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Abstract

Early detection of high blood pressure (BP) is of
paramount relevance because hypertension is the main
risk factor for many cardiovascular diseases. This work
evaluates the need of per-subject calibration for discrim-
ination between normotensive (NTS) and hypertensive
(HTS) subjects. 668 electrocardiographic (ECG), photo-
plethysmographic (PPG) and BP recordings from 51 sub-
jects were analyzed. After signal preprocessing and fea-
ture selection, 17 discriminatory features were obtained
to train machine learning based classifiers. Previous per-
subject calibration relevance was evaluated by sequen-
tial validation, using both close and distant in time cali-
bration measurements varying from less than 1h to more
than 24h with respect to test measurements. The k-nearest
neighbors classifier provided an accuracy for new subjects
before calibration of 56.79%. The inclusion of just one
calibration measurement into the model improved classi-
fication accuracy by 30%, reaching gradually more than
97%. Classification accuracy decreased with distance to
calibration, but remained well above 83% even days after
the last calibration. Thus, discrimination of NTS and HTS
subjects can be significantly improved combining PPG and
ECG recordings with previous per-subject calibration and,
therefore, could be used for the detection of hypertension
implementing these techniques in wearable devices.

1. Introduction

High blood pressure or hypertension (HT) is the main
risk factor for many cardiovascular diseases (CVDs) as
coronary disease, cardiac arrhythmia or stroke [1]. Fur-
thermore, most patients with HT are undiagnosed, as un-
til very advanced stages, HT rarely cause symptoms. For
these reasons, regular blood pressure monitoring is crucial
for the prevention and early detection of asymptomatic HT
and the continuous monitoring of diagnosed subjects [2].

For non-invasive blood pressure (BP) estimation, con-
ventional cuff-based devices offer adequate accuracy.
However, they are not wearable and only offer one-off
measures. Therefore, they are not compatible with contin-
uous measurement, are uncomfortable, and their measure-
ment procedure is tedious, requiring patient attention [3].

Consequently, work in this field is focused on the de-
velopment of cuff-less systems that can provide BP infor-
mation in near real time [4]. The development of these
systems is facilitated by new wristbands and smartwatches
that monitor physiological signals that change according
to BP level, as the electrocardiogram (ECG) and photo-
plethysmogram (PPG) [5]. The most promising signal is
PPG, an optical measurement technique employed to de-
tect changes in blood volume that is low cost, simple and
noninvasive [6].

BP classification models can automatically know in a
continuous and non-invasive way the subject’s blood pres-
sure condition, detecting hypertensive subjects with high
BP. Thus, Liang et al. [7] combined PPG morphological
features and propagation features as pulse arrival times
(PAT) with four distinctive classifiers for the hypertension
risk classification.

However, the relationship between PPG-based propaga-
tion parameters and BP depends on many physiological
factors, such as arterial walls condition, age and gender,
posture and CVDs risk factors. Thus, calibration is needed
when new subjects are evaluated by an automated classi-
fication methods. Moreover, calibration before measure-
ment is essential to adapt the algorithms to the variations
on PPG waveforms between subjects. [8].

The aim of the present study is to develop a classifica-
tion system for hypertension risk assessment and to evalu-
ate the need and relevance of per-subject calibration. For
this purpose, PPG and ECG simultaneous recordings were
analyzed and propagation features combined with other
PPG morphological features have been extracted and used
to train advanced machine learning classification models.
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2. Materials and Methods

2.1. Materials

The recordings were obtained from the MIMIC
database, which contains simultaneous ECG, PPG and in-
vasive BP recordings from ICU patients [9]. Noisy or mor-
phologically distorted signals were dismissed due to the
presence of artifacts.

In this study, a binary classification between normoten-
sive (NTS) and hypertensive (HTS) subjects was devel-
oped. Clinically, a third hypertension category for pre-
hypertensive subjects between 120 and 130 mmHg is in-
cluded. However, since there are few subjects with BP
values maintained between 120 and 140 mmHg, these sub-
jects were dismissed. Furthermore, subjects with oscillat-
ing values between two HT labels or with huge alterations
of their BP values were dismissed. Finally, 668 recordings
from 51 subjects with acceptable signal quality conditions
were selected. The signals were recorded simultaneously
with a duration of 120 seconds, a common sampling fre-
quency of 125 Hz and a resolution of 8-10 bits [10].

2.2. Signal Preprocessing

The PPG signals were processed by a fourth order
Chebyshev II bandpass filter with cutoff frequencies be-
tween 0.5 Hz and 10 Hz to remove minor noises and ar-
tifacts [11]. Furthermore, PPG mean value was removed
to prevent drifts and improve signals comparison. In addi-
tion, the velocity plethysmogram (VPG) and the accelera-
tion plethysmogram (APG) were obtained by applying the
first and the second order derivatives to the PPG signal.

The maximum systolic blood pressure (SBP) was ex-
tracted directly from BP recordings without preprocessing.
It was employed to label subjects whose selected segments
had SBP < 120 mmHg as NTS, and subjects whose se-
lected segments had SBP > 140 mmHg as HTS.

Each ECG was high-pass filtered with cutoff frequency
of 0.5 Hz to remove the baseline, and then low-pass filtered
with cutoff frequency of 50 Hz to reduce high-frequency
muscle noise and power line interference [12]. Finally, an
R-peak detector was applied to obtain beats positions.

