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Abstract. Let G and H be finite graphs without loops and multiple edges. We use the 
notation Kj×s→ (G,H) to mean that if the edges of the complete graph Kj×s  are coloured by 
the two colours red and blue, then either the red subgraph of Kj×s contains a copy of G, or 
the blue subgraph of Kj×s contains a blue copy of H. The size Ramsey multipartite number 
mj (P3,K2,n) is defined as the smallest natural number s such that Kj×s→ (P3,K2,n). In this 
paper, we obtain the exact values of the size Ramsey numbers my(P3,K2,n) and my(P4,K2,n) 
for j ≥ 3. 
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1. Introduction 
Let G and H be two finite graphs without loops and multiple edges. Let the complete 
graph on n vertices and the complete balance multipartie graph having j multipartite sets 
of size s be denoted by Kn and Kj×s respectively. The write Kj×s→ (G,H) to mean that if 
edges of the complete graph Kj×s are coloured by the two colours red and blue, then there 
is a copy of G in red, or a copy of H in blue. In particular, the smallest positive integer n 
such that Kn→ (G,H) is defined as the Ramsey number r(G,H). Moreover, diagonal 
classical Ramsey number r(n,n) is defined as r(Kn,Kn). The exact determination of these 
diagonal classical Ramsey numbers have been studied for a few decades (see 
Radziszowski, 2017 for a survey) but sadly not much progress has been done even in the 
case of r(5,5). In the last decade, using this idea of the original classical Ramsey numbers 
and of the size Ramsey numbers, the notion of size multipartite Ramsey numbers were 
introduced by Burger and Vuuren (i.e., Burger et al., 2004) by exploring the two 
colourings of multipartite graph Kj×s instead of the complete graph. More formally, size 
Ramsey multipartite number mj(G,H) is defined as the smallest natural number s such that 
Kj×s→ (G,H). Size multipartite Ramsey numbers have not been studied in detail up to 
now. Some of the known results are by Syafrizal, Baskaro and Uttunggadewa (i.e., 
Syfrizal et al., 2005). 

Notation 
Given a simple graph G = (V,E), the order and the size of the graph are defined as |V (G)| 
and |E(G)| respectively. Given a vertex v ∈V (G) we define the neighborhood of v as the 
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set of vertices adjacent to v in G and is denoted by N(v). We also define |N(v)| as the 
degree of such a vertex. A path on n vertices in a graph G = (V,E) denoted by Pn(V,E), is 
the subgraph consisting of the vertex set {a1,a2,...,an} and the edge set {(a1,a2), (a2,a3), 
(a3,a4), ..., (an−1,an)} respectively. 
 
2. Size Ramsey numbers related to paths of size three verses a certain class of 
complete bipartite graphs 
Lemma 1. Let j ≥3 and n ≥1. Then, 

�� + 1
� − 1 � ≤ 
��
�, ��,�� ≤ �� + 2

� − 1�. 
Proof: mj(P3,K2,n) = 1 when n ≤ j − 2. Therefore, if����

���� = 1the result followstrivially. 

So,for the rest of the proof, we assume that ����
���� ≥ 2. 

First to find an upper bound, consider any red P3-free red/blue colouring of Kj×s, 

where� = ����
����. Let G = HR ⊕HB where HR and HB are the red and blue subgraph of 

Ginduced by the red and blue colouring, respectively. Since HR  has no P3, HR will contain 
two vertices, v1 and v2 belonging to the same partition A, such that each of these vertices 
will have at most red degree one. This will force a K2,m in HB, where 


 = �� − 1 � − 2 = �� − 1 �� + 2
� − 1� − 2 ≥ � 

with the highest degree vertices of K2,m chosen to be v1 and v2.Therefore, 


��
�, ��,� ≤ �� + 2
� − 1� 

Next to find a lower bound, consider the colouring given by Kj×s= HR ⊕HB, where � =
����

���� − 1, such that HR is a matching as illustrated in the following graphs corresponding 

to the two cases s even and s is odd. If s is odd and j is odd as indicated in the second 
figure, one vertex will be a isolated vertex in red. If s is odd and j is odd as indicated in 
the second figure, the red graph will consist of a perfect matching and the edge (x,y) will 
be coloured red.  

