
Agenda, Volume 10, Number 1, 2003, pages 61-72 

Impact of Genetic Testing on Life Insurance 

Richard Heaney and David Pitt     

he Human Genome project generates immense interest in the scientific 
community though there are also important issues for the business 
community, particularly insurance companies.  The dramatic advances in 

our understanding of the human genetic code, or human genome, affect our 
understanding of the determinants of human longevity and this is critical to the 
profitability of life insurance contracts.   

Insurance plays an important role in our economy.  For example, there were 
42 life insurance companies managing approximately AUD $188 billion as at 30 
June 2002 and these same companies received AUD $38.1 billion in premium 
income over for the year ended 30 June 2002.  Life insurance contracts are 
increasingly being sold in combination with superannuation where the contract 
forms part of the superannuation package.  For example, up to 85 per cent of all 
life office assets and 90 per cent of the premiums were classified as 
superannuation business in 2001 (APRA, 2002).  Regardless of whether an 
individual submits an application form directly to a life insurance company as part 
of a stand alone policy, or indirectly via superannuation, the insurance company 
faces the question of deciding whether they wish to sell insurance to this 
individual.   

While life insurance policies can take a number of forms, an essential feature 
of these contracts is that they promise the payment of a given amount to certain 
beneficiaries when the insured dies.  The time of death is critical to the pricing and 
profitability of these contracts.  For insurance contracts to be profitable they must 
be priced so that invested premiums generate sufficient reserves to meet the 
payment of death benefits when they fall due.   

Failure to adequately model the impact of our increased understanding of the 
human genome could have a dramatic impact on the profitability of insurance 
contracts.  The mapping of the human genome and the rapid development of 
genetic testing means that people have access to greater knowledge about their 
health and longevity yet this information may not be freely available, particularly 
to insurers and annuity providers (Hoy and Polborn, 2000).  If individuals have 
more information about their health than insurance companies, this can complicate 
the pricing of life insurance contracts and annuities.  This one-sided access to 
information is often referred to as information asymmetry and at its worst 
information asymmetry can lead to market failure (Akerlof, 1970).  Further, where 
the insurer is unable to accurately assess the risk of an applicant it is possible that 
prices will be set too high.  The ultimate result could be that only those applicants 

                                                      
 Richard Heaney is a Reader in Finance and David Pitt is a Lecturer in Actuarial Studies 
in the School of Finance and Applied Statistics at the Australian National University.  



Richard Heaney and David Pitt 62

most likely to require a payout will purchase the product resulting in low 
profitability or losses.  This is a critical problem in the pricing of life insurance 
products.  Life insurers generally attempt to protect themselves through pricing for 
average risks though this may become more difficult where information about 
health and longevity is restricted in an asymmetric manner.  An objective of this 
paper is to show that failure to adequately model the impact of our increased 
understanding of the human genome — on choices made by consumers, and on 
the pricing policies of insurance companies — could have a dramatic impact on 
the profitability of insurance contracts.   

While Doherty and Thistle (1996) and Hoy and Polborn (2000) provide 
economic analysis of the impact of information about the human genome, the 
work of actuaries such as Macdonald (1997) provides insight into the problems 
that actuaries face in the day-to-day pricing of life insurance contracts.  We apply 
the MacDonald (1997) model to gain further understanding of the impact of 
genetic research on Australian life insurance contracts — in particular, the effects 
on profitability of adverse selection by consumers who discover themselves to be 
high risk, and who subsequently purchase more insurance than would otherwise 
have been the case.  The following section provides a brief review of the literature.  
It is followed by two sections that respectively describe the model used in the 
simulation of the insurance problem faced by Australian insurance companies, and 
the results of the simulation. Conclusions are drawn in the final section of the 
article.   

Insurance Theory 

Transactions costs are an important part of the market for life insurance (Gravelle 
and Rees, 1985).  One of these costs is the cost of identifying the true risk of the 
individual.  Individuals could be classified into broad categories such as good risk, 
where there is little risk of a claim, and bad risk, where the probability of a claim 
is high.  Insurers generally assess the probability of death through analysis of 
objective factors, such as age and occupation, and subjective factors, such as 
exercise, diet and habits such as smoking.  Each applicant is assessed for these 
factors and a premium estimated and charged.   

