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Abstract. Let G andH be finite graphs without loops and multiple edgé& use the
notationK;.s— (G,H) to mean that if the edges of the complete gi§phare coloured by
the two colours red and blue, then either the ubdysaph ofK;.scontains a copy dB, or
the blue subgraph &fj.s contains a blue copy &f. The size Ramsey multipartite number
m (Ps,Ky,) is defined as the smallest natural numbsuch that.s— (P3,Kz). In this
paper, we obtain the exact values of the size Ramsaberan (P;,K;,) andmy(P4,K,r)
forj> 3.
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1. Introduction

Let G andH be two finite graphs without loops and multiple eslgLet the complete
graph onn vertices and the complete balance multipartie gtaplingj multipartite sets
of sizes be denoted b¥,and Kj.srespectively. The writ&;s— (G,H) to mean that if
edges of the complete graghsare coloured by the two colours red and blue, there

is a copy ofG in red, or a copy of in blue. In particular, the smallest positive irdeq
such thatk,— (G,H) is defined as the Ramsey numbég,H). Moreover, diagonal
classical Ramsey numbgn,n) is defined as(K,,K,). The exact determination of these
diagonal classical Ramsey numbers have been stuiieda few decades (see
Radziszowski, 2017 for a survey) but sadly not mpigigress has been done even in the
case ofr(5,5). In the last decade, using this idea of theinaigclassical Ramsey numbers
and of the size Ramsey numbers, the notion of mizkipartite Ramsey numbers were
introduced by Burger and Vuuren (i.e., Burger et ab04) by exploring the two
colourings of multipartite grapK;.sinstead of the complete graph. More forma#lize
Ramsey multipartite number(@,H) is defined as the smallest natural nunssuch that
Kixs— (G,H). Size multipartite Ramsey numbers have not beedies in detail up to
now. Some of the known results are by Syafrizalskdso and Uttunggadewa (i.e.,
Syfrizal et al., 2005).

Notation
Given a simple grap& = (V,E), theorder and thesizeof the graph are defined a5(G)|
and E(G)| respectively. Given a vertaxeV (G) we define the neighborhood wfas the
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set of vertices adjacent toin G and is denoted bi(v). We also defineN(v)| as the
degreeof such a vertex. A path amvertices in a grapls = (V,E) denoted by (V,E), is
the subgraph consisting of the vertex satd,,...,a} and the edge set §(,a,), (axas),

(as,a), ..., (an-1,8,)} respectively.

2. Size Ramsey numbers related to paths of size three verses a certain class of
complete bipartite graphs
Lemma 1. Let j>3 and n>1. Then,

n+1
[j — 1] <m;(Ps, Kyn) < [

Proof: m(P3,Kz) = 1 whenn < j — 2. Therefore, {1%] = 1the result followstrivially.

n+2]
j—1r

So,for the rest of the proof, we assume Ff};’:'\l%] > 2.
First to find an upper bound, consider any fegfree red/blue colouring oK.,

wheres = [:%ﬂ Let G = Hr @Hg whereHg and Hg are the red and blue subgraph of
Ginduced by the red and blue colouring, respectiv@igceHr has noP;, Hrwill contain
two verticesv; andv; belonging to the same partitidy such that each of these vertices

will have at most red degree one. This will fordé,ain Hg, where
m=(j—1)s—2=(]'—1)r,lT+12]—22n
with the highest degree verticeskaf,,chosen to bcjal andv,.Therefore,
m;(Ps3, Ky ) < ;%12]
Next to find a lower bound, consider the colourgigen byKj.s= Hr @Hg, wheres =
nT“] — 1, such thatHris a matching as illustrated in the following graporresponding

j—-1
to the two cases even ands is odd. Ifsis odd and is odd as indicated in the second

figure, one vertex will be a isolated vertex in.réfds is odd and is odd as indicated in
the second figure, the red graph will consist pedect matching and the edgeyj will
be coloured red.
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Figurel: (a) If sis even
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Figurel: (b) If sisd