 
Figure 1: (a) If s is even 
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Figure 1: (b) If s is d 

If j is even, (x,y) is a red edge. Otherwise x is an isolated vertex in HR.  
As seen above, in both these cases the graph has no red P3. Also note that if s ≥2, then, s(j 
− 2) ≤s(j − 1) − 2 if s≥2. Therefore, if K2,mis contained in the graph then 


 ≤ �� − 1 � � 1 � "� � � 2
� �  1� �  1# �� � 1 $ "� � 2

� �  1# �� � 1 � 1 �  �    if � � 2 

and 
m≤ s(j − 2) = (j − 2) ≤ n if s = 1 

Therefore, in both cases the graph contains no blue K2,n. 

Hence, 
��
�, ��,� � ����
����.Hence the result.  

 
Theorem 2. mj(P3,K2,n) = 1 if n ≤j − 2.  
Also, if n > j − 2,  


��
�, ��,��         

Proof: As seen in lemma 1, mj(P3,K2,n) = 1 if n ≤j − 2. 

Hence, assume that  � � ����
� ��� � 2. When, n + 1 ≠ 0 mod(j − 1), we know that ����

� ��� �
����

� ���. Therefore, when n + 1 ≠0 mod(j − 1) the theorem directly follows from the lemma 

1. 
 
Hence, we may assume that n + 1 = 0 mod(j − 1) and s ≥2. Thus, we are left with only the 
following three cases. 

Case 1: If � � ����
� ��� is even. 

Consider the colouring given by Kj×s= HR ⊕HB, where � � ����
� ��� � 1, such that HR is a 

perfect matching as shown in the following diagram. 



Then, the graph has no red
≤ s(j − 1) − 2 we get 
 


 	 �� � 1 � � 2 �
Therefore, the graph contains no blue 

Therefore, by the lemma 1, in this case we get 

 
Case 2: If j is even. 

Consider the colouring given by 

matching as illustrated in the following diagram. 

 
Then, this graph has no 

Therefore, in this case, we get

That is 
��
�, ��,�� � ��
�

 
Case 3: If  ����

� ��� and j are odd.
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Figure 2: Case 1 
red P3. Moreover, if K2,m is contained in the graph then as 

� "�� � 2
� �  1� �  1# �� � 1 � 2 $ "� � 2

� �  1# �� � 1
Therefore, the graph contains no blue K2,n. Hence, 
��
�, ��,�� � ����

� ���. 
Therefore, by the lemma 1, in this case we get 
��
�, ��,�� � ����

� ���. 

Consider the colouring given by Kj×s= HR ⊕HB, where � � � ���
� � �� �  1,  such that 

matching as illustrated in the following diagram.  

 
Figure 3: Case 2 

Then, this graph has no red P3. Moreover, if the corresponding blue graph has no 

Therefore, in this case, we get 
��
�, ��,�� � ����
� ��� . 

� ����
� ���. 

are odd. 

 

is contained in the graph then as s(j − 2) 

� 1 � 2 �  �     
�  

such that HR is a 

. Moreover, if the corresponding blue graph has no K2,n. 
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Consider any red P3-free red/blue colouring of Kj×s, where � = ����
� ���.  Let G = HR⊕HB  

where HR and HB are the red and blue subgraph of G induced by the red and blue 
colouring, respectively. Since HR has no P3 and j × s is odd, HR will contain one isolated 
vertex v1. Let v2 be another vertex of the same partition v1 belongs to. This will force a 
K2,m in HB, where 


 = �� − 1 � − 1 = "� � + 1
� −  1� −  1# ≥  �    

with the highest degree vertices of K2,m chosen to be v1 and v2. Therefore, 


��
�, ��,�� ≤ ����
� ���. 

 

Hence in this case, 
��
�, ��,�� = ����
� ��� as required. 

 
3. Size Ramsey numbers related to paths of size four verses certain class of complete 
bipartite graphs 
The following definitions follow from a paper by author et al 2016. 
 
Definition 3. (Bad colourings) A (red and blue) colouring of Kj×s(= HR ⊕HB) is called a 
bad colouring if the red connected components of HR consists of three cycles and at most 
two disjoint edges. 
 
