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Abstract. MRI images are often anisotropic which make two dimensional neural networks 

perform better than three dimensional ones due to the fact they cannot take spacing between 

adjacent slices into account. The aim of this study was to validate if an earlier proposed technique 

for converting anisotropic images to isotropic enable three dimensional networks to yield better 

results than two dimensional networks and increase overall accuracy in the task of segmenting 

prostate cancer as it was shown to do in the task of segmenting prostate. In order to achieve the 

aim a combination of previously proposed image conversion technique as well as no-new U-Net 

(nnU-Net) was used to localize prostate cancer. Majority of published studies on prostate cancer 

segmentation deal with images acquired at a single institution, while this study deals with the 

image dataset gathered from 11 different institutions for both model training and validation 

allowing the assessment of model generalizability. The results of performed experiments 

confirmed that moving away from anisotropic images and two-dimensional neural network to 

isotropic images and three-dimensional neural network can improve accuracy while segmenting 

prostate cancer in MRI images. This study showed that nnU-Net is able to provide similar 

accuracy to other studies as well as the ability to distinguish clinically significant cancer from 

clinically insignificant one. This study also showed that a lot of identified prostate zones cannot 

neither be confirmed nor rejected as being abnormal due to the nature of how ground truth is 

established thus revealing the need of prospective accuracy evaluation. 

Keywords: prostate cancer localization, neural network, isotropic images 

1. Introduction 

Cancer statistics show that prostate cancer was the most common tumor among males in 

the United States of America in 2021 (25.62%) (Siegel et al., 2021), in Europe in 2020 

(22.2%) (Dyba et al., 2021) and in Lithuania in 2021 (20.49%) (Institute of Hygiene 

2022). In addition to that the data from Global Cancer Observatory owned by World 
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Health Organization/International Agency for Research on Cancer shows that prostate 

cancer is the second most common among males worldwide (15.14%) following the 

leading lung cancer (15.37%) (Ferlay et al., 2020). The data is more ruthless when 

analyzing different age groups and the prevalence among men aged 55 and more 

increases up to 48.2% in Lithuania (Institute of Hygiene 2022). Even though the 

mortality rate of prostate cancer is not as high, it still contributes a lot and is the 2nd 

most common cause of cancer death among men in the United States of America (after 

lung cancer) (Siegel et al., 2021), the 3rd in Europe (after lung and colorectum) (Dyba et 

al., 2021), the 2nd in Lithuania (after lung) (Institute of Hygiene 2022) and the 5th 

worldwide (after lung, liver, colorectum and stomach) (Ferlay et al., 2020). 

Guidelines provided by the European Association of Urology strongly recommend 

performing MRI and localizing cancer prior to performing a prostate biopsy (Mottet et 

al., 2021). MRI is not only capable of detecting cancer, but also helps in stratifying the 

risk and reducing the number of biopsies to perform (Fütterer et al., 2015). Moreover, in 

order to improve sampling precision and diagnostic yield fusion biopsy can be 

performed by merging MRI information with real time ultrasound (Marks et al., 2013). 

Despite that, prostate MRI suffers from large inter-reader variability due to its strong 

relation to readers’ expertise (Giannini et al., 2017).  

In recent years, the development of artificial intelligence enabled the use of various 

technologies such as speech and image recognition. One of the image recognition 

techniques is contour detection which can separate an object of interest from its 

background (Long et al., 2015). Such technique is already being used in the field of 

medicine, including prostate cancer detection (Park et al., 2019, Jucevičius et al., 2016, 

Goldenberg et al., 2019). A study by Bhattacharya et al. (Bhattacharya et al., 2022) 

reported accuracy as 0.81 of the area under the receiver operating characteristic curve 

(AUC) and used convolutional neural networks to detect normal tissue, clinically 

insignificant cancer and clinically significant cancer on prostate MRI training the 

network on the data of 74 patients who underwent radical prostatectomy at a single 

institution and ground truth set based on whole-mount histopathology images and 24 

patients with no cancer. Another study by Gibbons et al. (Gibbons et al., 2023) reported 

accuracy as 0.91 AUC and used voxel wise logistic regression models to differentiate 

prostate cancer from other tissues by creating cancer risk maps. Logistic regression 

models were trained and cross-validated on the cohort of 73 patients with MRI images 

acquired at a single institution and ground truth set based on whole-mount 

histopathology images. A study by Alley et al. (Alley et al., 2022) reported accuracy as 

0.85 AUC and used radiomics based classifier to generate voxel wise prostate tumor 

probability maps, focusing on the pre-processing pipeline. Classifier was trained on the 

data of 31 patients acquired in a single institution and ground truth set by manual 

contour delineation by radiation oncologist. One more study by Giannini et al. (Giannini 

et al., 2015) reported accuracy as 0.91 AUC and used a computer-aided diagnosis system 

to generate a voxel wise malignancy probability map of peripheral zone of prostate. 

