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Abstract

Sepsis is a life-threatening condition that occurs when
the body’s response to infection causes tissue damage, or-
gan failure, or death. Sepsis is a major public health is-
sue responsible for significant morbidity, mortality, and
healthcare expenses. Early detection and antibiotic treat-
ment of sepsis are critical for improving sepsis outcomes,
where each hour of delayed treatment has been associated
with roughly an 4-8% increase in mortality. Thus, an early
detection of sepsis can have significant impact on both pa-
tient outcome and reduce in medical expenses.

In recent years, deep neural networks has shown sig-
nificant improvement in variety of tasks. One of the ap-
proach to apply deep neural networks to sequential data
is a Recurrent Neural Netowrks (RNNs). In this study, we
modify gated recurrent units (GRU), RNNs with gate struc-
ture, to predict sepsis from provided Physionet Challenge
2019 dataset. In proposed model, initial value of hidden
state in GRU was determined by demographic information
of patients, and two-step training was performed with cus-
tomized loss function.

With the proposed method, we achieved normalized util-
ity score of 0.323 on full test set (Team name: NN-MIH).

1. Introduction

Sepsis is a life-threatening condition that occurs when
the body’s response to infection causes tissue damage, or-
gan failure, or death. Sepsis is a major public health issue
responsible for significant morbidity, mortality, and health-
care expenses. Early detection and antibiotic treatment of
sepsis are critical for improving sepsis outcomes, where
each hour of delayed treatment has been associated with
roughly an 4-8% increase in mortality. Thus, an early de-
tection of sepsis can have significant impact on both patient
outcome and reduce in medical expenses.

In recent years, deep neural networks has shown sig-
nificant improvement in variety of tasks, such as ob-
ject recognition, machine translation and speech recog-
nition[1][2][3]. Among deep neural networks, Recurrent

Neural Networks (RNNs) is one of the approach to deal
with sequential data. RNNs can capture underlying struc-
ture in sequential data, and have been applied to areas such
as speech recognition and text classification[3][4]. Al-
though RNNs can capture time dependencies in sequen-
tial data, they suffer from vanishing and exploding gradient
problems. To mitigate this problem, RNNs with gate struc-
tures such as Long short-term memory (LSTM) or gated
recurrent units (GRU) has been proposed[5][6].

In this study, we attempt an early detection of sepsis
in the physionet challenge 2019 data [7] using variant of
GRU. The main ideas in this research are the following
three points.

• GRU initialization with patient demographics
• Loss function based on the utility score
• Two steps training
The rest of the paper is organized as follows: the

overview and preprocessing of data is described in Section
2, the model used for early detection of sepsis is described
is Section 3, experimental results are shown in Section 4
and study is concluded at Section 5.

2. Preprocess of data

In this section we overview the dataset and describe the
pre-processing performed on the challenge data.

The provided data for the challenge is sourced from
ICU patients in three separate hospital systems, and data
from two hospitals are publicly available. Each sample is
recorded every hour and consists of 41 variables with vi-
tal signs, laboratory values, demographics and sepsis label.
The total number of samples collected from 2 hospitals is
40,336, of which 2,932 is septic. In this study, we attempt
to predict sepsis label provided using a total of 40 vari-
ables, vital signs, laboratory values and demographics.

Here we describe the pre-processing of data. First, the
published data was checked for each variable, and outliers
were removed. Specifically, clamping was performed on
data having a large deviation from the average value. Sub-
sequently, the logarithm was calculated for following vari-
ables: DBP, Resp, PaCO2, AST, BUN, alkalinephos, crea-
tinine, bilirubin direct, glucose, lactate, magnesium, phos-
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phate, potassium, bilirubin total, PTT, WBC, fibrinogen
and platelets. In addition, for O2sat and SaO2, we calcu-
lated the logarithm, after subtracting the maximum value
for each variable.

After clamping and logarithm calculation, each vari-
ables were standardized by subtracting mean and dividing
by variance. Subsequently, missing values were filled with
0 to obtain training data. Simultaneously, we store binary
matrix to track whether value was missing or not.

Here after we denote data for patient i as X(i) =

[x
(i)
1 , x

(i)
2 , ..., x

(i)
Ti
], where Ti is lengths of data for patient

i. And x
(i)
t = [x

(i)
v,t, x

(i)
l,t , x

(i)
d,t], where x

(i)
v,t, x

(i)
l,t , x(i)

d,t is
vital sign values, laboratory values and demographics for
patient i at time t respectively. x(i)

m,t denotes binary matrix
that indicates whether there are missing values.

3. Model

In this section, we explain recurrent neural network
structure, loss function, sequence alignment in mini batch
and over all training strategy.

3.1. Demographic information initialized
GRU

One of the approach to deal with sequential data
with deep neural networks is Recurrent Neural Networks
(RNNs). Nevertheless, vanilla RNNs can suffer from van-
ishing and exploding gradient problems. To mitigate this
problem RNNs with gated structures, such as Gated Re-
current Units (GRU) are used. Although GRU can cap-
ture structure in sequential data, it does not have suitable
structure to consider static information related to sequen-
tial data, such as demographics of patients. Therefore, we
propose a demographic information initialized GRU (DI-
GRU) to consider static information while capturing struc-
ture in sequential data. DIGRU determines the initial value
h0 of the hidden state of the GRU using demographics of
patients. DIGRU is defined as follows.

zt = σg(Wzxt + Uzht−1 + bz) (1)

rt = σg(Wrxt + Urht−1 + br) (2)

ht = (1−zt)⊗ht−1+zt⊗σh(Whxt+U(rt⊗ht−1)+bh)
(3)

h0 = f(xd,0) (4)

Where Wz, Uz,Wr, Ur is a weight, bz and br is a bias,
ht is a hidden state at time t, xt is an input at time t and
f is fully connected layer. Hidden state ht is initialized by
demographic information of each patient xd,0 and updated
by vital sign value xv,t and laboratory value xl,t at each
time step.

