem cells [4]. Here
y contains two internal calcium concentrations and sev-
eral state variables for ion current models. The simula-
tions mimic a perforated patch experiment [5] in which V
is fixed to a time-varying input signal, all external concen-
trations are set to the bath concentrations, and the cytoso-
lic concentrations of monovalent ions are assumed equal
those in the pipette. The output m is the sum of 10 ionic
transmembrane currents, each multiplied by a dimension-
less scaling parameter, and 2 fixed-size “background” cur-
rents. For simplicity the initial state y0 is assumed known.

Lower and upper limits on the parameters are set
as 10−3 and 103 respectively, all 10 parameters are
log-transformed during optimisation, and starting points
are sampled uniformly from within the log-transformed
boundaries. The data to fit to was generated by simulat-
ing with all scaling parameters set to 1 and then adding
normally distributed noise with σ = 0.1A/F.

2.3. Calculating sensitivities

We adapted our modelling tool, Myokit [6], to use
CVODES [7] to calculate both the solution to initial value
problems, y(t) and the sensitivities, defined as si(t) ≡
∂y(t)/∂qi, where qi is either a parameter or an initial
value. To calculate si(t) CVODES integrates

ṡi(t) =
∂f

∂y
si(t) +

∂f

∂qi
y(t), (3)

along with f , using finite difference approximations to es-
timate ∂f/∂y and ∂f/∂qi [7]. We added symbolic dif-
ferentiation functionality to Myokit to then derive ∂m/∂p
and the final step of calculating ∂E/∂pwas handled by the
inference software PINTS [8].

2.4. Numerics & benchmarking

Based on previous successes we used CMA-ES [9] as a
derivative-free optimiser [2, 3]. The implementation used
was published by the method’s authors (although we ac-
cessed it via a wrapper in PINTS [8]). As a derivative-
based method we chose iRprop-[10], an implementation of
which was added to PINTS for this study. Although this is
a relatively simple method we found it outperformed other
derivative-based algorithms.

Benchmarking was performed on a laptop with an Intel
Core i9-10885H CPU with 8 true 2.4 GHz cores (some-
times advertised as 16 cores with “hyperthreading”). Up
to 8 experiments were run simultaneously, but none of the
individual experiments were parallelised so that each ex-
periment had access to a single (true) core.

0 50 100 150 200
IKr error function evaluations

0

20

40

Ru
n

tim
e

(s
) No derivatives

With derivatives

0 50 100 150 200
AP error function evaluations

0

50

100

150

Ru
n

tim
e

(s
) No derivatives

With derivatives

1 2
0.0

0.2

0.4

0.6

0.8

M
ea

n
tim

e
(s

)

1 2
0.0

0.2

0.4

0.6

0.8

M
ea

n
tim

e
(s

)

Figure 1. The time taken for 200 evaluations of E with
and without derivatives, for the IKr (top) and AP (bottom)
cases. Mean time per evaluation is shown on the right.

3. Results

Example simulations for both test cases can be viewed
in the repository accompanying this paper.

To measure the overhead of calculating ∂E/∂p, we
evaluated each error function 200 times on parameters
sampled randomly from within the boundaries (Figure 1).
The IKr error function was 5.2 times slower when deriva-
tives were calculated, while for the AP error function this
rose to a factor 8.3.

Next, we ran 100 optimisations for each case and
method, again starting at points sampled randomly from
within the problem boundaries. Results for the IKr test
case are shown in Figure 2. The derivative-using method
iRprop- uses fewer evaluations, but their increased run-
time makes CMA-ES the faster option.

Results for the AP test case are shown in Figure 3.
The derivative-using iRprop- method uses far fewer eval-
uations, compensating for the 8 times slower run-time per
evaluation and leading to a moderate improvement over
CMA-ES in speed.

Next, we considered the accuracy and reliability of the
obtained results. On synthetic problems we can check
whether the obtained solution is the intended one, but in a
realistic scenario the true solution is unknown so that other
measures must be used. Here, we ordered the 100 results
for each case-and-method combination from low (best) to
high error (worst) and calculated the error relative-to-best-
obtained in each run i as (Ei − E0)/Ei.