Where it is impossible to identify the risk associated with a group of 
individuals, adverse selection can lead to bad risks driving out good risks.  This 
effect could arise where the insurer initially sets the insurance premium too high 
for the best risks.  Given the high price the best risk group choose not to insure, 
leaving only those representing poorer risks for the insurer.  The difficulty for the 
insurer is that the premium does not allow for exclusion of the best risk group — 
with the loss of the best risk group the current premium is set too low to cover the 
expected costs of the contract.  Over time as the level of claims follows the actual 
longevity of the insured group, the insurer is forced to raise the level of premiums.  
Again, the better risks in the group choose not to insure at this higher price and so 
the cycle continues until the good risks are priced out of the market and the insurer 
faces ruin.   
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In effect, the insurer faces a trade off between the costs of obtaining better 
information about individuals and thus pricing insurance contracts properly and 
the reduced profitability arising from the impact of bad risks driving out good 
risks when insurance premiums do not properly reflect the risk of the insured 
group.  A regulatory response to this type of problem occurring in the health 
insurance area has been the use of community rating in the pricing of health 
insurance.   

There may be signalling effects arising from the decision of insurance 
companies to sort into risk categories.  A rational response from low risk 
applicants is to signal quality in order to support a separating equilibrium and 
receive lower premiums; from high risk applicants the response is to mix signals 
in order to keep a pooling equilibrium, whereby the cost of their insurance is 
spread across a larger group (and thus lower premiums).   

The impact of genetic information on the life insurance market is important 
though current research suggests that the net welfare effect of genetic testing is not 
clear.  For example, Hoy and Polborn (2000), extending the model of Doherty and 
Thistle (1996), show that the private value of being informed is positive for the 
individual while the social value of the information could be either positive or 
negative.  Their model includes the impact of genetic testing and it is assumed that 
there is an incentive for an individual to undertake the test to obtain further 
information about their health with the knowledge that the insurer does not have 
access to this information.  Essentially there are three groups in the model, high 
risk, low risk and the uninformed.   

Hoy and Polborn focus on the benefits to those in the uninformed group who 
choose to test, assuming that the current price of insurance is only attractive to 
high-risk individuals.  If the uninformed choose the test and are found to be bad 
risks, then they can insure, and so they are better off.  If they are good risks, then 
they can choose not to insure.  In this partial equilibrium model the uninformed 
are better off with the availability of the test because they have the option to 
purchase a contract at the old price if they test positive.  There are also spillover 
effects associated with those who choose not to take the test where the actual risk 
of this group differs from the average risk for the pool.  For example, the spillover 
effect is positive if the initially uninformed (who are tested and subsequently buy 
insurance) are lower risk than the existing customers.  Hoy and Polborn argue that 
this source of asymmetric information is not unusual as there is legislation in a 
number of countries specifically set up to protect the rights of the individual to 
genetic testing results and to deny the insurance companies control over this 
information.  This debate continues in Australia and is surveyed in Otlowski 
(2002).   

Thus the impact of the introduction of genetic testing is not clear.  Hoy and 
Polborn (2000) argue that, when information is distributed symmetrically between 
insurers and customers, the introduction of the test is welfare reducing for 
consumers, assuming that markets stay open (although price may vary) that the 
benefits arising from the use of genetic testing, including improved medical 
treatment of these conditions, are ignored.  With asymmetric information the net 
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welfare effects of the test could be positive, negative or a mixed case where those 
who undertake the test gain and those that choose not to undertake the test lose.   

This theoretical work on insurance and asymmetric information helps to 
understand the implications of genetic testing and highlights the impact of 
asymmetric information but it tells us little about the actual pricing of life 
insurance where genetic testing is available to individuals but not to insurers.  In 
the following section we focus on empirical testing.  Actuaries have an important 
role to play in valuing these instruments through statistical modelling and we use 
the Markov model developed by Macdonald (1997) in analysis of the impact of 
genetic testing on breakeven insurance premiums.  As indicated above, knowledge 
of the mortality of a group of individuals is critical to the accurate pricing of 
insurance offered to the members of this group and, given information asymmetry, 
genetic testing could have a dramatic effect on the pricing of life insurance.   