Definition 4. (Colouring of Kj×s generated by a s×t matrix) Let A = (aim)sat represent an 
matrix consisting of distinct elements in each column. Then G = G(A) the multipartite 
graph with j partite sets generated by A, is defined by V (G) = {vk,i|1 ≤i≤s,1 ≤k ≤j}and 
E(G) = {(vk,i,vk’,i’)| aik= ak’,i’}, where the j partite sets are respectively given by Vk= {vk,i|i= 
1,...,s} for k = 1,...,j. 
The red and blue colouring of Kj×s given by Kj×s= HR ⊕HB such that HR = G is said to be 
the two colouring generated by A. 
 
Theorem 5. Let j ≥6. 
a) If n <3j − 7 then mj(P4,K2,n) ∈ {1,2,3}. 
b) If n ≥3j − 7 then,  

��
', ��,��

Proof: (a) The above theorem is a direct consequence of the following two propositions. 
 

Proposition 6. (a) 
��
', ��,�� ≤  ���'
� ��� . 

(b) If ����
� ���  j ≠ 0 
*+ 3 then 
��
', ��,�� ≤ ����

� ��� . 

Proof: Before we start off with the proofs noting that, clearly (a) is true if ���'
� ��� ≤1  and 

(b) is true if ����
� ��� ≤ 1 as 
��
', ��,�� = 1 if � ≤ � − 3. 
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(a) To find an upper bound, consider any arbitrary red P4-free red/blue colouring of 

Kj×s=HR ⊕HB, where � = ���'
� ��� >1 

Claim 1a: All connected components of HR consists of at most 3 vertices. 
Assume the claim is false. Then in order to avoid a P4, there will exist a vertex v that will 
be adjacent to at least three mono-valent vertices v2,v3 and v4 in HR. These vertices belong 
to distinct partite sets; as otherwise any two of these vertices belonging to the same 
partite set will be forced to be in some blue ��,� (this is true because  

                                               �� − 1 � − 1 = �� − 1 � ��'
� � �� −  1 ≥  �),  

a contradiction. Therefore, assume that the three three mono-valent vertices v2,v3 and v4 in 
HR belong to distinct partite sets A1 ,A2  and A3 respectively. Consider the vertex v2 and let 
u be any other vertex in the same partite set v2 belongs to. Repeating the previous 
argument we will get that u will be adjacent to at least three mono-valent vertices u2,u3 

and u4 belong to distinct partite sets B2,B2 and B3. Proceeding in this manner, we will 
arrive at a contradiction as the number of monovalent vertices of HR is finite. Hence the 
claim. 
Therefore, by the previous claim, given any pair of vertices v1 and v2 belonging to the 
same partitions A, we get that v1 and v2 are adjacent to at most four vertices in HR\{A}. 
This forces a K1,m where 


 ≥ �� − 1 � − 4 = �� − 1 � � + 4
� −  1� −  4 ≥  � 

Thus, every colouring of Kj×s contains a red P4 or a blue K2,n. Hence 


��
', ��,�� ≤ �� + 4
� − 1� . 

(b) In this case to find an upper bound, consider any arbitrary red P4-free red/blue 

colouring of Kj×s= HR ⊕HB, where  � =  ����
� ��� >1. 

Claim 1b: All connected components of HR consists of at most 3 vertices. 
Assume the claim is false. Then in order to avoid a P4, there will exist a vertex v that will 
be adjacent to at least three mono-valent vertices v2,v3 and v4 in HR. These vertices belong 
to distinct partite sets; as otherwise any two of these vertices belonging to the same 

partite set will be in some blue ��,� (as �� − 1 � − 1 = �� − 1 � ���
� � �� −  1 ≥  � ), 

acontradiction. Therefore, assume that the three three mono-valent vertices v2,v3 and v4 in 
HR belong to distinct partite sets A1,A2 and A3 respectively. Consider the vertex v2 and let u 
be any other vertex in the same partite set v2 belongs to. Repeating the previous argument 
we will get u that will be adjacent to at least three mono-valent vertices u2,u3 and u4 