This relative error is plotted for the IKr and AP test cases
in the first 1st and 3d row of Figure 4 respectively. For IKr
we can see that CMA-ES is more robust, returning an error
within 5% of E0 in 80 out of 100 runs, while for iRprop-

Page 2

0 5k 10k 15k
Evaluations

10 3

100

103

IK
r E

rro
r

CMA-ES
iRprop-

0 5k 10k 15k
Evaluations

iRprop-
CMA-ES

0 1k 2k 3k
Run time (s)

10 3

100

103

IK
r E

rro
r

CMA-ES
iRprop-

0 1k 2k 3k
Run time (s)

iRprop-
CMA-ES

Figure 2. (Top) The error as a function of the number of
function evaluations made by CMA-ES (left) and iRprop-
(right). For ease of comparison, data for the competing
method is shown in grey in the background. Both methods
find the optimum in most, but not all runs, and iRprop-
converges quicker. (Bottom) Viewed as a function of run-
time the advantage for iRprop- disappears.

this figure was reduced to 57. On the AP problem CMA-
ES returned a similar error on 95 runs, compared to 83 for
iRprop-.

Disparate points can have similar errors, so we also de-
fined a measure of the distance from the obtained param-
eters to the lowest-error parameters. Writing pij for value
of parameter j obtained in run i, we define the maximum
relative parameter error in run i as maxj |pij − p0j |/p0j .
The resulting parameter errors are plotted in rows 2 and
4 of Figure 4, and show that low errors corresponded to
similar solutions in all 4 experiments.

Finally, we tried several other derivative-using methods
but without success. For example, none of the methods
included in SciPy (BFGS, CG, SHGO with SLSQP as lo-
cal optimiser) or methods we implemented for this project
(Adam, AdaGrad) failed to converge, even after attempts
to manually ‘tune’ their performance.

We also experimented with MCMC sampling meth-
ods. Here we were successful with derivative-free adap-
tive methods such as ACMC, while derivative-using meth-
ods such as Hamiltonian MC and NUTS failed to converge
within a reasonable time frame.

4. Discussion

We tested a derivative-using and a derivative-free
method on two realistic inference problems. On both prob-
lems the derivative-using method required fewer evalua-
tions, but the increased cost per evaluation led to an in-

0 2000 4000
Evaluations

10 3

100

103

AP
 E

rro
r

CMA-ES
iRprop-

0 2000 4000
Evaluations

iRprop-
CMA-ES

0 200 400 600
Run time (s)

10 3

100

103

AP
 E

rro
r

CMA-ES
iRprop-

0 200 400 600
Run time (s)

iRprop-
CMA-ES

Figure 3. As Figure 2 but for the AP case. Here the re-
duced number of evaluations for iRprop- outweights the
increased time per evaluation, making it the faster method.

0 25 50 75 100

10 7

10 2

103
(E

E 0
)/E

0 IKr, CMA-ES

0 25 50 75 100

IKr, iRprop-

0 25 50 75 100
Index

10 3

101

105

m
ax

|p
i

p i
,0

|/p
i,0 IKr, CMA-ES

0 50 100
Index

IKr, iRprop-

0 25 50 75 100

10 6

10 2

102

(E
E 0

)/E
0 AP, CMA-ES

0 25 50 75 100

AP, iRprop-

0 25 50 75 100
Index

10 6

10 4

10 2

100

m
ax

|p
i

p i
,0

|/p
i,0 AP, CMA-ES

0 25 50 75 100
Index

AP, iRprop-

Figure 4. Error relative to best-obtained error (rows 1 &
3), and maximum relative difference between parameters
and best-obtained-error parameters (row 2 & 4). Runs are
ordered from lowest error (E) to highest, so that the plots
for E are monotonically non-decreasing. The dotted line
and the gray shaded areas indicate the percentage of results
within 5% of the best obtained result.

Page 3

creased run-time for the IKr case and an only slightly
decreased run-time for the AP problem. In all tests the
derivative-free method CMA-ES was more robust, return-
ing the “correct” solution more often than derivative-using
iRprop-. In this discussion we will focus first on the
question of how (or if) we can improve the run-time of
derivative calculations, and then on the larger questions of
whether gradient information is useful for these problems
and why so many optimisers failed to find a solution at all.

For both problems studied, we integrated and stored sen-
sitivities for n parameters of interest and m states at k
points in time, before using this set of n×m× k values to
calculate just n derivatives ∂E/∂p. The memory alloca-
tion overhead associated with this process can partially be
avoided by using the adjoint method of calculating ∂E/∂p
[7]. Speed-ups might also be obtained by symbolically de-
riving expressions for ∂f/∂y and ∂f/∂qi, avoiding finite-
difference approximation. Under specific conditions, an-
alytical solutions exist for the IKr problem, from which
derivative equations can be derived. This would speed up
derivative-free and derivative-using methods, but may give
a competitive advantage to the derivative-using case. We
avoided parallelisation in this study, but it is worth noting
that many derivative-free methods are trivially parallelis-
able, while derivative-using methods typically are not.