After signal preprocessing, the systolic peaks of the
three signals (S, W, a), the onset point of the PPG signal
(O), and two local maxima and minimum of the APG sig-
nal (b, c, d, e) were extracted [13]. This fiducial points
were obtained based on searching local minima and max-
ima, calculated establishing threshold and slope criteria.

2.3. Features extraction

Discriminatory features based on pulse wave propaga-
tion theory as PAT and pulse transit time (PTT), and sig-

nals morphological theory as PPG and VPG systolic peak
amplitudes, time peak to peak (TPP), time pulse interval
(TPI), rising time, width, pulse areas, ratio between areas,
time interval between two consecutive a-peaks in APG sig-
nal and ratios between APG waves were defined [13, 14].

Afterwards, feature selection stage was applied to select
only those features with relevant information for the clas-
sification task. Relieff algorithm was applied to rank the
normalized features. Those variables that did not provide
new information were discarded studying the correlation
matrix. Finally, the last three ranked features (TPP, TPI
and pulse area) as well as three complex APG ratios were
removed, obtaining a matrix of 17 normalized features.

2.4. Need for calibration of new subjects

Calibration was defined as the inclusion of, at least, one
previous measurement of the subject under study in the
training dataset. Aimed at studying the importance of cal-
ibration in the classification of new subjects as NTS or
HTS, three approaches were taken:
1. Classification performance of new subjects without
prior subject-based calibration.
2. After signals segmentation into 12 sub-segments of 10
seconds, a sequential validation study was developed to
analyze the classification improvement as the model was
gradually calibrated by introducing previous sub-segments
in the training dataset very close in time.
3. Sequential validation to study the classification im-
provement as the model was calibrated by introducing pre-
vious measurements of the same patient in the training
dataset far away in time. Groups of segments that were
less than 1h, between 1h and 6h, between 6h and 24h and
more than one day apart were selected.

3. Results

K-Nearest Neighbors (KNN) model was chosen for the
classification task as provided the best results from up to
37 different classification strategies. Firstly, classification
accuracy discriminating between NTS and HTS individu-
als with no previous calibration was 56.79%.

Next, aiming at improving this result by means of cali-
bration, Figure 1 shows classification accuracy for sequen-
tial validation of consecutive sub-segments. The accuracy
improved progressively until it was established above 97%
when more than 6 prior and close in time sub-segments
from the same subject were present in the training dataset.

Finally, Figure 2 shows classification outcomes of se-
quential validation with different distances between mea-
surements. With calibration and measurement separated
less than one hour, the model obtained an accuracy beyond
94% from the sixth measurement onwards. As expected,
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Figure 1. Results obtained for sequential validation of consecutive sub-segments. Red lines indicate the median and the
bottom and top edges indicate the 15th and 85th percentiles. The whiskers extend to the most extreme data points not
considered outliers, and the red symbol (+) stands for outliers. Black squares inside each box indicate mean accuracies.

these outcomes decreased as the distance between calibra-
tions and test measurement increased, thus requiring up to
five calibration measurements with distances between 6h
and 24h to obtain accuracies above 80%.

4. Discussion

The continuous measurement of BP is of great impor-
tance for early detection and prevention of HT. Cuff-less
devices that obtain continuous physiological signals have
been proposed as an alternative to traditional cuff-based
one-off BP measurement methods. These signals can be
processed to apply artificial intelligence techniques for BP
estimation. PPG is the most used signal, as its morpholog-
ical variations are related to heart’s activity and BP values.

Most studies for BP risk classification use both PPG and
ECG signals, as PAT is directly related with BP values.
Liang et al. [7] reported a higher correlation with HT risk
levels combining PAT with additional PPG features.

The present study proposed two calibration approaches,
trying to improve the poor initial classification accuracy
of 56.76% when a new subject entered the method with-
out any previous calibration. The first approach investi-
gated how HT risk assessment could be improved employ-
ing consecutive sub-segments both for calibration and clas-
sification. Thus, high similarity was supposed between
calibration and test measurements. The second approach
studied the benefit of calibration between distant measure-
ments, varying from less than 1h to more than 24h. This
way, it was studied if the PPG signal properties remained
across time or changed along the day or week.

For close distances to calibration and below 1h, classi-
fication accuracy improved by 30% with just one calibra-
tion. Although this improvement decreased as the distance

between calibration and measurement increased, calibra-
tion always improved classification results compared to
classifying a new uncalibrated subject. Thus, after the fifth
calibration, all the experiments provided high accuracy.

These approaches demonstrated that each subject’s PPG
features properties were variable over time, as worse
results were obtained with measurements distant from
calibration. Therefore, several re-calibrations at distant
recording times and in different situations are recom-
mended to assure high classification accuracy assessing the
risk of HT with PPG and ECG recordings.

5. Conclusions

The application of per-subject calibration, both in close
and distant measurements, has proved its relevance for the
discrimination between NTS and HTS subjects. For this
purpose, discriminant features extraction from PPG and
ECG recordings, together with the use of machine learning
classification models were employed. The implementation
of these artificial intelligence techniques in wearable de-
vices would improve the early diagnosis and prevention of
cardiovascular diseases associated to hypertension.
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Figure 2. Results obtained for sequential validation of distant measurements. (a) Distance below one hour. (b) Distance
between one and six hours. (c) Distance between six and 24h. (d) Distance above 24h. Red lines indicate the median and
the bottom and top edges indicate the 15th and 85th percentiles. The whiskers extend to the most extreme data points not
considered outliers, and the red symbol (+) stands for outliers. Black squares inside each box indicate mean accuracies.
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