If j is even, Xy) is a red edge. Otherwigds an isolated vertex iHg.
As seen above, in both these cases the graph haslRe Also note that i >2, then g
- 2)<g(j - 1)- 2 if 2. Therefore, iK, s contained in the graph then

mS(j—l)s—1=([jnj21 - 1)(j—1)<<}lj2)(j—1)—1= n ifs>2

1

and
N<sj-2)=(-2)<nifs=1
Therefore, in both cases the graph contains nokjue

Hencem; (P, Kpn) = n—“] Hence the result]

Theorem 2. m(P;,K,p) = 1ifn<gj -
Also, if n > j- 2,

m;(Ps, Ko )

Proof: As seen in lemma m(Pg,KZn) =1lifn<g -2.
n+1]

Hence, assume that= [ ] > 2. When,n + 1# 0 modj - 1), we know that—

1
Tﬁ] Therefore, whem + 10 mod]j — 1) the theorem directly follows from the lemma

1.

Hence, we may assume tmat 1 = Omodj — 1) ands>2. Thus, we are left with only the
following three cases.

Casel: If s = [n—ﬂl is even.

j-1
Consider the colouring given W= Hg ©Hg, Wheres = [7%] — 1, such thaHgris a
perfect matching as shown in the following diagram.
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If s is even

Figure2: Case 1

Then, the graph has mec P;. Moreover, ifK,,is contained in the graph thens(j — 2)
<g(j-1)- 2 we get

mS(j—l)s—2=<Ulj21]— 1)(/ —1)—2<("+21)(j —1)—2=n

Therefore, the graph contains no bK,,. Hence;mj(P3,K2_n) > [j%i .
Therefore, by the lemma 1, in this case wem; (Ps, K, ,,) = [%]
Case2: If j is even.

Consider the colouring given K= Hr@Hsg, wheres = [”*2

= 1, such thaHg is a
matching as illustrated in the following diagre

|
SRy
S, T

Then, this graph has rred P;. Moreover, if the corresponding blue graph hasK,,.
. . n+2
Therefore, in this case, we mj(P3,K2_n) > []Tl] .
. n+2
That ism;(Ps, K, ) = [: .

Case3: If [%] andj are odc
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Consider any redPs-free red/blue colouring dfj.s, wheres = [%] Let G = Hx®DH;

where Hg and Hg are the red and blue subgraph @finduced by the red and blue
colouring, respectively. Sinddzhas noPsandj x sis odd,Hgwill contain one isolated
vertexvy. Let v, be another vertex of the same partitigibelongs to. This will force a

Ko min Hg, where
n+1
m=(j—1)s—1=<[j — 1]— 1)2 n
with the highest degree verticesksf,,chosen to bg; andv,. Therefore,

m;(Ps, Kym) < [j%ﬂ

Hence in this casen; (Ps, Ky,,) = [j%ﬂ as required.

3. Size Ramsey numbersrelated to paths of size four verses certain class of complete
bipartite graphs
The following definitions follow from a paper bythor et al 2016.

Definition 3. (Bad colourings) A (red and blue) colouring d&fj«s(= Hr @Hp) is called a
bad colouring if the red connected components ofcdisists of three cycles and at most
two disjoint edges.

Definition 4. (Colouring ofKj.s generated by axt matrix) Let A = (am)sx represent an
matrix consisting of distinct elements in each oulu ThenG = G(A) the multipartite
graph withj partite sets generated By is defined by (G) = {v |1 <i<s,1 <k <j}and
E(G) = {(wiVki)| ax= ac i}, where thej partite sets are respectively given\ay {v, |i=
1,...§fork=1,...,j

The red and blue colouring &f«sgiven byK;.s= Hr@Hgsuch thatHg= G is said to be
the two colouring generated By

Theorem 5. Let j>6.
a) 1f n <3j - 7then m(P4,Ks,) € {1,2,3}.
b) If n>3j — 7then,

m;(Py, Ky )

Proof: (a) The above theorem is a direct consequence of tlesviog two propositions.

n+4

=1
n+3

(b) If []Tll j #0mod3 thenmj(P4, KZ,n) < I

Proposition 6. (&) m;(Py, K2.) < [

n+3

j-1l

Proof: Before we start off with the proofs noting thatanlly (a) is true i{?%ﬂ <1 and
. [n+3 . .