Computer-aided diagnosis system was trained on the data of 56 patients acquired at a 

single institution and ground truth set based on histopathology images. Other studies 

include neural networks trained on radiologist demarcated lesions confirmed by biopsy 

and report accuracy as 0.80-0.94 AUC and as DSC of 0.34-0.37 (Kwak et al., 2015, 

Litjens et al., 2014a, Sumathipala et al., 2018, Schelb et al., 2020, Vente et al., 2021). 

Despite a number of studies performed on prostate cancer detection, most of the previous  
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Table 1. Overview of existing studies on prostate cancer detection. 

Authors Dataset Accuracy 
Ground 

truth 

Additional 

information 

Bhattacharya 

et al., 2022 

98 patients 

single institution 

T2W, ADC 

0.81 AUC WMHI 
Accuracy reported on 

a lesion level 

Gibbons et al., 

2023 

73 patients 

single institution 

T2W, ADC, DCE 

0.91 AUC WMHI 

Separate models for 

transitional and 

peripheral zones, 

accuracy reported on 

a lesion level 

Alley et al., 

2022 

31 patients 

single institution 

T2W, DWI, ADC, DCE 

0.85 AUC PI-RADS 

Only zones with 

PI-RADS score of 4 

or 5 used, accuracy 

reported on a voxel 

level 

Giannini et al., 

2015 

56 patients 

single institution 

T2W, DWI, DCE 

0.91 AUC WMHI 

Only tumors in 

peripheral zone 

bigger than 0.5ml in 

volume used, 

accuracy reported on 

a voxel level 

Kwak et al., 

2015 

108 patients 

single institution 

T2W, DWI 

0.89 AUC Biopsy 
Accuracy reported on 

a voxel level 

Litjens et al., 

2014a 

347 patients 

single institution 

T2W, DWI, ADC, DCE, 

PDW 

0.81 AUC Biopsy 
Accuracy reported on 

a patient level 

Sumathipala 

et al., 2018 

120 patients 

six institutions 

T2W, DWI, ADC 

0.93 AUC Biopsy 
Accuracy reported on 

a patient level 

Schelb et al., 

2020 

259 patients 

single institution 

T2W, ADC 

0.8 AUC 

0.99 SE, 0.24 SP, 

PI-RADS ≥ 3 

0.83 SE, 0.55 SP, 

PI-RADS ≥ 4 

0.34 DSC 

Biopsy 
Accuracy reported on 

a voxel level 

Vente et al., 

2021 

112 patients 

single institution 

T2W, ADC 

0.37 DSC Biopsy 

Segmenting and 

grading cancer at the 

same time, accuracy 

reported for any 

grade cancer 
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T2W – T2-weighted, DWI – diffusion weighted imaging, ADC – apparent diffusion coefficient, 

DCE – dynamic contrast-enhanced, PDW – proton density weighted, AUC – area under receiver 

operating characteristic curve, WMHI – whole-mount histopathology images from radical 

prostatectomy, PI-RADS – prostate imaging reporting and data system, DSC – Dice similarity 

coefficient, SE – sensitivity, SP – specificity. 

studies are limited due to data acquired in a single institution and the lack of validation 

on external datasets, dealing with some areas of the prostate only or ground truth being 

established based on whole-mount histopathology images, which in turn means focusing 

only on clinically significant cancers that require immediate treatment and ignore 

clinically insignificant cancers where active surveillance is required (Arif et al., 2020) 

(Table 1).  

       Literature overview highlights the difficulty of comparing results of different 

models given that different methods are used to establish ground truth and different 

metrics are used to report model accuracy. Most of the studies use database from single 

institution which does not reveal if models can be generalized well. 

       The desire to have high-resolution isotropic 3D medical images (defined as uniform 

voxel size in all three dimensions) in clinical practice together with usually no feasible 

way to acquire it (Sander et al., 2021) leads to a hypothesis that prostate cancer detection 

can be improved if dealt with this issue. While there are several other studies 

investigating this issue (Meyer et al., 2021, Liu et al., 2021), none of them deals with the 

conversion of anisotropic ground truth labels. While conversion of MRI data before 

labels are established may work it introduces a lot of burden to experts annotating the 

images due to introducing many additional slices to be taken care of. The aim of this 

study therefore was to validate if converting anisotropic MRI image data as well as 

ground truth labels defined as the ratio between in-plane and out-of-plane spacing being 

higher than 3 to isotropic can improve prostate cancer segmentation results as it was 

previously shown to work while segmenting prostate (Jucevičius et al., 2022). In the 

following section, the dataset as well as the machine learning technique used is presented 

and two performed experiments are described. Section 3 provides the results for the 

performance of the experiments executed. Section 4 presents the discussion and provides 

the highlights. 