Actuarial Modelling 

Actuarial research into the financial impact of genetic testing has gained 
momentum in recent years.  MacDonald (1997 and1999) has published a number 
of papers advocating the use of multi-state Markov models to explore the impact 
of uncertainty on traditional life insurance products where an individual has access 
to information such as genetic testing results but the insurer does not have access 
to this information.  This is particularly important to insurers where the tests 
provide highly predictive information about mortality.   

A thorough assessment of the impact of genetic testing involves consideration 
of four major factors.  The first factor reflects the level of insurance that the 
applicant might prefer.  The level of insurance could vary with the existence of a 
genetic predisposition to a particular disease.  It could also vary with whether the 
applicant has been genetically tested.  A final source of variation lies with whether 
the applicant has been genetically tested and found not to have a higher probability 
than normal of contracting a particular disease (negative results).  The second 
factor is the prevalence and predictive accuracy of genetic tests.  The third factor 
is the proportion of those who have genetic tests and who return a positive result 
indicating that they have a higher probability than normal of contracting a 
particular disease.  The final factor is the extent to which people who receive a 
positive genetic test for a particular disease have an increased propensity to 
purchase insurance. 

The most significant financial impact of genetic testing is thought to occur for 
life insurance products such as term insurance and associated riders such as dread 
disease insurance.  Dread disease insurance is a rider that may be added to a 
contract containing death insurance.  This rider provides the insured with a benefit 
if they incur one of a selection of serious medical conditions listed in the policy.   

Genetic testing is more important for term insurance than whole of life 
insurance because in the case of whole of life insurance the insured is guaranteed 
payment of the amount insured on death.  The only question for whole of life 
insurers is the timing of the payment.  Under a term insurance contract the amount 
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insured is paid if the insured dies before the term of the contract and so the insurer 
prices the contract with a view to both the timing of death and the likelihood of 
death before expiry of the contract.  Thus where the insured has a genetic 
predisposition for higher mortality they are more likely to purchase a term 
insurance contract because the premium is lower for term insurance contracts than 
for whole of life contracts.  This is because lower risk is ordinarily presented to 
the insurer for term insurance contracts.   

Commonly term insurance is provided for a period of 10 or 20 years.  These 
types of insurance contracts are often called risk-based products.  In the Australian 
setting the majority of the term insurance business is renewed each year, or yearly 
renewable.  These insurance products give the insured the option to renew the 
insurance contract each year and the insurer is obligated to renew the coverage at 
the request of the insured as long as there is no material change to the risk 
presented by the insured.  This arrangement provides considerable potential for 
adverse selection against the insurer and so it is important to model the impact on 
life insurance contract premiums. 

 

A benchmark Markov model with no genetic test 

First, let us consider the case of a customer who purchases life insurance when 
genetic testing is ignored.  This model will be used as the benchmark case for 
analysing the effects of adverse selection on the profitability of term insurance 
contracts.  Consider a typical individual who purchases insurance cover at age 30 
for the first time.  This life insurance coverage provides payment of the sum 
insured, typically $100,000, on the death of the insured individual and the 
payment is made to the estate of the insured individual.  We will assume that this 
individual has purchased cover for 20 years payable by annual premiums.  The 
insured renews the policy annually by paying a level annual premium for twenty 
years or until earlier death.   

The situation can be illustrated as in Figure 1, which shows transitions 
between three ‘states’.  State 1 is where all people who have not purchased life 
insurance are situated.  If an individual purchases life insurance, they move from 
State 1 into State 2.  This move between states is called a transition and in Figure 
1 this transition is labelled transition t1.  In this model people who have purchased 
life insurance, and therefore reside in State 2, can of course die.  Death causes 
them to move to State 3 and, as shown in Figure 1, make transition t3.  Individuals 
who have not purchased life insurance, and therefore reside in State 1, can also die 
and move to State 3.  This movement from the uninsured state (State 1) to the dead 
state (State 3) is labelled transition t2. If the consumer makes an annual decision 
whether to renew the contract, the transition probabilities reflect the likelihood of 
the event (transition) occurring within a particular year for a person of certain age.  