(b) is true |f[jj] <lasmj(Py,Kyp) =1ifn<j—3.
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(&) To find an upper bound, consider any arbitrary Radree red/blue colouring of
n+4

Kixs=Hr @ Hg, Wheres = [—] >1

Claim l1a: All connected components bifzconsists of at most 3 vertices.

Assume the claim is false. Then in order to avoRl,ahere will exist a vertex that will

be adjacent to at least three mono-valent vertiggsandv,in Hg. These vertices belong
to distinct partite sets; as otherwise any two hafse vertices belonging to the same

partite set will be forced to be in some blg, (this is true because
n+4

G-—Ds—1=( —1)[— — 1> n),
a contradiction. Therefore, assume that the thms®=tmono-valent vertices,vsandv,in
Hgrbelong to distinct partite sefs ,A> andAzrespectively. Consider the vertexand let
u be any other vertex in the same partite webelongs to. Repeating the previous
argument we will get that will be adjacent to at least three mono-valentigestu,,us
and u, belong to distinct partite se®;,,B, and Bs. Proceeding in this manner, we will
arrive at a contradiction as the number of monottalertices oHgis finite. Hence the
claim.
Therefore, by the previous claim, given any paivefticesv; and v, belonging to the
same partitiong, we get that, andv, are adjacent to at most four verticedigy{ A}.
This forces &, n,where

) ) n+4
m2(1—1)5—4=(]—1)[ml— 4>n
Thus, every colouring df;.s contains a re&,or a blueK,,. Hence
n+ 4
m; (P, Kyn) < [

(b) In this case to find an upper bound, conS|der amytrary red P,-free red/blue
colouring ofKjxs= Hr@Hs, wheres = [7%] >1,

Claim 1b: All connected components bli; consists of at most 3 vertices.
Assume the claim is false. Then in order to avoRl,ahere will exist a vertex that will
be adjacent to at least three mono-valent vertiggsandv,in Hg. These vertices belong

to distinct partite sets; as otherwise any two hafse vertices belonging to the same
n+3

partite set will be in some blug,, (as(j—1)s—1=(G—-1) [—] —1=2n),

acontradiction. Therefore, assume that the thnes=timono- valent verticas,vzandv,in
Hrbelong to distinct partite sefg,A,andAsrespectively. Consider the vertexand letu

be any other vertex in the same partitevgsbtlongs to. Repeating the previous argument
we will getu that will be adjacent to at least three mono-vakstticesu,,u; and u,
belong to distinct partite seB;,B,andBs. Proceeding in this manner we will arrive at a
contradiction as the number of monovalent vertafddgis finite. Hence the claim.

By the above claim all the connected compaehHrmust be of size at most three.
However, asj= 0 mod3 we get that one of the components must be ofaieeor two.
Therefore, there exists a verterf degree at most 1. Letbe any other vertex belonging
to the same partite sebelongs to. Then by the claivh can be adjacent in red to at most
two other vertices. we get thaaindv, will be adjacent to at most 3vertices. Butlgs,
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(as(j—1Ds—-3=(G—-1 [E] — 3= n, we get tha andv; will be the largest blue
degree vertices of a bluk,;, Therefore, If[jTl]J # 0 mod 3 then mj(P4,K2,n) <
3]

j-1l

Note that from the above propositi(a) part of the proposition follows as directly.

n+3

Proposition 7. Suppose > 3 — 7, (ie.s=(G —1) [— — 1= 2). Then we get
m; (P, Kyn) = [n—H] Moreover, if j # 0 mod 3 and s #2 mod 3, then we

+3
getmy(Pu,Kop) = [751].
Proof: The above theorem is a direct consequence of thétseobtained in the following
4 cases.

