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Abstract 

The inverse problem of electrocardiographic imaging 

(ECGI), i.e. computing epicardial potentials from the body 

surface measured potentials, is a challenging problem. In 
this setting, Tikhonov regularization is commonly 

employed, weighted by a regularization parameter. This 

parameter has an important influence on the solution. 

In this work, we show the feasibility of two methods to 

choose the regularization parameter when using the 

method of fundamental solution, or MFS (a homogeneous 

meshless scheme based). These methods are i) a novel 

automatic technique based on the Discrete Picard 

condition (DPC), which we named ADPC and ii) the U-

curve method introduced in other fields for cases where the 

well-known L-curve method fails or over-regularize the 

solution. We calculated the Tikhonov solution with the 
ADPC and U-curve methods for experimental data from 

the free distributed Experimental Data and Geometric 

Analysis Repository (EDGAR), and we compared them to 

the solution obtained with CRESO and L-curve procedures 

that are the two extensively used techniques in the ECGI. 

 

1. Introduction 

The electrocardiographic imaging (ECGI) inverse 

problem of computing epicardial potentials, Φ𝐸, from the 

body surface measured potentials, Φ𝑇 , is an ill-posed 

problem, needing regularization to yield realistic and 

unique solution [1]. And different methods have been 

proposed with this end [1-4]. 

In [3], the authors studied the performance of fourteen 

algorithms for complex propagation patterns, and they 

concluded that (without prior information about the Φ𝐸), 
the simple two-norm Tikhonov method, may provide a 

similar solution than other more sophisticated techniques.  

Similarly, the authors in [4] studied the performance of 

thirteen reconstruction algorithms, concluding that on 

average little differences were found among the three main 

groups of techniques considered (i.e. Tikhonov, iterative 

methods, and non-quadratique techniques). Therefore, 

Tikhonov regularization method seems to be the preferred 

technique to solve the ECGI inverse problem. 

In Tikhonov scheme, the regularization parameter has 
to be determined to find a balance between solutions purely 

based on the Φ𝑇  and solutions too strictly constrained. 

In this work, we will focus on the two-norm Tikhonov 

regularization technique for the MFS, a homogeneous 

meshless method adapted to ECGI in [5]. Specifically, we 

will focus on the choice of the regularization parameter. 

In [6] we showed that the influence of the regularization 

parameter can decrease by optimizing the transfer matrix 

used (e.g. decreasing its ill-conditioning by adjusting some 

of its key elements [6]). This result links with the 
conclusion of [3], where the authors stated that no major 

difference was found by changing the regularization 

parameters, but show also notably degradation of the 

reconstruction performance, when errors were introduced 

in the transfer matrix. However, the transfer matrix 

depends on the conductivities (constant if considering 

homogeneity), the boundary conditions, and the 

geometries involved (and in the case of the MFS matrix 

depends also on the sources locations). Since errors such 

as the ones occurring in the segmentation process are not 

always perceived, suitable parameter choice techniques for 

each particular problem are necessary. Finally, different 
kind of data patterns may require different parameter 

choices. 

The automatic regularization parameter choice method 

previously used in the MFS ECGI, is the Composite 

Residual and Smoothing Operator (CRESO) technique [5].  

And when other numerical methods were used in the ECGI 

setting (such as the Boundary/Finite Element method), the 

L-curve criterion has been highly used by the community 

[2-4]. However, is well-known that the behavior of the 
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parameter choice methods is problem-dependent [7].  

While both methods have been studied in the inverse 

problems literature [2-5, 7], the L-curve method showed 

lack of: robustness dealing with large-scale problems [3], 

convergence (in particular applications) [8,9], and efficacy 
(over-smoothing the solution). Then, methods such as the 

U-curve [10] have been introduced to overcome these 

problems [9]. In addition, Discrete Picard Condition (DPC) 

[7] is often used to check the suitability of a chosen 

regularization parameter for Tikhonov. 

The overarching goal of this paper is to show the 

feasibility of the U-curve method, and of a new automatic 

method, ADPC, based on the DPC [11]. To this end, we 

used experimental data from the free distributed 

Experimental Data and Geometric Analysis Repository, or 

EDGAR [12], an Internet-based archive of curated data 

freely distributed.  
This proceeding is organized as follows: First, we 

present the MFS and Tikhonov regularization, we give 

more details about DPC and its role, and we describe the 

different regularization parameter choice techniques 

(existent ones and new ones). Secondly, the experimental 

data used, as well as the statistical analysis completed to 

compare the results are introduced. Thirdly, we summarize 

the main results obtained. And finally, we discuss the 

issues raised and draw conclusions. 