Figure 1. Illustration of sequence alignment in mini batch.

3.2. Loss function

In this competition, the model is evaluated by the utility
score that weights the binary classification results. There-
fore, the loss function for directly optimizing the utility
score was put and the model was trained. The loss func-
tion was defined as follows.

U = υt ∗ log ŷ +
(
un,t + 2

w

)
∗ log (1− ŷ) (5)

υi =

{
1 (up,t > 0)

0 (up,t ≤ 0)
(6)

Where w is a parameter to control weight for non sepsis
prediction, ŷ is an output from prediction model. up,t, un,t

is a utility score given to sepsis prediction (ŷ = 1) and non
sepsis prediction (ŷ = 0) at time t, respectively.

3.3. Sequence alignment for minibatch

Sequence length of each data differs, however to train
neural network, all data in mini batch needs to have same
sequence length. To align the sequence length of each sam-
ple in mini batch, we used three methods as shown in figure
1.

Pad Sequence length was aligned to longest sample in
minibatch. Zero padding was applied to latter part of
each sample.

bw del Sequence length was aligned to shortest sample
in minibatch. Only first N datapoints were used and
latter part was ommited

fw del Sequence length was aligned to shortest sample
in minibatch. Only last N datapoints were used.

When samples are aligned by “pad”, the entire sequence
length is given to the model. On the other hand, in “bw
del”, only the data at the beginning of ICU entry is given,
and in “fw del”, data when time passes from ICU entry is
given to the model. Especially for data with a long se-
quence length, data immediately after entering the ICU
(“bw del”) and late data (“fw del”) was given to the model.
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Figure 2. Illustration of 2 step prediction model. Multiple
models are trained in step 1. Prediction by each models
and input data is combined and given as an input to the
model for step 2.

3.4. Stacked model

The model training was divided into two stages as
shown in Figure2.

As a first step, training was performed in several differ-
ent settings. The w parameter, controlling weight for non
sepsis prediction, in the loss function was set to a different
values and the method for adjusting the length of data in
mini batch was changed. Specifically, we trained 6 mod-
els, model1 to 4 with “pad” alingment and w = 40, 20, 50
and 50 respectively. We used cyclic learning rate sched-

Figure 3. Layer structure of models used in step 1.

Figure 4. Layer structure of model used in step 2.

uler for model4. For model5 and model6 we used “fw del”
and “bw del” for sequence alignment with w = 50 for
the loss function. For all models, layer structure was set
to DIGRU, layer normalization [8], DIGRU, layer normal-
ization, fully connected layer, ReLU activation, fully con-
nected layer, as shown in Figure3. We introduce residual
connection between each DIGRU layer [9]. As for other
hyper parameters, hidden state size was set to 32, AdamW
[10] were used for optimization, and learning rate was set
to 0.0001. Batch size was set to 512 for model1 to 4 and
4096 for model5 and 6. We set training epochs to 500 and
checked utility score of validation dataset every 5 epochs,
and chose model with best validation utility score as a final
model for each training settings.

As a second step, as an input data, we combine original
input variable xt and yt = [y1,t, ..., y6,t]. Where yM,t is an
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output from model M given input xt. As a network struc-
ture, we prepared block consists of DIGRU, layer normal-
ization, ReLU and Dropout [11]. We repeated the block for
three times and added fully connected layer, ReLU, layer
normalization, ReLU, dropout and fully connected layer.
We set hidden state size to 32, learning rate to 0.00001,
batchsize to 512 and used AdamW as an optimizer. Weight
for loss function was set to 50 and mini batch was aligned
by “pad”.

4. Results and Discussion

A model using DIGRU was applied to predict sepsis.
The published data was divided into train/valid/test dataset
and the model was trained using train dataset and valid
dataset. The utility score in train/valid/test dataset was cal-
culated using the trained model. The results are shown in
table1.

Table 1. Utility scores for each model used.

Models Train Valid Test
model1 0.4386 0.4143 0.4096
model2 0.4403 0.4161 0.4055
model3 0.4258 0.4159 0.4214
model4 0.4432 0.4116 0.4301
model5 0.1942 0.1795 0.1893
model6 0.2206 0.1912 0.2001

Final Model 0.4513 0.4228 0.4168

The utility score did not change significantly when
changing the parameter w in the loss function. In addi-
tion, there was no significant difference in the utility score
obtained when the scheduler was set to cyclic. On the other
hand, when the sequence alignment in the mini batch was
changed to “fw del” or “bw del”, the utility score decreased
significantly. The prediction results of the model combin-
ing the prediction results from model1 to 6 exceeded the
individual models in the validation dataset.

With the proposed method, we achieved normalized util-
ity score of 0.323 on full test set (0.414 on test set A, 0.373
on test set B and -0.174 on test set C; Team name: NN-
MIH).

5. Conclusion

In this study, we proposed DIGRU using patient demo-
graphics as the initial value of the hidden state, and tried to
predict sepsis from data obtained in ICU. In the proposed
model, the utility score was directly optimized by custom
loss function and two-step training was performed.

In the future, we would like to try semi-supervised learn-
ing using unlabeled external data to improve prediction.
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