
Annals of Pure and Applied Mathematics 
Vol. 18, No. 2, 2018, 189-192 
ISSN: 2279-087X (P), 2279-0888(online) 
Published on 28 November 2018 
www.researchmathsci.org 
DOI: http://dx.doi.org/10.22457/apam.v18n2a8 
 

189 

 

Annals of 

Product Connectivity Leap Index and ABC Leap Index of 
Helm Graphs 

V.R.Kulli 

Department of Mathematics 
Gulbarga University, Gulbarga 585106, India 

e-mail: vrkulli@gmail.com 

Received 24 October 2018; accepted 26 November 2018 

Abstract. Recently, some leap Zagreb indices of a graph based on the second degrees of 
vertices were introduced. In this paper, we propose the product connectivity leap index 
and ABC leap index of a graph. We compute the sum connectivity leap index, product 
connectivity leap index, ABC leap index and geometric-arithmetic leap index of helm 
graphs. 
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1. Introduction 
We consider only finite, simple connected graphs. The degree dG(v) of a vertex v is the 
number of edges incident to v. The number of edges in a shortest path connecting any two 
vertices u and v of G is the distance between these two vertices u and v, and denoted by 
d(u,v). For a positive integer k and v ∈ V(G), the open neighborhood of v in G is defined 
as Nk(v/G) = {u ∈ V(G) : d(u, v) = k}. The k-distance degree of v in G is the number of k 
neighbors of v in G and denoted by dk(v), see [1]. Any undefined terminologies and 
notations may be found in [2]. 

In [3], Kulli proposed the sum connectivity leap index and geometric-arithmetic 
leap index, defined as 
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Motivated by the above two definitions of connectivity leap indices, we introduce 
the product connectivity leap index and atom bond connectivity (ABC) leap index as 
follows: 
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Recently, some novel variants of leap indices were introduced such as leap 
hyper-Zagreb indices [4], F-leap indices [5], minus leap and square leap indices [6], 
augmented leap index [7]. In recent years, some new connectivity indices have been 
introduced and studied such as sum connectivity index [8], product connectivity index 
[9], sum connectivity Revan index [10], geometric-arithmetic reverse and sum 
connectivity reverse indices [11], sum connectivity Gourava index [12], connectivity 
Banhatti indices [13]. Also some other connectivity indices were studied, for example, in 
[ 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26 ]. 

In this paper, the connectivity leap indices of helm graphs are determined. For 
helm graphs see [277]. 

 
2. Helm graphs 
A wheel Wn+1, n≥3 is the join of Cn and K1. Clearly |V(Wn+1)|=n+1 and |E(Wn+1)|=2n. A 
helm graph, denoted by Hn, is a graph obtained from Wn+1 by attaching an end edge to 
each rim vertex of Wn+1, where the vertices corresponding to Cn are known as rim 
vertices. A graph Hn is presented in Figure 1.  

 
Figure 1: A graph Hn. 

  
 It is easy to see that |V(Hn)|=2n+1 and |E(Hn)|=3n. Then Hn has 3 types of the 2-
distance degrees of edges as given in Table 1. 

d2(u), d2(v)\uv ∈ E(Hn) (n, n – 1) (3, n – 1) (n  – 1, n – 1) 
Number of edges N n N 

Table 1 
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Theorem 1. The sum connectivity leap index of a helm graph Hn is 
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Proof: Let Hn be a helm graph with 2n+1 vertices and 3n edges. From definition (1), we 
have 
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Theorem 2. The product connectivity leap index of a helm graph Hn is 
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Proof: Let Hn be a helm graph with 2n+1 vertices and 3n edges. From definition (3), we 
have 
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Then by using Table 1, we obtain 
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Theorem 3. The geometric-arithmetic leap index of a helm graph Hn is 
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Proof: Let Hn be a helm graph with 2n+1 vertices and 3n edges. From definition (2), we 
obtain 
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Then by using Table 1, we deduce 
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Theorem 4. The atom bond connectivity leap index of a helm graph Hn is 
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Proof: Let Hn be a helm graph with 2n+1 vertices and 3n edges. From definition (4), we 
have 
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