Case l: If j = 0mods3.
Let V1,...Va1, Vo wherej = 3k represent the partite sets oKj.. Consider the colouring

Kixs= HR@Hsg, wheres’ = [—] — 1, such thaBgis partitioned in teskidisjoint 3 cycles

such thatvy,V,,V; consists ofs disjoint trianglesV,,Vs,V, consists ofs disjoint triangles
and likewise continuing in this manney_1, Va1, Vs consists ok disjoint triangles.

Then, the graph has no rBg Moreover, ifK, ,is a contained i then

mS(j—1)5—4=<UL+i - 1)(;' —1)—4<<}l+i>(j “1)—4=n

Therefore, the graph contains no biug. Hence,m;(P,, K, ,,) = [n+4

Case2: If s= 2mod3.
Case2.l: If s=2mod3 andn+ 3 = Omod(j — 1).

n+3

Then[—] + 1= [—] Consider the colouring generated Kn,, wheres’ [ ]+

1 = 3q wheres’'= 3q, by the matrix £)s4 given below. Note that in this colouring, all
the vertices oBR are partitioned in to 3 cycles,

n+4

[ a by 3 8 8 .. 70 §=8 F—2
by 2 2 2 5 w j—8 -8 @&
1 1 1 4 4 .. j—4 ay b,
as by j+1 i+1 j+1 ... 2j—4 2j—4 2j—4
by 3 J J j+3 ... 2j—-5 27-5 as
42 j—1 =1  j4+2 j4+2 .. 2/—-6 a by
(g b, p—(7—9) p P p
by p—(j—4) .. p—1 p—1 aq

g— (=3 p—2 ag by

13
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wherep = (j—2) anda’s andby’s distinct and consists of arbitrary assigngdce2ments
of {p+Lp+2..,jq. If Kynis the largest bluK, . Then as'>3
+4

mS(j—l)s’—4=(Ul 1—1)(]'—1)—4<n

Therefore, the graph contains no biug. Hencem;(P,, K, ,,) > [n+4]

Subcase2.2: s=2mod3,j=1mod3 andn+3#0mod j- 1
As defined in subcase 2.1, lét = (aj)sqq, Wheres = 3q+2, r = léJ and p = ((j
-2).Consider the colouring generated Kps, wheres = [7%?] — 1by the matrixB

=(bij)aq+2) given below where’'= max{a,;} + 2. Note that in this colouring, all the
vertices ofBr are partitioned in to 3 cycles except whgn, andv,sincident to the edge
(V1s-1,Va,9) corresponding to thg'— 1 valued double entry of the matrix.

/ ay q a2 (3 a1 4 [1-1_J'_Q al:.f_L a'l._}'
a1 a2 2 (23 2.4 a3z ;2 22 a3 4
As_21 G522 Qs 23 4z 34 .. As_2j-2 Qg2 5—s5—1 g2

pP—1 9 o ol e PHr—1 p+r—1 p'+r—1

p+r p+r p+r p-1 .. pP+2r—1 p+2r—1 p+2r—-1

If mis the largest value such th&t,is in Rs. Then ag >6,

mS(j—l)s—3=(;l%i - 1)(j—1)—3< n.

Therefore, we get that the graph contains no KlgBut asn+3 # 0 mod(j — 1) we have
"+3] ["+4] Therefore, m;(Py, Kop) = ["+4

Subcase 2.3: s=2mod3, j= 2mod3 andn + 3# 0mod(j — 1).
As defined in subcase 2.1, l&t= (&)sqj, Wheres = 3g+2, r = H andp = q( -2).

Consider the colouring generatedir, where = %] — 1by the matrixD=(d;;) aq+2)x

given below withp’= max{a;} + 2. Note that in this colouring, all the vertgefBrare
partitioned in to 3 cycles except whep,; and v,s, incident to the edgev{s1,Vas1)
corresponding to the'— 1 valued double entry (i.e:— 1 appears exactly twice in the
matrix) of the matrix or whem,sandvssincident to the edgev{,vss) corresponding to
thep'+ 2r valued double entry of the matrix.
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11 a2 iy 3 ] 4 apj—2 a1 @y g