2. Materials and Methods 

2.1. Dataset 

In this study MRI images provided by the National Cancer Institute of Lithuania were 

used. The MRI images themselves were acquired 11 different centers throughout 

Lithuania (Table 2). Images captured with highest b-value for diffusion weighted 

imaging were used, highest b-values varied between different institutions and composed 

a list of 1000, 1200, 1400, 1500, 1600 and 2000. 
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Table 2. Imaging tools characteristics at centers where MRI images were acquired. 

Center 

number 

Magnetic field 

strength 

Voxel spacing 

(in-plane/out-of-plane, 

mm) 

Vendor 

1 1.5T 0.39 / 2.5 General Electrics 

2 3T 0.39-0.78 / 2.5 General Electrics 

3 1.5T 0.39-0.65 / 2.5 General Electrics 

4 3T 0.70 / 2.5 General Electrics 

5 1.5T 0.39-0.70 / 2.5 Philips 

6 3T 0.69 / 2.5 Philips 

7 1.5T 0.39-0.36 / 2.5 General Electrics 

8 1.5T 0.39 / 2.5 General Electrics 

9 1.5T 0.39 / 2.5 Siemens 

10 3T 0.39-0.70 / 2.5 Siemens 

11 1.5T 0.65-0.78 / 2.5 General Electrics 

Fusion biopsy with a help of a needle guiding template with a grid of 5mm by 5mm 

(Figure 1) was performed including both targeted and systematic samples after 

identifying regions of interest and PI-RADS evaluation at a single center for 146 

patients. Data of 120 patients were included in the dataset, excluding data with noise 

(e.g., due to hip implant) and missing values (missing at least one of axial T2-weighted 

(T2W), diffusion weighted (DWI) or apparent diffusion coefficient (ADC) MRI 

sequences). 

 
Figure 1. Prostate biopsy needle guiding template, containing holes in a grid of 5mm by 5mm. 
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All the patients had two additional binary images present: the first one containing 

prostate mask and the second one containing abnormal zones mask both manually 

segmented by expert radiologists where zero and one indicated background and 

prostate/abnormal zone respectively. A total of 216 abnormal zones were identified by 

radiologists prior to biopsy. All the abnormal zones were classified into 3 categories 

based on biopsy results: no cancer, clinically insignificant cancer (Gleason score 3+3) 

and clinically significant cancer (Gleason score 3+4 or 4+3). If there was more than one 

biopsy sample taken from a single zone, it was classified according to the most 

malignant one, if there was no biopsy sample taken from a zone, it was classified as no 

cancer (Figure 2). The total numbers of zones falling into each category were: 45 – 

clinically significant, 56 – clinically insignificant, 115 – no cancer. 

Zone classification showed that 43 out of 120 patients had no cancer at all and the 

remaining 77 patients had clinically insignificant cancer and/or clinically significant 

cancer (Table 3). 

 

 
Figure 2. Example of abnormal prostate zone classification. Red, yellow, and green bars indicate 

clinically significant, clinically insignificant and no cancer biopsy samples respectively. The red 

zone indicates an area classified as containing clinically significant cancer even though it has 

biopsy samples with no cancer detecting passing through. Two yellow zones indicate areas 

classified as clinically insignificant cancers despite having multiple biopsy samples with no cancer 

detected passing through them as well. Zone colored in gray indicates an area with no biopsy 

samples taken from and classified as not containing cancer. 

 

Table 3. The distribution of the dataset of 120 patients based on the lesion classification. 

No Cancer 

At least one lesion with 

clinically insignificant 

cancer 

At least one lesion with 

clinically significant cancer 

43 43 42 

 



 Prostate Cancer Localization 709 

 

All MRI sequences were resampled to match T2W in terms of size and spacing, as 

well as registered to have the same position and orientation. Binary masks were 

segmented on T2W images and were not additionally processed. Image intensity value 

for each voxel was then set to 0 if the voxel was outside prostate bounds. 

2.2. Model Architecture 

2.2.1. No-new U-Net 

Authors have chosen to use nnU-Net due to it being the best opened source algorithm 

from the submissions to PROSTATE12 challenge (Litjens et al., 2014b, Jucevičius et al., 

2021) as well as having shown its great performance while dealing with 49 different 

segmentation tasks including, but not limited to prostate segmentation. One more reason 

for choosing nnU-Net is its key idea of wrapping the standard U-Net by introducing the 

automated workflow for resolving required hyperparameters and adapting to arbitrary 

datasets without expensive re-optimization which explains its name – no-new U-Net 

(Isensee et al., 2020a). The authors of nnU-Net showed that while dealing with 

anisotropic images, defined as having a ratio greater than 3 between maximum and 

minimum spacing value of all axes, 2D model generally works better (Isensee et al., 

2020a). 

