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Abstract 

In this paper, three approaches for estimating ECG 
derived respiratory signal (EDR) were utilized for apnoea 
detection and the results were compared with apnoea 
detection by chest respiratory signals. Two methods are 
presented for computing the EDR signal by principal 
component analysis (PCA) applied to entire overnight 
ECG signals. The proposed approaches simplified the 
PCA computation and resulted in fast algorithms with 
low memory requirements. The third method used the 
QRS area method of EDR estimation. In the first phase, 
the 8 recordings available in the MIT PhysioNet Apnea-
ECG database which contained simultaneously recorded 
respiratory signals were utilized and the chest respiratory 
signals were employed for OSA detection and the results 
were compared to OSA detection by EDR signals. In the 
second phase, the EDR signals of the 35 available ECG 
recordings from the same database were used for apnoea 
detection. The results of both phases for the EDR and 
respiratory signals were classified by three different 
machine learning techniques including the extreme 
learning machine, linear discriminant analysis and 
support vector machine. It was revealed that QRS area 
method with LDA classifier results in the highest 
performance. However, the respiratory signal leads to 
better apnoea detection compared to the EDR signals. 

1. Introduction

Obstructive Sleep apnoea (OSA) is a sleep-related 
breathing disorder associated with consecutive blockage 
of upper airways and interruption in breathing [1]. 
Respiration can be monitored directly by nasal sensors 
which may interfere with breathing or indirectly by 
inductance plethysmography [2]. Recently, several 
studies have investigated deriving a surrogate respiratory 
signal of electrocardiogram (ECG) [2]. This signal, the 
ECG-derived respiratory signal (EDR), can be estimated 
using a number of methods including principal 
component analysis (PCA) [3] and QRS area [4]. 

A computation limit of the published studies [5][3] 
using PCA is the need of storing large covariance 
matrices where the size of each dimension of the 
covariance matrix is equal to the number of beats in the 
recording. The memory storage needed for an average 
ECG length of 8 hours with a double precision calculation 
is about 7 GB which exceeds the memory capabilities of a 
standard PC. We propose two novel approaches to apply 
the PCA method for derivation of EDR signals of 
overnight recordings. Both approaches solved the 
computational problem and memory storage issue while 
running on a standard PC. In the first approach, the 
overnight recordings were segmented into 30 minutes of 
signals and the EDR signals extracted by PCA method 
over the segments were aligned to form the EDR signal of 
the overnight recordings. The second novel approach 
employed an approximated PCA methodology which has 
been successfully applied to speaker recognition [6]. 
These two PCA methods were compared to the QRS area 
method for EDR estimation. Apnoea detection of these 
three EDR signals was compared with apnoea detection 
by chest respiratory signal.       

2. Dataset

The MIT PhysioNet Apnea-ECG database proposed 
for Computing in Cardiology 2000 Challenge was used 
for this study [7][8]. The training data of 35 ECG signals, 
minute-by-minute apnoea annotations by respiratory 
experts, and QRS annotations produced by machine were 
utilized. The digitized single channel of modified lead V2 
ECG signals were recorded from healthy subjects and 
OSA patients with sampling rate of 100 Hz and 16-bit 
resolution. Eight recordings of the training data contained 
chest and abdominal respiratory effort signals collected 
by inductance plethysmography. The signals were 
recorded from 32 subjects of 25 men and 7 females with 
average age 33 years (between 27 to 42 years). The length 
of each overnight recorded signal ranged between 7 to 10 
hours [8]. The simultaneous recordings of respiration 
signals and ECG signals were exploited for apnoea 
detection evaluation in the first phase of the study. The 
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full overnight ECG signals were used for three EDR 
signal extraction in both phases and the simultaneously 
recorded chest respiratory signals were used for apnoea 
detection in the first phase of the study.    

3. Signal processing

The overnight ECG recordings and respiration signals 
were used for signal processing and OSA detection. For 
ECG signals, preprocessing was utilized to reduce the 
artefact. Then, ECG derived respiratory (EDR) signals 
were measured through three different methods evaluated 
at the QRS detection beats. Then, the OSA detection was 
evaluated using three classifiers. Finally, respiratory 
signals were used for apnoea detection and the 
performance was estimated by the same classifiers. The 
block diagram of the proposed system is shown in Fig 1. 

4. ECG signals

First, preprocessing was applied to the ECG signals to 
remove the high frequency noise and baseline wander 
noise. Two median filters with 200-ms and 600-ms width 
were applied to extract the QRST complexes and the 
filtered components were subtracted from the raw ECG 
signals to remove the noisy part of the signals [4]. Then, 
the clean and preprocessed ECG signals were used for 
EDR measurement. The QRS onset beats provided by the 
database were used for the following ECG signal 
processing as well as resampling the respiratory signals 
for apnoea detection.  