 

2. Methods 

2.1. Method of fundamental solutions and 

Tikhonov regularization 

MFS was adapted to ECGI to overcome some of the 

issues of the classical meshes-based methods [5]. It does 

not need the topological relations between nodes and so 

completely avoids disadvantages of accuracy degradation 

and complexity augmentation frequently encountered in 

classical numerical methods because of remeshing.  

In the MFS, the potentials are expressed as a linear 
combination of the Laplace fundamental solution over a 

discrete set of virtual source points  placed outside of the 

domain of interest, Ω, where Ω is the volume conductor 

enclosed by the epicardial surface, 𝛤𝐸, and the body 

surface, 𝛤𝑇. Specifically, the potential Φ for 𝑥 ∈ Ω is 

sought as 

Φ(𝑥) = 𝑎0 + ∑ 𝑓(𝑥 − 𝑦𝑗)𝑎𝑗
𝑁𝑆
𝑗=1 ,  (1) 

where the (𝑦𝑗)
𝑗=1..𝑁𝑆

 are the 𝑁𝑆  locations of the sources 

(𝑦𝑗 ∉ Ω), and the (𝑎𝑗)
𝑗=1..𝑁𝑆

 are their coefficients. Here, 

𝑓 stands for the fundamental solution to the Laplace 

equation, 𝑓(𝑥, 𝑦𝑗) =
1

4𝜋

1

|𝑥−𝑦𝑗|
, where |𝑥 − 𝑦𝑗|  is the 3D 

Euclidean distance. And the  𝑁𝑆 =   𝑁𝑇 +  𝑁𝐸 virtual 

sources locations are fixed by deflating the (𝑥𝑖
𝐸)𝑖=1,2,⋯,𝑁𝐸

 

locations at 𝛤𝐸  and inflating the (𝑥𝑖
𝑇)𝑖=1,2,⋯,𝑁𝑇

 electrodes 

locations at 𝛤𝑇. Both, inflation and deflation relative to the 

geometrical center of the heart, such as in [5].  

The sought Φ𝐸 = (Φ(𝑥𝑖
𝐸))

𝑖=1,⋯,𝑁𝐸

 potentials on 𝛤𝐸 can 

be defined by (1) as 

 Φ(𝑥𝑖
𝐸) = 𝑎0 + ∑ 𝑓(𝑥𝑖

𝐸 − 𝑦𝑗)
𝑁𝑆
𝑗=1 𝑎𝑗 ,   (2) 

where the only unknowns are the sources coefficients.  

To find these coefficients (𝑎0, 𝑎1, ⋯ , 𝑎𝑁𝑆
) the Dirichlet 

(Φ = ΦT) and the homogeneous Neumann or zero-flux 

(𝜕𝑛Φ = 0) boundary conditions on 𝛤𝑇 are imposed in an 

equivalent manner by means of the potential definition (1) 

and its normal derivatives. This yields to the linear system 

Φ(𝑥𝑖
𝑇) = 𝑎0 + ∑ 𝑓(𝑥𝑖

𝑇 − 𝑦𝑗)𝑎𝑗 =
𝑁𝑆
𝑗=1 ΦT,  

𝜕nΦ(𝑥𝑖
𝑇) = 𝑎0 + ∑ 𝜕𝑛𝑖

𝑓(𝑥𝑖
𝑇 − 𝑦𝑗)𝑎𝑗 =

𝑁𝑆
𝑗=1 0, (3) 

where Φ𝑇 = (Φ𝑖)𝑖=1,⋯,𝑁𝑇
 are the potentials recorded on 

the  (𝑥𝑖
𝑇)𝑖=1,2,⋯,𝑁𝑇

 torso electrodes locations. And (3) can 

be written in a matricial notation as 𝑀𝑎 = 𝑏, where the 

sources coefficients, 𝑎𝜖ℝ1+𝑁𝑠  are found by minimizing 

𝐽(𝑎, 𝛼) = ‖𝑀𝑎 − 𝑏 ‖2 + 𝛼‖𝑎‖2 ,  (4) 

being  𝑏 = (
Φ𝑇

∗

0
) a 2𝑁𝑇𝑥1 vector, Φ𝑇

∗ = (Φ𝑖
∗)𝑖=1,⋯,𝑁𝑇

 the 

potentials recorded on 𝑁𝑇  torso electrodes, and 𝛼 > 0 the 

Tikhonov regularization parameter.  𝛼 controls the balance 

between the residual norm, ‖𝑀𝑎 − 𝑏 ‖2(i.e. the accuracy 

of the sources coefficients 𝑎 predicting the given boundary 

conditions at 𝛤𝑇), and the regularized solution norm, ‖𝑎‖2.  