 
Figure 3. The nnU-Net framework workflow. Framework defines three types of parameters: 

predefined, derived and collected empirically, combining all type of parameters enables the 

framework to perform well on unseen datasets. 3DC – 3D network with a cascade. 

The nnU-Net workflow (Figure 3) starts by taking in the train data and extracting 

dataset fingerprint which includes various statistical information on image intensity 

 

Train data 

Test data Result 

Data 
fingerprint 

Heuristics 
rules 

Inferred 
parameters 

Blueprint 
parameters 

Empirical 
parameters 

 

 

 

2D 

3D 

3DC 

Neural 

Networks 



710  Jucevičius et al. 

 

values as well as spacing information, image sizes and class ratios. Dataset fingerprint is 

then used to resolve inferred parameters such as batch and patch sizes, the target image 

resampling including target voxel spacings as well as image normalization technique 

based on a set of predefined heuristic rules. Another set of blueprint parameters which 

do not depend on the data, are predefined and include neural network architecture, loss 

function, data augmentation and training schedule are then used together with inferred 

parameters to create two to three different pipelines which are then trained and cross-

validated using 5 folds before selecting the best one. Created pipelines include 2D 

network, 3D network and if applicable 3D network with a cascade which first operates 

on downsampled images and then refines segmentation result on full resolution. 

The nnU-Net is implemented in Python utilizing the PyTorch framework and uses 

the Batchgenerators library (Isensee et al., 2020b) in its pipeline to augment train data on 

the fly by using rotation, scaling, Gaussian noise, Gaussian blur as well as other 

techniques. 

2.2.2. Image resampling 

Due to convolutional neural networks not taking care of voxel spacing information, the 

nnU-Net calculates target data spacing and resamples all images to it. The process of 

resampling includes third order spline interpolation when dealing with MRI data and 

intensity values, and nearest neighbor interpolation when dealing with binary mask 

images. Such resampling makes intensity values transition smooth throughout the 

volume, however the same cannot be said for anisotropic binary mask images, which 

when visualized in 3D have very rough edges. 

A new method for resampling binary mask images has been previously proposed so 

the masks would transition smoothly throughout the volume as well (Jucevičius et al., 

2022). The method calculates a new average mask shape to be placed in the middle 

between two adjacent slices repeating the process until spacings in all axes are as close 

to the minimum spacing as possible and repeating the process one more time would 

make it lower than the minimum spacing. If at least one of the two adjacent slices is 

empty, then the average mask shape is also empty, otherwise the average mask shape is 

first calculated on a row-by-row basis by searching for groups of intersecting nonzero 

values and taking the average of their minimum and maximum coordinates rounded 

down and up respectively as coordinates for a new group of nonzero values in the 

intermediate layer (Figure 4). 

 

                                        

                                        

                                        

 

Figure 4. Calculating the boundaries of average shape for one row with multiple groups of 

intersecting intervals. Yellow – existing rows, green – calculated average row. 

If rows contain non-intersecting gaps, they are additionally processed after 

processing nonzero values by calculating the average between the minimum gap 
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coordinate and the middle of the gap and the maximum gap coordinate and the middle of 

the gap and rounding them down and up respectively (Figure 5). 

 

                                        

                                        

                                        

 

Figure 5. Calculating the boundaries of average shape for one row with a non-intersecting gap. 

Yellow – existing rows, green – calculated average row. 

The process is repeated on a column-by-column basis using the resulting shape and 

both adjacent slices separately and resulting two shapes are then combined into one 

where pixel has a value of 1 if it has a value of 1 in at least one of the two shapes. The 

process is then again repeated with transposed adjacent slices and the transposed 

resulting shape is combined into one with previous shape where pixel has a final value of 

1 if it has a value of 1 in at least one of the two shapes (Algorithm 1). 