5. EDR signals

The surrogate respiratory signal can be detected as the 
modulatory signal on the ECG signals with a variation 
tracking the breathing cycles [2]. There are a number of 
mechanisms which modulate the ECG recording by 
respiration. The movements of the ECG electrodes placed 
on the chest corresponding to the heart, rotation of cardiac 
vector, and electrical impedance changes of thorax due to 
ventilation and air volume changes in the lungs are some 
of the factors leading to capturing the respiratory 
information by ECG electrodes [9]. In this study, three 

methods were used to estimate the EDR signal. First, the 
QRS complex area method was exploited as the standard 
method which has been evaluated in several studies [4]. 
Then, to estimate EDR signals by PCA technique over the 
entire overnight ECG signal, two methods were applied 
including segmented PCA and approximated PCA. The 
methods are illustrated in Fig 1 and are explained the 
following sections. 

5.1. QRS complex area 

The preprocessed ECG signal was used to determine 
EDR signal. In this method, area under QRS complexes 
were measured between onset beat of QRS complexes 
and 100 milliseconds after the onset beat [4]. Therefore, 
the area under each QRS complex is designated to each 
QRS beat as the EDR measure for that beat.   

5.2. Segmented PCA 

The principal component analysis is usually used to 
decrease the dimensions of the multivariate signals. It 
determines the principal components by calculating 
eigenvalues of the variations in the signal features [10]. 
The QRS complex was chosen as the feature for PCA 
calculation to extract the temporal variation caused by 
respiration on ECG signal.  

The segmented PCA algorithm is outlined as follows. 
The inputs to the PCA algorithms are the entire overnight 
ECG signals which have been preprocessed. The other 
input to the algorithms are the QRS onset detection beats 
provided with the database. Our method is adapted from 
the method described in [3]. 

1. The input signals were partitioned into 30 minutes
segments.

2. A sliding window with 250ms (m) width was
applied to the QRS onset beats to extract QRS
complexes in each segment. It extracts QRS
complexes between 75ms before each QRS onset
beats and 75ms after the onsets.

3. A feature matrix (𝑚𝑚 × 𝑛𝑛) of n centered QRS
complexes [𝑋𝑋𝑄𝑄𝑄𝑄𝑄𝑄(𝑡𝑡)] 𝑚𝑚×𝑛𝑛 was constructed.

4. The covariance of �𝑋𝑋𝑄𝑄𝑄𝑄𝑄𝑄(𝑡𝑡)� was measured and
resulted in a  (𝑛𝑛 × 𝑛𝑛) matrix.
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Figure 1. Block diagram of three methods of EDR measurement including two proposed algorithms for PCA estimation applied to 
overnight ECG signals and sleep apnoea detection by EDR signals and respiratory signal. 

 

 

  



5. The eigenvalue, eigenvectors and principal
components (PC) were extracted.

6. The first PC was set to the EDR signal.
The algorithm was repeated for each 30 minute 

segment of ECG signals and the first PCs were aligned to 
form the EDR signal over the full recording.   

5.3. Approximated PCA 

An approximation method which has previously been 
implemented in a speaker recognition study was applied 
to PCA EDR estimation [6]. As is demonstrated in Fig 1, 
many of the steps of the approximated PCA algorithm are 
similar to the segmented PCA algorithm.  The differences 
in the algorithms are summarized below. 

1. The feature matrix of n centered QRS complexes for
the whole recording [𝑋𝑋𝑄𝑄𝑄𝑄𝑄𝑄(𝑡𝑡)] 𝑚𝑚×𝑛𝑛 was transposed
and the PCA method was applied to 𝑋𝑋𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 = 𝑋𝑋𝑇𝑇.

2. The covariance matrix was measured over 𝑋𝑋𝑇𝑇
resulting in 𝑚𝑚 × 𝑚𝑚 matrix, where 𝑚𝑚 is the number
of samples in the QRS window (in our case 25).

𝑃𝑃𝐶𝐶𝐶𝐶𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 =
1
𝑚𝑚
� 𝑋𝑋𝑖𝑖𝑇𝑇𝑋𝑋𝑖𝑖

𝑚𝑚

𝑖𝑖=1
  (1) 

3. Then, the first principal component of approximated
PCA (𝑃𝑃𝑃𝑃𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎) was measured by eigenvectors of the
𝑃𝑃𝐶𝐶𝐶𝐶𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎  matrix.

4. Finally, the product of the generated principal
component and 𝑋𝑋𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 results in the EDR signal.

𝑃𝑃𝑃𝑃𝐸𝐸𝐸𝐸𝑄𝑄1 = 𝑋𝑋𝑇𝑇 ∗ 𝑃𝑃𝑃𝑃𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎1   (2) 
By processing the 𝑋𝑋𝑇𝑇  matrix rather than the 𝑋𝑋 matrix, 

the computational complexity, memory requirement and 
long processing time were resolved. 

