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Abstract

Heart rate variability (HRV) has been proposed as an
indicator of stress. However, respiratory changes affect the
spectral content of the HRV, resulting in a misleading esti-
mation of stress, especially when the respiratory rate falls
into the classical low frequency band. To overcome this
limitation of the classical HRV analysis, this study decom-
poses the HRV signal, recorded during different phases
of acute emotional stress, into two components using or-
thogonal subspace projections (OSP). One component de-
scribes all linear respiratory influences, and the other one
contains all residual HRV dynamics. Two subspace defini-
tions are compared here, on the one hand, the original res-
piration signal, and on the other hand, its wavelet decom-
position. After a multicomparison test, no difference was
found between the respiratory components derived using
both subspaces, hence, no added value is achieved by the
wavelet decomposition. Furthermore, the HRV variations
that are linearly related to respiration are significantly dif-
ferent (p < 0.008) between relax and emotional stress.
This suggests that respiratory dynamics are enough to de-
tect emotional stress, which might result in an improved
assessment of stress.

1. Introduction

The reliability of the classical heart rate variability
(HRV) analysis strongly depends on the respiratory rate.
For instance, the respiratory rate is not always within the
high frequency (HF) band of HRV. Instead, it might fall
into the low frequency (LF) band, causing an overestima-
tion of the sympathetic activity of the autonomic nervous
system (ANS). This is often the case during periods of re-
laxation, as reported in [1] and [2]. A different scenario
where misleading results can be obtained is when the res-

piratory rate exceeds the upper limit of HF. This can occur
during some periods of emotional stress and it can result
in an underestimation of the parasympathetic activation of
the ANS [1]. To overcome this limitation, a correction of
the HF band can be applied based on the respiratory rate, as
used in [1]. This adaptation allowed to detect differences
between stress phases in both LF and HF bands, which can
be associated with a better quantification of the ANS mod-
ulation. However, this adaptation can only be implemented
when the respiratory signals have a peaked power spectra.

A different way to tackle the limitations of the classical
HRV is by removing respiratory influences from the heart
rate and analysing the residual dynamics, as done in [2]
for the analysis of mental stress, and in [3] for the detec-
tion of sleep apnea. This can be achieved by means of or-
thogonal subspace projections (OSP), where the heart rate
is first projected onto a respiratory subspace, and then de-
composed into two different components. One component
related to all linear respiratory influences, and one com-
ponent describing all residual dynamics of heart rate. The
respiratory subspace was defined in [2] using the wavelet
decomposition of the respiratory signal, and in [3] using
the original respiratory signal. In this study, both subspace
definitions will be used to study the respiratory interactions
during acute emotional stress, and the added value of the
wavelet decomposition will be evaluated. Furthermore, the
frequency content of the different heart rate components
will be analyzed for different stress phases. As a result,
the influence of respiration on the HRV during emotional
stress will be assessed.

2. Methodology
2.1. Data

The dataset used in this study consists of ECG and res-
piratory signals recorded at the Autonomous University of
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Barcelona (UAB) and the University of Zaragoza (UZ),
from 46 volunteers, 18 men and 28 women. The ECG sig-
nals were sampled at 1000 Hz and the respiratory signals at
250 Hz. The mean age of the volunteers was 21.76±4.48
years, and they all underwent a stress session. During this
session, emotional stress was induced by means of a modi-
fied Trier Social Stress Test [1], which includes the follow-
ing phases:
• A baseline (BL) of about 10 minutes when the subject
listens to a relaxing audio
• Story telling (ST): 3 stories are told to the subject and
he/she is asked to remember as many details as possible.
• Memory task (MT): The subject is asked to tell in front
of a camera, all details that he/she remembered from the
ST phase.
• Stress anticipation (SA): The subject is asked to wait for
about 10 minutes for the results of the evaluation of the
MT phase.
• Video exposition (VE): The video recorded during the
MT phase is shown to the subject together with another
video, where an actor repeats the stories in a perfect way.
The idea is to make a comparison between the “poor” per-
formance of the subject and a much better performance of
the actor.

Eight subjects did not complete the test, and two had low
ECG signal quality in some phases, hence, their recorded
data were removed from the dataset. Furthermore, the MT
phase was also removed due to, in some cases, short term
duration (≈ 30s) and low signal quality since the subjects
were speaking during this phase. In total, 36 subjects were
analyzed and the average duration of each remaining phase
was as follows. BL: 11.5±1.4 minutes; ST: 1.66±0.5 min-
utes; SA: 11.1±1.2 minutes; VE: 3.1±0.48 minutes.

2.2. Pre-Processing

The respiratory signals were first band-pass filtered us-
ing a Butterworth filter with cutoff frequencies at 0.03 and
0.9 Hz. Then, they were downsampled at 4 Hz, and nor-
malized with zero mean and unit variance.