In this three-state model, where we ignore the impact of genetic testing, the 
annual premium paid by an insured individual depends only on two key factors.  
The first and most significant is the magnitude of transition intensity t3 — the 
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mortality of insured individuals.  In practice these mortality rates (which vary with 
age) are determined by considering the experience of the particular insurer and 
also by consulting published Australian mortality tables.  The other important 
factor is the investment income that the insurer is assumed to be able to earn on 
the premiums paid by the insured to the insurer.  The insurer can earn substantial 
amounts of investment income from the prudent investment of premium income.  
This is because under term insurance the premiums are paid to the insurer long 
before any insurance payment is made, if it is ever made, to the estate of the 
insured individual.  The assumed rate of investment income is again determined 
by reference to the recent investment returns earned by the insurer on the funds 
that are backing the relevant insurance portfolio.  In this analysis we have ignored 
the impact on premiums charged to consumers of commissions and other expenses 
that the insurer would ordinarily incur.   

Figure 1: Markov Model for Term Insurance in the Absence of Genetic 
Testing 

 
 

A Markov model with genetic testing 

We now consider the case where the impact of genetic testing is taken into 
consideration in the determination of suitable insurance premiums.  MacDonald 
(1997) models individuals as occupying a series of states and making transitions 
from state to state until they die.  The important linkages modelled by MacDonald 
are identified in Figure 2.   
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Figure 2: Markov Model for Assessing the Impact of Genetic Testing on 

Insurer Profitability. 
 
 

 
 
 
As in the previous diagram, each box in Figure 2 represents a state in which 

either a consumer or potential consumer of life insurance could be situated.  In any 
interval of time the consumer is able to make a transition along any of the arrows. 
Each transition has a simple description.  Transition t1 occurs when an individual 
who has not had any genetic testing purchases insurance.  Transitions t2 and t3 
occur after a genetic test is performed on the consumer.  The consumer makes 
transition t2 if the test result is negative indicating that they do not suffer from the 
conditions identified in genetic testing.  The consumer makes transition t3 if the 
test result is positive and the genetic tests identify the consumer as suffering from 
the tested ailments.  Transitions t4 and t6 occur when an individual purchases life 
insurance after testing.  While the transition t4 is reserved for those individuals 
who purchase insurance after returning a negative genetic test, transition t6 is 
made when purchasing insurance for those individuals who returned a positive 
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genetic test.  The remaining transitions (t5, t7, t8, t9 and t10) occur on the death of 
an individual from any of the five other states in the model. 

It is clear that the model in Figure 2 is an extension of the model in Figure 1.  
States 1, 2 and 3 in the model that ignores genetic testing (Figure 1) correspond to 
states 1, 2 and 6 respectively in the model where genetic testing is considered 
(Figure 2). 

An important feature of this model is that the likelihood of some of the 
transitions (those other than death, which obviously vary with age) depend only on 
the state currently occupied by the insured.  The model ignores information about 
past movements between particular states of the model.  For example, the 
probability that an individual who returned a positive genetic test two years ago 
will buy insurance in the next week is the same as the probability that an 
individual who has just returned a positive genetic test will purchase insurance in 
the next week.  In Figure 2, this is the same as saying that the chance of moving 
from State 4 to State 5 is unrelated to the amount of time spent in State 4. 

In addition to considering the probabilities of transitions between states, 
consideration must also be given to the payments made where applicable while 
residing in states and on the transition between states.  In Figure 2, the premiums 
are paid to the insurer while the insured is in states 2 and 5.  This is because when 
an individual is in state 2 or state 5 the individual has life insurance.  On transition 
from state 2 or state 5 to state 6 (that is on the death of an insured whether or not 
that individual had returned a positive genetic test) a payment is made to the estate 
of the insured person.  This payment is the amount of life insurance purchased by 
the insured. 