ALGORITHM 1: BINARY MASK RESAMPLING 

 Input: Binary mask image 

 Output: Resampled binary mask image 

1 spacing_x ← get the spacing of original mask x axis 

2 new_spacing_z ← get the spacing of original mask z axis 

3 target_spacing = new_spacing_z * 1.5 

4 img ← assign input image 

5 while (new_spacing_z > target_spacing) do 

6  n ← get number of slices in img 

7  new_img ← create empty image of same size as img, and increase the 

number of slices by n-1 

8  for (z = 0; z < n - 1; z++) do 

9   slice1 = img[z] 

10   slice2 = img[z + 1] 

11   new_slice_row ← create a new empty slice of same size as slice1 

12   for each line y of slice1 do  

13    intervals ← get intersecting intervals of line y in adjacent slices 

14    for each pair of intervals do 

15     intervalStart = floor(avg(interval1Start, interval2Start)) 

16     intervalEnd = ceil(avg(interval1End, interval2End)) 

17     for (x = intervalStart; x <= intervalEnd; x++) do 

18      new_slice_row[x][y] = 1 

19     end  

20    end 

21    gaps ← get not intersecting gaps of line y in adjacent slices 

22    for gap in gaps do 
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23     gapStart = floor(avg(gapStart, gapMid)) 

24     gapEnd = ceil(avg(gapMid, gapEnd)) 

25     for (x = gapStart; x <= gapEnd; x++) do 

26      new_slice_row[x][y] = 0 

27     end 

28    end 

29   end 

30   new_slice_col ← repeat rows 11-29 with slice1 and slice2 transposed 

and transpose back the result 

31   new_slice_row2 ← repeat rows 11-29 with slice1 and new_slice_row 

transposed and transpose back the result  

32   new_slice_row3 ← repeat rows 11-29 with new_slice_row and slice2 

transposed and transpose back the result 

33   new_slice_col2 ← repeat rows 11-29 with slice1 and new_slice_col 

34   new_slice_col3 ← repeat rows 11-29 with new_slice_col and slice2 

35   new_slice = or(new_slice_col2, new_slice_col3, new_slice_row2, 

new_slice_row3) 

36   new_img[z * 2] = slice1 

37   new_img[z * 2 + 1] = new_slice 

38  end 

39  new_img[n * 2 - 2] = img[n – 1] 

40  img = new_img 

41 end 

 

The resulting mask images are both isotropic and much smoother than those 

resampled using nearest neighbor interpolation (Figure 6) giving a more accurate 

representation of contours of a region of interest to be passed as input to the neural 

network. Segmentation result comparison when using different segmentation mask 

resampling techniques is provided further in Section 3. 

 
 

Figure 6. Example of resampling using nearest neighbor interpolation (on the left) and the 

proposed method (on the right). Transparent green – whole prostate, yellow – abnormal zone. 

Even though the number of slices is the same in both cases, segmentation masks on the right are 

much smoother and provide more accurate boundaries to be passed as input to the neural network. 
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2.2.3. Performance Measures 

The performance metrics are crucial in verifying the robustness of a model. Dice 

similarity coefficient (DSC) (Klein et al., 2008) was selected to be used in the context of 

experiments performed due to it being part of the loss function, AUC values were 

calculated on voxel level, patient level, and lesion level to be able to compare the result 

to other studies even though it’s not a suitable metric for unbalanced datasets. While 

calculating AUC on a lesion level true positive was set if there was any overlay between 

ground truth and identified lesion, true negative was set only when the patient had no 

ground truth lesions and no lesions were identified. Dice similarity coefficient measures 

the overlap between the ground truth and resulting segmentations. The value of Dice 

similarity coefficient varies from one to zero, where 1 depicts full overlap and 0 

represents no intersection. Dice similarity coefficient is expressed by the formula: 

DSC = 2 × TP / (2 × TP + FP + FN), (1) 

where TP represents the number of voxels correctly identified as abnormal, FN 

represents the number of voxels incorrectly identified as background and FP represents 

the number of voxels incorrectly identified as abnormal. 

To validate generalization and performance on unseen data authors have used a k 

fold cross validation (Ravi et al., 2017) with k=5. The k-fold cross validation consists of 

partitioning the dataset into k-fold and performing training on all but one fold and then 

testing on the one that has been left out. This procedure is repeated until each fold has 

been left out once. 

In addition to Dice similarity coefficient, authors have also evaluated the confusion 

matrices, classifying segmented zone as true positive if there’s an overlap of at least 1 

voxel, false positive if segmented zone does not overlap any of the ground truth zones 

and false negative if ground truth zone is not overlapped by any of the segmented zones. 

There were no zones to be classified as true negative, therefore authors have counted the 

number of patients who had no cancerous zones as a reference and no zones had been 

identified by the system as false negative. Authors have calculated two confusion 

matrices for each of the experiment by comparing identified zones against reference 

zones and biopsy samples. 

2.3. Experiment Setup 

2.3.1. Isotropic and Anisotropic Data 

The first experiment was aimed at confirming whether 3D neural network model gives 

better results in segmenting prostate cancer when converting anisotropic data to isotropic 

than its 3D counterpart trained on anisotropic images and both 2D neural network 

models trained with anisotropic and isotropic data. Such performance improvement was 

already identified in the previous study on prostate segmentation (Jucevičius et al., 

2022). Data is converted from anisotropic to isotropic using the method described in 

Section 2.2.2. As part of preprocessing built-in in the nnU-Net framework all images 

were normalized and clipped to a largest non-zero area. MRI image modalities of T2W, 

DWI and ADC were used as separate input image channels. In this part of experiment a 
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total of 4 models were trained on the same data, using the same data splits into 5 

different folds: 2D model trained on anisotropic images, 2D model trained on isotropic 

images, 3D model trained on anisotropic images and 3D model trained on isotropic 

images. 