The ECG recordings were used to derive the HRV sig-
nals from the heart beats occurrence time series. The
latter were detected using the algorithm presented in [3],
and ectopic beats, missed peaks and false detections were
corrected using the integral pulse frequency modulation
(IPFM) model [4]. The resultant time series were fur-
ther corrected for variations in the mean heart rate, and the
HRV signals were then derived as in [1]. Finally, the HRV
signals were resampled at 4 Hz, filtered and normalized,
similar to the respiratory signals.

In order to avoid transient behavior between stress
phases, the first and last seconds of the signals were re-
moved from the analysis. For BL and SA 1 minute, for ST
5 seconds, and for VE 10 seconds.

2.3. Heart Rate Decomposition

Given are two physiological signals: the respiratory sig-
nal denoted by X and the HRV signal denoted by Y. All
the information contained in Y that is linearly related to
X, can be computed by projecting Y onto a subspace V
defined by variations in X. One way of constructing the
subspace related to respiration is by using the original X
and its delayed versions to create the basis Vs, using de-
lays from 1 to m seconds [3]. This subspace will be de-
noted by Vs.

The respiratory subspace can also be constructed using
the wavelet decomposition of X with db4 as a mother
wavelet and 5 levels of decomposition, as done in [2].
The detail coefficients and their delayed versions up to m
seconds are then used to define the basis Vw of the sub-
space Vw. In order to compare the performance of both
approaches, namely, the decomposition using two differ-
ent subspaces Vs and Vw, delays of up to 3 seconds (i.e.,
m = 3) are used [2].

After constructing a basis V for the subspace V, any
signal Y can be projected onto the subspace, by means of

YX = PY, (1)

with P a projection matrix defined as

P = V(VTV)−1VT. (2)

Note that YX describes the dynamics of Y related to X,
and the part of Y that is related to other mechanisms can
be computed as YX⊥ = QY, with Q = I−P. It is clear
that the main result of this algorithm is the computation
of a component of heart rate linearly related to respiration
denoted by YX, and a residual component related to mech-
anisms other than respiration denoted by YX⊥ . Note that
the latter will also contain non-linear influences of the res-
piration, which are not characterized by this approach.

The components derived using the wavelet decomposi-
tion of the respiration will be denoted by YXw

and YX⊥w
,

and the components obtained after using Vs, will be de-
noted by YXs

and YX⊥s
. From each component, the fre-

quency domain parameters will be calculated, namely, the
absolute and normalized powers in the low and high fre-
quency bands, and the sympathovagal balance. The low
frequency power (LF ) is defined in the range between
0.04Hz an 0.15Hz, and the high frequency power (HF )
is computed in the range between 0.15Hz and half of the
mean heart rate for each segment. Note that in this study,
the limits for the HF band are not modified using the res-
piratory frequency, as implemented in [1]. The reason for
this is that the HF modification requires a peaked respi-
ratory spectrum, which might not be the case for multiple
recorded respiratory signals. Consequently, by keeping the
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limits fixed all the segments can be included in the analy-
sis.

The normalized LF power is then defined as LFn =
LF/(LF + HF ), and the sympathovagal balance as
LF/HF . The subindices s and w will be used to indi-
cate the subspace, namely the original signal or its wavelet
decomposition, respectively.

2.4. Statistical Test

The differences between the frequency features of the
heart rate components for different stress levels will be
evaluated using the Friedman test for repeated measures.
Since 4 different stress levels will be evaluated, a multi-
comparison test will be performed with Bonferroni correc-
tion equal to α/6 = 0.008 and α = 0.05.

3. Results and Discussion

The heart rate signal was decomposed using two dif-
ferent subspaces: the wavelet decomposition of the res-
piratory signal [2], and the original respiratory signal [3].
From each decomposition, two components were derived
and they were characterized by means of the well-known
frequency domain parameters of HRV. The median and
median absolute deviation (MAD) of these parameters for
each stress phase are indicated in Table 1, and the normal-
ized powers in the LF band for each component and each
stress phase are depicted in Figure 1. The figure also indi-
cates the normalized LF power of the original HRV signal,
LFn,or in order to illustrate the added value of the heart
rate decomposition in the analysis of stress.

It is clear that the power of the respiratory components
in the low frequency band (LFn,w and LFn,s) is higher
during BL, which suggests that during this phase, the res-
piratory rate goes below the upper limit of the classical LF
band. This, in the classical HRV analysis, could result in
an overestimation of the sympathetic activity, as can be
observed from the normalized LF power of the original
HRV signal, namely LFn,or. These results are in agree-
ment with those reported in [1], where the respiratory rate
was found within the LF band for different cases, espe-
cially during BL. At this point, it is clear that the quantifi-
cation of the respiratory influences on the heart rate leads
to a more accurate quantification of the ANS modulation.