belong to distinct partite sets B2,B2 and B3. Proceeding in this manner we will arrive at a 
contradiction as the number of monovalent vertices of HR is finite. Hence the claim. 
     By the above claim all the connected components of HR must be of size at most three. 
However, as sj= 0 mod3 we get that one of the components must be of size one or two. 
Therefore, there exists a vertex v of degree at most 1. Let v1 be any other vertex belonging 
to the same partite set v belongs to. Then by the claim V1 can be adjacent in red to at most 
two other vertices. we get that v and v1 will be adjacent to at most 3vertices. But as, ��,� 
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(as �� � 1 � � 3 � �� � 1 � ���
� � �� �  3 �  �, we get that v and v1 will be the largest blue 

degree vertices of a blue K1,n. Therefore, if ����
� ���  j ( 0 
*+ 3 then 
��
', ��,�� 	

����
� ��� .  

 
Note that from the above proposition (a) part of the proposition follows as directly. 

Proposition 7. Suppose n ≥ 3j − 7, (i.e. � � �� � 1 � ���
� � �� �  1 �  2 .  Then we get 


��
', ��,�� � ���'
� ��� . Moreover, if j ≠ 0 mod 3 and s ≠2 mod 3, then we 

get  
��
', ��,�� � ����
� ��� . 

Proof: The above theorem is a direct consequence of the results obtained in the following 
4 cases. 
 
Case 1: If j = 0 mod 3. 
Let V1,...V3k−1,V3k  where j = 3k represent the j partite sets of Kj×s’. Consider the colouring 

Kj×s= HR ⊕HB, where �2 � ���'
� ��� � 1, such that BR is partitioned in to ski disjoint 3 cycles 

such that V1,V2,V3 consists of s disjoint triangles, V2,V3,V4 consists of s disjoint triangles 
and likewise continuing in this manner V3k−1,V3k−1,V3k  consists of s disjoint triangles. 
 
Then, the graph has no red P4. Moreover, if K2,m is a contained in HB  then 


 	 �� � 1 � � 4 � "� � � 4
� �  1� �  1# �� � 1 � 4 $ "� � 4

� �  1# �� � 1 � 4 �  �     
Therefore, the graph contains no blue K2,n. Hence,  
��
', ��,�� � ���'

� ��� . 

Case 2: If s = 2 mod 3. 
Case 2.1: If s = 2 mod 3 and n + 3 = 0 mod (j – 1). 

Then � ���
� � �� �  1 � � ��'

� � ��. Consider the colouring generated on Kj×s’, where �2=���'
� � �� �

 1 � 33 where �2= 3q, by the matrix (A)3q×j given below. Note that in this colouring, all 
the vertices of BR  are partitioned in to 3 cycles, 
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where p = q(j−2) and ai’s and bi’s distinct and consists of arbitrary assigned 2q elements 
of {p + 1,p + 2,...,jq}. If K2,mis the largest blue K2,m. Then as �2≥3 


 	 �� � 1 �′ − 4 = "� � + 4
� −  1� −  1# �� − 1 − 4 <  �     

Therefore, the graph contains no blue K2,n. Hence  
��
', ��,�� ≥ ���'
� ��� . 

 
Subcase 2.2: s ≡ 2 mod 3, j = 1 mod 3 and n + 3 ≠ 0 mod j − 1. 

As defined in subcase 2.1, let A = (ai,j)3q×j, where s = 3q+2, 5 = 6�
�7 and p = q(j 

−2).Consider the colouring generated on Kj×s, where � =  ����
� ��� − 1by the matrix B 

=(bi,j)(3q+2)×j given below where 8′= max{ai,j} + 2. Note that in this colouring, all the 
vertices of BR  are partitioned in to 3 cycles except when v1,s−1 and v4,s incident to the edge 
(v1,s−1,v4,s) corresponding to the 8′− 1 valued double entry of the matrix. 

 
 
If m is the largest value such that K2,m is in RB. Then as j ≥6, 


 ≤ �� − 1 � − 3 = "� � + 3
� −  1� −  1# �� − 1 − 3 <  �.     

Therefore, we get that the graph contains no blue K2,m.But as n+3 ≠ 0 mod (j – 1) we have 

����
� ��� = ���'

� ���.  Therefore,   
��
', ��,�� ≥ ���'
� ���. 