In order to compare the results of models using different data, segmentation results of 

the models that used isotropic data were resampled back to their original size by using 

the nearest neighbor interpolation.  

The first part of experiment was carried out by setting only 45 zones classified as 

clinically significant cancer and distributed among 42 patients out of 120 as ground 

truth. 

In addition to using the default probability threshold of 0.5 defined in the nnU-Net 

framework when binarizing the resulting softmax probability map, authors have also 

tried to find the optimal threshold for this task. Since abnormal regions are relatively 

small compared to the whole prostate the resulting voxel set is imbalanced, therefore in 

order to find the optimal threshold, authors have used precision recall curve (Davis et al., 

2006) and the F-Score, which is a harmonic mean of precision and recall (Sofaer et al., 

2019). To find the optimal threshold all unique probability values from resulting 

probability maps calculated during cross validation were used as possible threshold 

values, calculating the F-Score for each of them and looking for the maximum value. F-

Score is calculated from the precision and recall, where the precision is the number of 

true positive results divided by the number of all positive results and the recall is the 

number of true positive results divided by the number of all samples that should have 

been identified as positive. F-Score is expressed by the formula: 

F-Score = 2 × precision × recall / (precision + recall). (2) 

2.3.2. Clinically Significant and Clinically Insignificant Cancer 

The second experiment was aimed at evaluating whether the system is able to segment 

both clinically significant and clinically insignificant cancers as well as distinguish one 

from the other. For this part of the experiment one additional 3D model was trained 

using isotropic data and the same pipeline. To train the new model a total of 101 zones 

distributed among 77 out of 120 patients were used to set ground truth and included both 

clinically insignificant and clinically significant zones in the same class. For this 

experiment additional model was trained using both clinically significant and clinically 

insignificant zones as cancerous zones passed for training. Both conversions to isotropic 

data as well as finding the optimal threshold were applied for the second experiment as 

well. 

2.3.3. Case Analysis 

The third part of the study was aimed at manually analyzing segmentation results in an 

attempt to try and evaluate whether discrepancies between ground truth segmentations 

and those provided by the system are due to errors in the system or due to original 

misclassification. 
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3. Results 

3.1. Isotropic and Anisotropic Data 

As expected, the first experiment confirmed that 3D neural network model trained on 

isotropic data gives the best segmentation results measured by Dice similarity coefficient 

(0.2510 – 3D isotropic vs. 0.1221 – 2D isotropic vs. 0.0243 – 3D anisotropic vs. 0.1558 

– 2D anisotropic). All different values from probability maps constructed during cross 

validation of 3D isotropic model were used as thresholds to plot precision-recall curve 

and find optimal threshold to be used for classifying voxels (Figure 7). 

 

 

 
Figure 7. Precision-recall curve plotted by using all unique values from probability maps 

constructed during cross validation while training isotropic 3D neural network to locate clinically 

significant prostate cancer as voxel classification thresholds. Precision, recall and F-Score were 

calculated at each threshold, optimal threshold selected based on maximum F-Score value. PRC – 

Precision-Recall curve. 

 

Using the optimal threshold of 0.0569 instead of the default one of 0.5 increased the 

score from 0.2510 to 0.3037 (Table 4). 
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Table 4. Comparison of clinically significant cancer localization results between 2D and 3D 

models trained on anisotropic and isotropic images. 

 
2D 

anisotropic 

2D 

isotropic 

3D 

anisotropic 

3D 

isotropic 

DSC with a default threshold of 

0.5 
0.1558 0.1221 0.0243 0.2510 

DSC with an optimal threshold of 

0.0569 
0.1834 0.2388 0.1230 0.3037 

AUC on voxel level 0.6912 0.6243 0.7021 0.8543 

AUC on patient level 0.7013 0.6564 0.7102 0.7265 

AUC on lesion level 0.4904 0.3409 0.5468 0.5420 

 

       3D neural network model identified a total of 70 zones classified as containing 

clinically significant cancer by segmenting each left out fold during cross validation. A 

confusion matrix (Table 5) was composed by comparing identified zones against 

reference zones, where true negative was defined as patient not having neither identified 

nor referenced any clinically significant cancer zones. This matrix showed that only half 

of the clinically significant cancers could be identified and that almost two thirds of 

identified zones were false positive. 