2.1 az 2 a23 2.4 g2 a2 -2 a3,j
Gs—21 (@s—22 Os_23 As_24 ... 53 j—2 As5—2 j—s5—1 (52 j
p—1 P P’ P .. PPH+r—1 p'+r—-1 p+r-—1
p4+r p4+2r e p4r o p42r—1 pLor—1 pL2r—1

If mis the largest value &, in Rs. Then,

mS(j—l)s—3=(Ulji - 1)(] -1)-3<n

Therefore, we get that the graph contains no Klgge But asnt+3 # 0 mod( j— 1) we
have[n+3] = n+4] Therefore, m; (P, Ky ) = [nH]

Case 3: If s= 1mod3.
Subcase 3.1: If s= 1mod3 and j =1 mod3.

As defined in subcase 2.1, l&t= (&m)sqj, Wheres = 3g+1, r = H andp = q(j —-2).

n+3

Consider the colouring generated df).s, where s:{—]—lby the matrix B

=(bam)(3g+1)x%j given below where'= max{aim} + 2. Note that in this colouring, all the
vertices ofBrare partitioned in to 3 cycles except whggandv,sincident to the edge
(v1sVas corresponding to thg'—1 valued double entry (i.p:— 1 appears exactly twice
in the matrix) of the matrix or when,s and vss incident to the edgev{sVss)
corresponding to thg'valued double entry of the matrix.

a1 (11._2 L’i-1,3 al,-l al.j—? (1-1:“,'_[ (!’1’.}'

2 1 2.2 (23 (2 4 cen (252 @32 asg ;
g 11 Qg 13 Qg 151 @z 14 - Qs 152 Qg 15 51 QAs_1j

I ! ) ! I f (4
p—1 2} p+1 p+1 ... p+r p+r p+r

If mis the largest value &f,, in Rs. Then,

mS(j—l)s—3=(;lLi — 1)(]'—1)—3< n.

Therefore, we get that the graph contains no Khye Hencem; (P4,K2 n) [n+3

Subcase 3.2: s= 1 mod3 andj = 2mod3.
As defined in case 1, |&t = (gj)sqj, Wheres= 3g+1, r = H andp = q(j —2). Consider

the colouring generated df.s, wheres= [ﬁ] — 1by the matrixD =(dij)aq+2)% given
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below withp'= max{a;} + 2. Note that in this colouring, all the vertef B are
partitioned in to 3 cycles except whemns and v, incident to the edgev{sVas)
corresponding to the’-1 valued double entry (i.p/—1 value appears exactly twice) of
the matrix.

ajq a2 a3 ayq4 .- @y -2 ayj—1 ay,;

as | az2 2,3 g 4 2,2 agzj—2 a2 5
Qs_11 Qg 12 Og13 Og_14 ... g 15 9 G151 Qg1 5
p'—1 P’ o P o P+r—1 p+r—1 p+r—1

If mis the largest value &, inRs. Then ag > 6,

mS(j—l)s—3=<le]— 1) G-1)—-3<n

Therefore, we get that the graph contains no KlygHencem; (P4, K, n) [”+3]
Case 4: If s= 0mod3.
Consider the colouring generated I§ps 0, where s:[:l%ﬂ — 1 = 3q wheres'= 3g, by

the matrix f)sq given below.
Note that in this colouring, all the verticesByfare partitioned in to 3 cycles.

ay b, 3 3 3 .. §=2 §—2 -2

by 2 2 P 5 j—3 j—-3

1 1 1 4 4 .. j—4 a by
as b G411 Fhl §4T e 25—4 2F—4 254

by J J i j+3 .. 2j—5 2j—5 a;
F=1 F—4 §—3 F+2 J+2 o -6 ag ba

a, b, p—(3—5) i P p p

bq p—(7—4) . p—1 p—1 g
\p (7—3) . p—2 it by

wherep = q(j—2) anda’s andb;’s distinct and consists of arbitrary assigngce@ments
of {p+ Lp+2...,jq. If Kynis the largest bluk, . Then ag >6,
+3
mS(j—l)s—4=<[;l 1|~ 1)(}' —-1)-4< n-1.

Therefore, the graph contains no blug. Hencem; (P, K, ,) > [n+3] H
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