By equalling the gradient of (4) to zero and doing the 

SVD of 𝑀 = 𝑈𝑆𝑉𝑇 , the solution of (4) can be written as 

𝑎𝛼 =  ∑
𝜎𝑖

2

𝜎𝑖
2+𝛼2

𝑢𝑖
𝑇𝑏

𝜎𝑖
𝑣𝑖 ,

𝑟
𝑖=1    (5) 

being  𝑟 = min (2𝑁𝑇 , 𝑁𝑆+1) and 𝜎0 ≥ 𝜎1 ≥ ⋯ ≥ 𝜎𝑟 > 0 the 

singular values (SVs), or diagonal values of S. 
 

2.2. Discrete Picard Condition (DPC) 

The DPC determines how well the regularized solution 

approximates the unknown, exact solution. The DPC is 

satisfied if the data space coefficients |𝑢𝑖
𝑇𝑏|, on average, 

decay to zero faster than the respective singular 

values, 𝜎𝑖’s [7]. And the representation of |𝑢𝑖
𝑇𝑏|, 𝜎𝑖, and 

the respective quotient in a same logarithmic-scale plot is 

known as a Picard plot [7].  

In ill-posed problems, such as ECGI, there may be a 

point where the data become dominated by errors and the 
DPC fails. In these cases, to compute a satisfactory 

solution by means of Tikhonov, the DPC has to be fulfilled 

[7]. Specifically, the 𝜎𝑖 above the 𝛼 (useful SVs) must 

decay to zero slower than the corresponding | 𝑢𝑖
𝑇𝑏| 

coefficients, ensuring the analytical Tikhonov solution in 

equation 5 (i.e.  ∑
𝑢𝑖

𝑇𝑏

𝜎𝑖

𝑟
𝑖=1 < ∞). 

2.3. Regularization parameter choice 

techniques 
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• CRESO 

CRESO [5] chooses the parameter value which generates 

the first local maximum of the difference between the 

derivatives of the two terms of the Tikhonov function (4), 

𝐶(𝛼) = {
𝑑

𝑑(𝛼2)
(𝛼2‖𝑎(𝛼)‖2) −

𝑑

𝑑(𝛼2)
‖𝑀𝑎(𝛼) − 𝑏‖2 , 𝛼 > 0}  (6) 

• L-curve 

The L-curve [7] looks for a parameter providing a good 
tradeoff between the two terms of (4), 

𝐿(𝛼) = {(‖𝑀𝑎(𝛼) − 𝑏‖, ‖𝑎(𝛼)‖), 𝛼 > 0}   (7) 

The regularization parameter can be calculated as the 

optimal 𝛼-value that corresponds to the point on the log-

log plot of the L-curve possessing maximum curvature [7]. 

• U-curve 

The U-curve method [10] is the plot of the sum of the 

inverse of the two terms of (4), on a log-log scale 

𝑈(𝛼) = {
1

‖𝑀𝑎(𝛼)−𝑏‖2
+

1

‖𝑎(𝛼)‖2
, 𝛼 ∈ (𝜎𝑟

2/3
, 𝜎0

2/3
)}  (8) 

being  𝑟 = min (2𝑁𝑇 , 𝑁𝑆+1)  and 𝜎0 ≥ 𝜎1 ≥ ⋯ ≥ 𝜎𝑟 > 0. 

The optimum parameter is the value for which the U-curve 

has a minimum, i.e. where the two terms of (4) are close. 

This minimum exists always in the interval 

(𝜎𝑟
2/3

, 𝜎0
2/3

)[10]. 

• ADPC: A new regularization parameter choice 

method based on DPC 

1. We calculate the SVD of 𝑀, to obtain the left singular 

vectors (𝑢𝑖)  and the singular values (𝜎𝑖). 