Table 5. Confusion matrix composed by comparing identified zones against reference zones,  

using 3D model trained on isotropic data including only clinically significant cancer. 

 Predicted positive Predicted negative 

Actual positive 25 (53.19%) 22 (46.81%) 

Actual negative 45 (47.87%) 49 (52.13%) 

 

3.2. Clinically Significant and Clinically Insignificant Cancer 

The second experiment used only 3D models and was aimed at comparing the ability to 

detect all cancer cases opposing to detecting only clinically significant cancer at the 

same time evaluating the ability to distinguish them one from the other. Segmentation 

results of the second experiment reached DSC of 0.3590 when using default threshold of 

0.5. An optimal threshold of 0.0008 (Figure 8) was identified for this model which 

increased DSC to 0.4536. Segmentation results from AUC perspective yielded 0.8558 on 

a voxel level, 0.7992 on a patient level and 0.5140 on a lesion level. 

3D neural network trained to detect all prostate cancer cases including both clinically 

significant and clinically insignificant cancer identified a total of 182 zones when 

segmenting left out folds during cross validation. Corresponding confusion matrix 

(Table 6) shows that 40.66% out of all identified zones were actually positive, however 

29.52% of the reference zones were not identified as cancerous. 

Confusion matrix composed by comparing identified zones against biopsy samples 

(Table 7) showed similar results, however it’s worth noting, that only 29 out of 104 false 
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positive zones were actually negative, the remaining 75 zones had no overlap with any 

of the biopsy samples and the assigned class cannot be taken for granted. 

 

 
Figure 8. Precision-recall curve plotted by using all unique values from probability maps 

constructed during cross validation while training isotropic 3D neural network to locate clinically 

significant and clinically insignificant prostate cancer as voxel classification thresholds. Precision, 

recall and F-Score were calculated at each threshold, optimal threshold selected based on 

maximum F-Score value. PRC – Precision-Recall curve. 

 

Table 6. Confusion matrix composed by comparing identified zones against reference zones, using    

3D model trained on isotropic data including both clinically significant and clinically insignificant 

cancers. 

 Predicted positive Predicted negative 

Actual positive 74 (70.48%) 31 (29.52%) 

Actual negative 108 (89.26%) 13 (10.74%) 

 

Table 7. Confusion matrix composed by comparing identified zones against biopsy samples, using 

3D model trained on isotropic data including both clinically significant and clinically 

insignificant cancers. 

 Predicted positive Predicted negative 

Actual positive 78 (71.56%) 31 (28.44%) 

Actual negative 29 + 75* (88.89%) 13 (11.11%) 

* 75 zones had no overlap with any of the biopsy samples and were classified as negative. 

Since the aim of the system is to aid in determining the location to perform biopsy on 

and the biopsy itself is often performed by using a needle guiding template with a grid of 
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5mm by 5mm (Figure 1), authors tried ruling out identified zones which if placed in a 

bounding box would have both dimensions lower than 5mm looking from a plane 

perspective.  

The results of applying such a filter were interesting: 87 out of previously identified 

182 zones using the model trained to detect all cancer cases and the identified optimal 

threshold had to be ruled out. The corresponding confusion matrix (Table 8) showed that 

true positive rate dropped a bit, but the rate of false positive decreased significantly, even 

though still more than half of false positive cases cannot be taken for granted due to not 

overlapping with any biopsy sample and could potentially be reclassified as true 

positive. 

Table 8. Confusion matrix composed by comparing identified zones with at least one dimension 

greater than 5mm in plane axes against biopsy samples, using 3D model trained on 

isotropic data including both clinically significant and clinically insignificant cancers. 

 Predicted positive Predicted negative 

Actual positive 69 (66.35%) 35 (33.65%) 

Actual negative 24 + 31* (74.32%) 19 (25.68%) 

* 31 zone had no overlap with any of the biopsy samples and were classified as negative. 

3.3. Case Analysis 

While manually analyzing the differences between ground truth segmentations and those 

provided by the model described in Section 2.3.2, authors have noticed that there were 

quite a few cases when identified zones were close to but did not intersect the reference 

zones. In addition to that, the same biopsy samples from both of those identified and 

reference zones and looking from a biopsy perspective such identified zones would be 

classified as true positive. There were also some cases where zones identified by the 

model were far away from reference segmentation but considered true positive based on 

biopsy results (Figure 9). 