The model aims to determine the impact on insurer profitability of varying 
the modelled probabilities of transition between particular states.  It is of particular 
interest to understand the impact of adverse selection, reflected by the increased 
likelihood that individual will purchase insurance if the individual knows that they 
have a genetic predisposition to higher mortality than average.  This is modelled 
by increasing the probability of making the transition t6 to a multiple, greater than 
one, of the chance of making transition t5.  Another issue of concern to insurers is 
the level of insurance sought by those who have returned a positive genetic test 
result compared with those who have returned a negative test result or who have 
not had a genetic test at all.  This can be explored in this model by allowing the 
insurance amount that the insured chooses to vary.  The relevant insurance amount 
is the amount paid on transition from state 5 to the dead state, and it can be 
modelled to be double or four times the amount paid on transition from state 2 to 
the dead state. 

Pricing of Life Insurance Contracts 

To gain some idea of the impact of changes in the level of information asymmetry 
on the profitability of insurance policies we vary the size of the amount insured 
and the probability of purchasing insurance for those who have returned a positive 
genetic test and therefore exhibit higher mortality.  We then focus on the break-
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even premium for the group of individuals insured.  This is the premium charged 
to all those insured within a particular group regardless of whether a genetic test 
has been conducted and irrespective of the results of the test where it is 
undertaken.  The model has been run using Australian mortality data based on the 
IA95-97 Life Table.  This life table is produced by the Institute of Actuaries of 
Australia Mortality Committee and is based on the mortality experience of the 
major life insurers operating in Australia during the years 1995 to 1997.  The 
interest rate is assumed to be 5 per cent per annum compounding continuously in 
the model and expenses have been ignored in this analysis.   

The projected increase in mortality resulting from a positive genetic test 
clearly needs to be estimated for inclusion in the model.  This increase is 
represented by the difference between the probabilities of making the transitions t9 
and t10 and the other transitions to the dead state, namely t5, t7 and t8.  For the 
purposes of this analysis a 50 per cent increase in mortality has been assumed for 
those who are insured and who have returned a positive genetic test.  An extreme 
value of 0.90 and a less extreme value of 0.30 have been used for the conditional 
probability that an individual, given that they have returned a positive genetic test, 
will buy insurance. 

A summary table of the transition intensities is shown below in Table 1.   
 

Table 1:  Transition Intensities used in the Term Insurance Analysis in 
the presence of Genetic Testing 

Transition Description Transition Intensity 

Transition t1 0.50 

Transition t2 0.20 

Transition t3 0.05 

Transition t4 0.05 

Transition t6 0.30 and 0.90 

Transitions t5, t7 ,t8 at age 30  0.00113 

Transitions t5, t7 ,t8 at age 45 0.00139 

Transitions t5, t7 ,t8 at age 60 0.00568 

Transitions t9 and t10 at age 30 0.00170 

Transitions t9 and t10 at age 45 0.00209 

Transitions t9 and t10 at age 60 0.00852 
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Once transition probabilities are assigned it is necessary to select the amount 
that individuals would choose to be insured for.  With these inputs identified, the 
statistical model generates the level of premium required for the insurer to break 
even.  This model provides considerable flexibility in helping insurers to make 
informed decisions about the level of premiums that should be charged.  The 
model enables the insurer to vary transition probabilities as well as the sum 
insured and then consider the impact of these choices on the insurer’s break even 
level of premiums.   

The critical factor for an insurer is the impact of genetic testing on the 
profitability of insurance contracts where the insured is aware of the impact of 
genetic test results though the insurer is not.  In Table 2 we report the results of 
varying the age, term of the insurance policy and the amount insured given that the 
individual has returned a positive genetic test.  The table provides the increased 
premium rates required for conventional term insurance policies sold to people 
aged 30 or 40 and who hold life insurance contracts for terms of either 10 or 20 
years.  For comparison the table reports the increases in required premiums for 
values of t6 equal to both 0.90 and, in brackets, for t6 equal to 0.30.  This shows 
how sensitive the required premium increases are to the extent of the modelled 
adverse selection.  From Table 2 it is clear that the most significant premium 
increases occur when those insured, who have returned a positive genetic test, 
request higher amounts of life insurance coverage.  This increase in premiums is 
required because large insurance payments will be paid more often as the 
probability of death for individuals who returned a positive genetic test is higher 
than for other individuals on average. 