2. For each instant of time, 𝑡𝑘 (𝑚𝑠), we compute 

log (|𝑢𝑖
𝑇𝑏𝑡𝑘

| ) and log (|𝑢𝑖
𝑇𝑏𝑡𝑘

| / 𝜎𝑖) and we fit them by 

two polynomials of degree from 5 to 7 

(𝑝(𝑖, log (|𝑢𝑖
𝑇𝑏𝑡𝑘

|) )
𝑡𝑘

and 𝑞(𝑖, log (|𝑢𝑖
𝑇𝑏𝑡𝑘

|) )
𝑡𝑘

, with 

  𝑘 = 1, ⋯ , 𝑁𝑡). 

3. For each pair of polynomials at each instant of time  𝑡𝑘, 

we find: 𝛼𝑡𝑘
= 𝜎𝑚𝑎𝑥{𝑖} (𝜎0 ≥ 𝜎1 ≥ ⋯ ≥ 𝜎𝑟 > 0), such 

that DPC is fulfilled. 

4. 𝛼 = median(𝛼𝑡𝑘
). 

2.4. Experimental and in-silico data used 

from EDGAR 

In this work, eight datasets from EDGAR [12] were 

used to evaluate the feasibility of U-curve and ADPC, and 

compare their solutions with the CRESO and L-curve ones.  

In the experimental data used, the body surface 

potentials and epicardial potentials were recorded 

simultaneously. The data used was: i) A sinus beat and a 

paced beat from a canine experiment [13]. iii) A sinus beat 
and a paced beat from a pig experiment [14]. And iii) A 

control and three myocardial ischemia from a canine 

experiment [15]. 

 

2.5. Validation of the results  

• Regularization parameter choices methods 

We computed the potentials on the epicardium for the 

different regularization values. Subsequently, correlations 

coefficients (CC) and root mean square errors (RMSE) 

were computed through time as in [5].  
 

3. Results 

In figure 1, we show the reconstructed epicardial 

potentials along the time (in a random epicardial location) 

for the different regularization parameters against the 

reference epicardial signals in each case. 

 

 
(a)  

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 
(f) 

Figure 1. Experiments: (a) Sinus beat canine , (b) Paced 
beat canine, (c) Sinus beat pig experiment (note L-curve 

fails), (d) Paced beat pig experiment. (e) Control canine 

dataset (note L-curve fails). (f) Myocardial ischemia 

canine experiment (note L-curve fails). 

 

   In table 1 we show the differences of the different 

reconstructions against the classical CRESO one (in % ) of 

the RMSEs and CCs for the potentials along the time. 

(Higher CCs and lower RMSEs indicates more accuracy). 
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Table 1. Differences in % of the RMSEs and CCs (Median 

[Q1, Q3]) of the reconstructed potentials along the time for 

the different regularization parameters (L-curve, U-curve, 

ADPC) against the reconstructed potentials by using the 

CRESO parameter. 

Parameter 

choice 

CCs differences 

(%) 

RMSEs 

differences (%) 

L-curve -0.3 [0.1,-4] 3 [2,1.5] 

U-curve 4 [4 ,2.6] -0.5 [0.1,1] 

ADPC 5 [5,3.4] -2.5 [-1.7,0] 

 

6.  Discussion and conclusions 

Two new methods are introduced to calculate the 

regularization parameter of the two-norm Tikhonov 

method when using MFS for ECGI: The U-curve (a 

method never used before in cardiac applications) and the 

ADPC (a new automatic method based on DPC). 

The results showed that L-curve performs worse than 

CRESO for the datasets used in this work (see the plots c, 

e, and f in figure 1 and results in table 1). However, U-

curve and ADPC improved the CCs and the RMSEs of the 
reconstructed potentials against the provided ones by using 

CRESO parameter (see table 1).  

After the results, it seems that ADPC is the method that 

provides the most accurate results (+5% CCs and -2.5% 

RMSEs). Though, U-curve provided better CCs for the 

paced beat canine datasets than ADPC. 

While we anticipate that U-curve is computationally 

cheaper than L-curve (because it provides a prior interval 

where the minimum of the U-curve, i.e the optimal 

parameter can be reach), we need further study in order to 

compare the computational burden of each method. 
Since the behavior of the SVs of ECGI MFS problem 

(decaying slower for the higher SVs and faster for the 

lower ones), and the fact that ADPC parameter choice is 

based on the necessary DPC, ADPC provides a suitable 

regularization parameter. Nevertheless, it is well known 

that parameter choice methods is very problem-dependent 

[7], so if the method wants to be used with other numerical 

problems such as BEM, we recommend to repeat this study 

before further conclusions. 
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