 
Figure 9. Examples of segmentation results. Brown zones depict zones identified by the model 

and yellow zones indicate reference segmentation. Blue and red sticks represent clinically 

insignificant and clinically significant biopsy samples respectively. 
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Radiologists have retrospectively analyzed some of such cases in order to evaluate 

zones identified by the model trained to detect both clinically significant and clinically 

insignificant prostate cancer (Figure 10) and reported that zones identified by the model 

could indeed contain clinically significant cancer as indicated by the biopsy sample, but 

it’s hard to confirm that due to the uncertainty in which part of the biopsy sample cancer 

was detected. In addition to that, radiologists also informed that such zones might have 

been missed in the initial segmentation due to difficult image interpretation in the central 

zone of the prostate. 

 
 

Figure 10. Example of retrospectively analyzed case. Zone identified by the model trained to 

detect any prostate cancer is represented in green and reference segmentation zone is represented 

in blue. Red, yellow and gray sticks represent clinically significant, clinically insignificant and no 

cancer biopsy samples respectively. a – contains 3D model of the whole prostate, identified and 

reference zones and biopsy samples, b, c, d, contain T2W, DWI and ADC slices respectively with 

identified and reference zones overlayed on top. 

4. Discussion and Conclusions 

In this study, authors validate whether converting data to isotropic gives better results 

while localizing prostate cancer using nnU-Net as it was previously shown to work while 

d b

0 
c 

a 
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segmenting prostate itself. The Dice similarity coefficient while using 3D neural network 

with isotropic data to detect clinically significant cancer was 0.2510, which is about 60% 

better than 2D network with anisotropic data (0.1558). This study also showed that the 

DSC can be further improved up to 0.3037, by using a non-default segmentation 

threshold. 

Furthermore, including clinically insignificant cancers to the training data yields the 

DSC of 0.4536. Having several models including both clinically insignificant and 

clinically significant cancers is of value since this way the system is enabled to not only 

detect prostate cancer but classify detected lesions as well. 

Despite that, however, it is interesting to note that resulting optimal thresholds for 

binarizing probability maps are really low, but it can be explained by the fact that the 

dataset is unbalanced as there is a relatively small number of voxels containing 

cancerous tissue opposing to the number of non-cancerous voxels. Another reason for 

that is the way ground truth is established, which as showed in Figure 2 assigns a single 

class to a whole region of connecting voxels when multiple biopsy samples with 

different results were taken from the area. It is also worth mentioning that such low 

thresholds do not introduce a lot of new possible abnormal prostate zones, but in most 

cases only increases the volume of the same zones identified while using a default 

threshold of 0.5 (Figure 11). 

Our study has some important strengths. First, our data comes from 11 different 

institutions having different MRI equipment and using different protocols which 

confirms the generalizability of our findings, while other datasets are limited to 1 or 2 

scanners (Giannini et al., 2015, Giannini et al., 2021, Pellicer-Valero et al., 2022). 

Secondly, our dataset contains cases with no confirmed cancer in addition to both 

clinically significant and clinically insignificant cancers as well as cancer located 

throughout the whole prostate including both peripheral and transitional zones even 

though tumors in both zones have different texture characteristics (Turkbey et al., 2019). 

Whereas other studies either use only cases with confirmed cancer (Giannini et al., 2015) 

or use cancers of a single zone only (Niaf et al., 2012, Niaf et al., 2014, Vos et al., 2010). 

Our study also has some limitations. First, cancers in both transitional and peripheral 

zones were not separated and have been segmented in the same way, which might have 

added to relatively low Dice similarity coefficients. Second, the reference standard was 

established by using radiologist’s annotations which can miss up to 40% clinically 

significant cancer (Le et al., 2015) and were not reannotated after biopsy, resulting in 

lesions having clinically significant and clinically insignificant cancer and even no 

cancer according to biopsy results still classified as clinically significant as shown in 

Figure 1, leading to a lot larger zone set as a ground truth than it is in reality. Finally, due 

to lesions often being small with ill-defined margins and a very high inter-observer 

variability (Steenbergen et al., 2015), the relatively low DSC in our study as well as 

other studies that reported 0.34 (Schelb et al., 2020) and 0.37 (Vente et al., 2021) must 

be interpreted with caution and some other metrics should be chosen instead to provide a 

more objective look on the actual performance of the model. 

In this study, authors have demonstrated that the use of a novel way in converting 

binary masks to isotropic which are then used for model training yields better 

performance results. Authors have also shown that unmodified nnU-Net can give similar 

prostate localization accuracy as other studies even though they are not high enough to 

be used in clinical practice. Authors have developed a model that can detect up to 70% 
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of actual positive prostate cancers. Future developments will include the separation of 

transitional and peripheral zones as well as the prospective evaluation of the model, 

which is extremely interesting considering the large number of identified zones that there 

neither confirmed nor rejected by existing biopsy samples and additional retrospective 

analysis of such cases showed promising results of being able to confirm them. 

 
 

Figure 11. Example of how segmented zones changes while reducing the threshold  

used for binarizing resulting probability map. 
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