6. Respiratory signal

The respiratory signals of the database comprise of 
chest and abdominal respiratory signals. The chest 
respiratory signals were utilized in this study as they are 
most closely related to the modulated EDR signals 
recorded by ECG electrodes. To achieve a like-for-like 
comparison, we applied the same feature extraction 
methods to the chest respiratory signals and the EDR 
signals. Hence, our first processing step was to resample 
the chest respiratory signal at the instants of the QRS 
onset beats. The resampled respiratory signals were then 
exploited for feature extraction. 

7. Feature extraction

The resampled respiratory signals and the three EDR 
signals were processed by the same feature extraction 
algorithm. There were 34 features extracted from each 
one-minute segment of the signal including the average, 
standard deviation and 32 power spectral density (PSD) 

features. For measuring PSD features, the signals were 
zero padded to 256 points and discrete Fourier transform 
(DFT) was applied after the mean value was removed. 
Then, the square amplitude of the DFT coefficients was 
calculated and average of every four frequency bins was 
measured and the first half of the symmetrical values 
were adopted as 32 PSD features. 

8. Classifiers

The matrices of 34 features for each one-minute epoch 
of the signals were used as the input to three different 
classifiers. The performance of each signal was evaluated 
by applying each feature matrix individually.    

Extreme learning machine (ELM) is a fast feed-
forward network and one hidden layer with a large 
number of non-linear neurons. It is trained through a 
single iteration learning procedure by using random 
values as input layer weights and the pseudo inverse to 
calculate the output weights [11]. In this study, the 
number of hidden layer neurons per input (fan-out) was 
set to 10. It was chosen according to the results from our 
earlier publication [12]. 

Among pattern recognition techniques, linear 
discriminant analysis (LDA) is a simple classifier which 
categorizes the classes with linear boundaries in a low 
dimensional space and through a simple probabilistic 
decision making [13]. 

The third utilized classifier was support vector 
machine (SVM) which is a supervised learning technique 
and differentiates the scattered data without over fitting. 
Linear kernel SVM was employed as the third classifier 
using LibSVM [14].  

9. Results

Each signal was evaluated individually through leave-
one-record-out cross validation for each classifier. Their 
performances were assessed by three measures comprised 
of accuracy, sensitivity and specificity. In the first phase 
of the study, the EDR signals were measured for 8 ECG 
recordings accompanied by the respiratory signals. The 
performance results are shown in Table1. In the second 
phase, the EDR signals were extracted from 35 ECG 
recordings and the extracted features from each EDR 
signal were applied to three classifiers and the 
performance results are illustrated in Table 2. 

The results of the first phase show that respiratory 
signal achieved the highest performance for apnoea 
detection by SVM classifier with an accuracy of 87%, 
sensitivity of 86% and specificity of 88%. The 
performance results of the second phase indicated the 
highest performance of apnoea detection was obtained by 
QRS area EDR signal with accuracy of 80%, sensitivity 
of 83% and specificity of 74%. The performance results 

 

 

  



of SVM classifier are close to the performance results 
obtained by LDA classifier in both phases. 

Table 1. The cross validation results from 8 recordings 
containing the respiratory signals. 

  Signals Accuracy(%) Sensitivity(%) Specificity(%) 
    ELM classifier (Fan-out=10) 

 Respiratory 78 92 71 
 QRS Area  80 88 74 
 Approximated PCA 74 84 67 
 Segmented PCA 63 51 71 

LDA classifier 
 Respiratory 87 83 92 
 QRS Area  81 84 77 
 Approximated PCA 64 61 67 
 Segmented PCA 67 79 50 

SVM classifier 
 Respiratory 87 86 88 
 QRS Area  81 71 88 
 Approximated PCA 69 64 73 
 Segmented PCA 66 49 78 

Table 2. The cross validation results of EDR signals 
extracted from 35 ECG recordings. 

 EDR signals Accuracy(%) Sensitivity(%) Specificity(%) 
    ELM classifier (Fan-out=10) 

 QRS Area  77 84 73 
 Approximated PCA 77 80 75 
 Segmented PCA 75 74 76 

LDA classifier 
 QRS Area  80 83 74 
 Approximated PCA 79 84 70 
 Segmented PCA 77 84 66 

SVM classifier 
 QRS Area  79 70 85 
 Approximated PCA 79 70 84 
 Segmented PCA 79 67 86 

10. Discussion and conclusion

The results of first phase of the study indicate that 
respiratory signal leads to better apnoea detection 
compared with EDR signals. This result probably reflects 
the intuition that the direct measurement of respiration is 
better than indirect measurement. On the other hand, the 
EDR signals are captured from ECG recordings without 
the need of an extra sensor. Thus, there is a trade-off 
between some information loss of the EDR based system 
and increased convenience to the patient by reducing the 
sensors. The comparison of EDR measurement 
approaches in cross validation of 35 recordings revealed 
that QRS area method with LDA classifier results in the 
highest performance while they are both the simplest 
methods with the lowest computational complexity and 
processing time. 

Further work could be comparing the QRS sampled 
respiratory signals with the original signals containing 
full samples to check the impact of the information loss. 
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