From the normalized frequency parameters it is also
possible to conclude that stress has a strong effect on the
linear interactions between respiration and heart rate. As
can be seen from Figure 1, the residual components are not
different between the phases, which confirms the hypoth-
esis outlined in [1], where only the respiratory informa-
tion might be enough for the detection of stress. However,
when looking at the power in the HF band for the residual
components (see Table 1), all phases are significantly dif-

ferent from BL. These results are in agreement with those
reported in [2], where the residual heart rate was found
to have the highest discriminative power for stress detec-
tion. Nevertheless, in [2], no difference was found between
the respiratory component during relax and stress. One
possible explanation for this discrepancy is that this study
and the one in [2] deal with two different types of stress,
namely, emotional stress and mental stress, respectively.
Consequently, no strong conclusions can be drawn about
the residual heart rate during different types of stress until
they are analysed simultaneously.

Another important point to keep in mind is that only lin-
ear respiratory influences were considered in this analy-
sis. Therefore, it might be that nonlinear interactions are
still contained in the residual components of HRV and that
they are different for each stress phase, as suggested in
[5]. These nonlinear interactions can be responsible for
the significant difference in the HF power of the residual
components, YX⊥ , between BL and all stress phases. An
increased HF can also be associated to other vagally medi-
ated effects different from respiration but this can only be
confirmed by means of a non linear approach.

When evaluating all frequency domain parameters, no
significant difference was found between the parameters
obtained with both approaches. Hence, no added value is
introduced in the quantification of the cardiorespiratory in-
teractions when the wavelet decomposition is used. This is
important because the computational requirements can be
reduced by simplifying the construction of the respiratory
subspace.

4. Conclusions

This study showed that linear respiratory dynamics ac-
count for most of the differences in HRV that appear at
different emotional stress phases. This was observed after
decomposing the heart rate signal using orthogonal sub-
space projections with two different respiratory subspaces.
The results obtained with both subspaces indicated that no
added value in the differentiation of stress was achieved
with the wavelet decomposition. As a result, a simpler al-
gorithm was proven useful for the separation of respiratory
influences from the heart rate, and for the discrimination
between relax and stress. Nevertheless, only linear car-
diorespiratory interactions were analysed, hence, further
analysis needs to be done on the heart rate dynamics that
remain after removing lineal respiratory influences.
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Table 1. Median±MAD of the frequency domain parameters for each stress phase, and derived from the respiratory
component YX and the residual component YX⊥ .

HRV Wavelet-based approach (w) Original respiratory signal (s)
index BL ST SA VE BL ST SA VE

YX

LF 52.78±25.1 14.31±92.2∗ 11.90±8.7∗ 7.42±4.7∗ 50.17±28.4 8.36±11.2∗ 9.76±7.4∗ 5.09±5.2∗

HF 75.83±27.8 68.54±26.6 43.02±19.3∗ 53.45±28.1 66.08±29.8 56.58±26 38.27±18.8∗ 53.31±27.7
LFn 0.40±0.16 0.20±0.12∗ 0.25±0.13∗ 0.10±0.08∗ 0.43±0.17 0.18±0.12∗ 0.22±0.13∗ 0.10±0.08∗
LF
HF

0.67±0.79 0.25±0.23∗ 0.34±0.32∗ 0.11±0.13∗ 0.78±0.95 0.22±0.25∗ 0.28±0.24∗ 0.11±0.16∗

YX⊥

LF 53.77±22.7 58.04±92.5 91.27±21.0∗ 76.82±21.8 58.78±23.0 60.34±31.0 94.77±21.3∗ 77.83±24.3
HF 32.88±14.2 45.68±20.6∗ 58.01±15.4∗ 64.98±17.2∗ 35.71±15.0 52.76±20.9∗ 60.54±15.7∗ 67.33±18.9∗

LFn 0.64±0.10 0.64±0.12 0.61±0.08 0.56±0.10∗ 0.63±0.10 0.57±0.11 0.60±0.09 0.53±0.10
LF
HF

1.80±0.66 1.80±0.92 1.59±0.56 1.29±0.51∗ 1.72±0.64 1.33±0.59 1.51±0.59 1.16±0.51
∗ Significant difference with respect to baseline (BL) with a p-value< 0.008.

Figure 1. Normalized powers of the heart rate and its
two components in the LF band. or stands for the original
HRV signal, w and s refer to the subspace, namely Vw and
Vs, respectively. No significant differences were found be-
tween the wavelet-based approach and the one based on the
original respiratory signal.
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