 
 
Subcase 2.3: s = 2 mod 3, j= 2 mod 3 and n + 3 ≠ 0 mod (j – 1). 

As defined in subcase 2.1, let A = (ai,j)3q×j, where s = 3q+2,  5 = ��
�� and p = q(j −2). 

Consider the colouring generated on Kj×s, where� = ����
����  − 1by the matrix D=(di,j)(3q+2)×j  

given below with 8′= max{ai,j} + 2. Note that in this colouring, all the vertices of BR are 
partitioned in to 3 cycles except when v1,s−1 and v4,s−1 incident to the edge (v1,s−1,v4,s−1) 
corresponding to the 8′− 1 valued double entry (i.e. 8′− 1 appears exactly twice in the 
matrix) of the matrix or when v2,s and v5,s incident to the edge (v2,s,v5,s) corresponding to 
the 8′+ 2r valued double entry of the matrix. 
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If m is the largest value of K2,m  in RB. Then, 
 


 ≤ �� − 1 � − 3 = "� � + 3
� −  1� −  1# �� − 1 − 3 <  �.     

Therefore, we get that the graph contains no blue K2,m. But as n+3 ≠ 0 mod ( j− 1) we 

have ����
� ��� = ���'

� ���.  Therefore,   
��
', ��,�� ≥ ���'
� ���. 

Case 3: If s = 1 mod 3. 
Subcase 3.1: If s = 1 mod 3 and  j ≡ 1 mod 3. 

As defined in subcase 2.1, let A = (aim)3q×j, where s = 3q+1,  5 = ��
�� and p = q(j −2). 

Consider the colouring generated on Kj×s, where s=����
� ��� − 1 by the matrix B 

=(bam)(3q+1)×j given below where 8′= max{aim} + 2. Note that in this colouring, all the 
vertices of BR are partitioned in to 3 cycles except when v1,s and v4,s incident to the edge 
(v1,s,v4,s) corresponding to the 8′−1 valued double entry (i.e. 8′− 1 appears exactly twice 
in the matrix) of the matrix or when v2,s and v5,s incident to the edge (v2,s,v5,s) 
corresponding to the 8′valued double entry of the matrix. 
 

 
If m is the largest value of K2,m  in RB. Then, 
 


 ≤ �� − 1 � − 3 = "� � + 3
� −  1� −  1# �� − 1 − 3 <  �.     

Therefore, we get that the graph contains no blue K2,m. Hence, 
��
', ��,�� ≥ ����
� ���. 

Subcase 3.2: s = 1 mod 3 and j = 2 mod 3. 

As defined in case 1, let A = (ai,j)3q×j, where s = 3q+1,  5 = ��
�� and p = q(j −2). Consider 

the colouring generated on Kj×s, where s= ����
� ��� − 1by the matrix D =(di,j)(3q+2)×j given 
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below with 8′= max{ai,j} + 2. Note that in this colouring, all the vertices of BR are 
partitioned in to 3 cycles except when v1,s and v4,s incident to the edge (v1,s,v4,s) 
corresponding to the 8′−1 valued double entry (i.e. 8′−1 value appears exactly twice) of 
the matrix. 

 
If m is the largest value of K2,m  in RB. Then as � � 6, 
 


 	 �� � 1 � � 3 � "�� � 3
� �  1� �  1# �� � 1 � 3 $  �.     

Therefore, we get that the graph contains no blue K2,m.Hence, 
��
', ��,�� � ����
� ���. 

Case 4: If s = 0 mod 3. 

Consider the colouring generated on Kj×s 0, where s= ����
� ��� � 1 � 33 where �′= 3q, by 

the matrix (A)3q×j given below. 
Note that in this colouring, all the vertices of BR are partitioned in to 3 cycles. 

 
where p = q(j−2) and ai’s and bi’s distinct and consists of arbitrary assigned 2q elements 
of {p + 1,p + 2,...,jq}. If K2,m is the largest blue K2,m. Then as j ≥6, 


 	 �� � 1 � � 4 � "�� � 3
� �  1� �  1# �� � 1 � 4 $  � � 1.     

Therefore, the graph contains no blue K2,n. Hence, 
��
', ��,�� � ����
� ���.  
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