Gradients are usually regarded as an invaluable tool for
optimisation. Compared to derivative-based optimisation,
derivative-free methods are relatively new, and much less
is known about their convergence properties. So how can
we explain the observed lack of improvement on these
cases?

The simplest explanation is that there is some error in
our ∂E/∂p calculations, although tests comparing to finite
difference approximations seem to indicate this is not the
case. Next, it may be that a different choice of derivative-
using optimisers (or their implementations) could yield a
better result, or that there are some settings that require
adjusting. Methods have been proposed to do this auto-
matically (hyperparameter optimisation) and are a possible
direction for future work.

An interesting property of both CMA-ES and iRprop- is
that they automatically adjust to the scale of each parame-
ter. CMA-ES does this by learning a covariance matrix that
characterises the search space, while iRprop- maintains a
separate learning rate for each parameter. As a result, they
can find solutions even when E changes very rapidly in
one parameter but very slowly in another. By contrast,
typical gradient-descent methods or line-search methods
like BFGS assume that ∂E/∂pi has a similar scale for all
parameters pi. It may be possible then, that further trans-
formations of the search space can condition the problem
so that other derivative-using methods achieve good per-
formance.

Finally, it is worth considering that, especially on noisy
and non-linear problems the gradient at a single point may
be a poor predictor of the location of the global optimum.
We may speculate that methods like CMA-ES, which sam-
ple several points before taking a step, are actually using
more reliable (more “global”) information. Further work
is needed to test these ideas.

In conclusion, derivative-based methods can provide
performance improvements, but the extra work needed to
implement and use them may not be worth the effort for
cell and channel electrophysiology models.

References

[1] Whittaker DG, Clerx M, Lei CL, Christini DJ, Mirams GR.
Calibration of ionic and cellular cardiac electrophysiology
models. Wiley Interdisciplinary Reviews Systems Biology
and Medicine 2020;12(4):e1482.

[2] Clerx M, Beattie KA, Gavaghan DJ, Mirams GR. Four
ways to fit an ion channel model. Biophysical Journal 2019;
117:2420–2437.

[3] Lei C, Clerx M, Gavaghan DJ, Polonchuk L, Mirams GR,
Wang K. Rapid characterisation of hERG channel kinetics
I: using an automated high-throughput system. Biophysical
Journal 2019;117:2438–2454.

[4] Kernik DC, Morotti S, Wu H, Garg P, Duff HJ, Kurokawa
J, Jalife J, Wu JC, Grandi E, Clancy CE. A computa-
tional model of induced pluripotent stem-cell derived car-
diomyocytes incorporating experimental variability from
multiple data sources. The Journal of physiology 2019;
597(17):4533–4564.

[5] Clark AP, Wei S, Kalola D, Krogh-Madsen T, Christini DJ.
An in silico–in vitro pipeline for drug cardiotoxicity screen-
ing identifies ionic pro-arrhythmia mechanisms. British
Journal of Pharmacology 2022;1–15.

[6] Clerx M, Collins P, de Lange E, Volders PGA. Myokit:
A simple interface to cardiac cellular electrophysiology.
Progress in Biophysics and Molecular Biology 2016;
120(1–3):100–114. ISSN 0079-6107.

[7] Hindmarsh AC, Brown PN, Grant KE, Lee SL, Serban R,
Shumaker DE, Woodward CS. SUNDIALS: Suite of non-
linear and differential/algebraic equation solvers. ACM
Transactions on Mathematical Software September 2005;
31(3):363–396.

[8] Clerx M, Robinson M, Lambert B, Lei CL, Ghosh S, Mi-
rams GR, Gavaghan DJ. Probabilistic Inference on Noisy
Time Series (PINTS). Journal of Open Research Software
2019;7(1):23.

[9] Hansen N. The CMA evolution strategy: A tutorial. arXiv
2016;abs/1604.00772.

[10] Igel C, Hüsken M. Empirical evaluation of the improved
Rprop learning algorithms. Neurocomputing 2003;50:105–
123.

Address for correspondence:

michael.clerx@nottingham.ac.uk School of mathematical sci-
ences, University of Nottingham, NG7 2RD, UK.

Page 4

michael.clerx@nottingham.ac.uk

	Introduction
	Methods
	Test case: IKr
	Test case: AP
	Calculating sensitivities
	Numerics & benchmarking

	Results
	Discussion