 

Table 2: Premium Rate Increases Required in The Presence of 
Adverse Selection 

Sum Insured of 
Positive Test 

Age 30 
Term 10 yrs 

Age 30 
Term 20 yrs 

Age 40 
Term 10 yrs 

Age 40 
Term 20 yrs 

Normal 4.5% 

(3.0%) 

2.7% 

(2.0%) 

4.5% 

(2.9%) 

2.7% 

(1.6%) 

2 * Normal 11.0% 

(6.8%) 

7.2% 

(5.7%) 

11.1% 

(6.9%) 

7.3% 

(5.4%) 

4 * Normal 22.3% 
(14.0%) 

17.6% 
(13.1%) 

22.5% 
(14.3%) 

17.2% 
(13.6%) 

 
Note: Values in brackets show the required increase in premium rates when t6, the 

transition intensity for those who have returned a positive genetic test, is 0.30. 
The values not in brackets show the required increase in premium rates when t6 is 
0.90. 
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As those with a positive genetic test who choose to buy insurance increase the 

amount insured, the break-even premium increases markedly regardless of the age 
of the insured or the term of the insurance contract.  For example, if those insured 
with a positive genetic test choose a normal level of insurance then the adjustment 
to the overall break even premium for the insurer with the introduction of genetic 
testing is fairly small, either 2.7 per cent or 4.5 per cent in Table 2.  In contrast 
where the amount insured is quadrupled by those insured who have received a 
positive genetic test, the overall break even premium increases by as much as 22.5 
per cent.  Further, increases in the term of the life insurance contract tend to 
reduce the impact on the break-even premium.  For example, given that the 
insured is aged 30, we note that the required percentage increase in break-even 
premium reduces from 22.3 per cent to 17.6 per cent with an increase in term from 
10 years to 20 years.  Thus the impact of genetic testing on the pricing of life 
insurance can be substantial where the insurer does not have access to the results 
of the genetic tests.   

Conclusions on Pricing of Life Insurance Contracts 

These examples show that genetic testing is capable of changing the way the 
financial services industry operates.  In particular, risk-based insurance products 
are highly vulnerable to information asymmetry.  The implication from the 
theoretical literature is that without a solution to the information problem, we can 
get a rational response from insurance companies to raise premiums that may 
accentuate adverse selection effects as more of the low risk applicants withdraw 
from the insurance market. 

This paper has brought together some of the work by both economists and 
actuaries in an Australian context and includes a simple modelling exercise 
designed to highlight the impact of information asymmetry on break-even life 
insurance premiums.  The main message from the paper is that while genetic 
testing presents a further form of information asymmetry for the insurer, it only 
generates significant financial implications when 

 
• those individuals who have returned a positive genetic test not only have an 

increased likelihood of purchasing insurance but also  
• request significantly higher amounts of insurance coverage.   
 

A clear policy recommendation arising from this work is that insurers be 
allowed the right to require access to genetic testing information under certain 
circumstances — a particular circumstance addressed in this paper is where the 
applicant requests a sum insured well in excess of the level ordinarily sought by 
potential purchasers of life insurance.  In this case it is critical to the profitability 
and solvency of insurance companies that they have access to genetic test results.  
One fear might be that potential customers, who are unable to get high amounts of 
life insurance coverage with one insurer, might purchase standard amounts of life 
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insurance coverage from a large number of different insurers and hence create 
serious problems for the life insurance industry.  Contracts of life insurance 
require applicants for life insurance to disclose whether they already have life 
insurance with any other insurers and also whether they have been rejected for life 
insurance cover in the past.  This means that, apart from cases of fraud, the 
insurance industry can stop people entering into multiple life insurance contracts.   

The key message of this paper indicates that failure to address this 
information asymmetry could prove costly to the life insurance industry and could 
also threaten the viability of a comprehensive, well functioning insurance market. 
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