Asymptotic Behavior of Solutions of a Complete Second-Order Integro-Differential Equation

Cover Page

Cite item

Abstract

In this paper, we study a complete second-order integro-differential operator equation in a Hilbert space. The difference-type kernel of an integral perturbation is a holomorphic semigroup bordered by unbounded operators. The asymptotic behavior of solutions of this equation is studied. Asymptotic formulas for solutions are proved in the case when the right-hand side is close to an almost periodic function. The obtained formulas are applied to the study of the problem of forced longitudinal vibrations of a viscoelastic rod with Kelvin-Voigt friction.

About the authors

D. A. Zakora

Vernadsky Crimean Federal University

Author for correspondence.
Email: dmitry.zkr@gmail.com
Simferopol’, Russia

References

  1. Власов В.В., Раутиан Н.А. Спектральный анализ функционально-дифференциальных уравнений.- М.: МАКС Пресс, 2016.
  2. Власов В.В., Раутиан Н.А. Экспоненциальная устойчивость полугрупп, порождаемых вольтерровыми интегро-дифференциальными уравнениями с сингулярными ядрами// Дифф. уравн.- 2021.- 57, № 10.-С. 1426-1430.
  3. Голдстейн Дж. Полугруппы линейных операторов и их приложения.- Киев: Выща школа, 1989.
  4. Закора Д.А. Экспоненциальная устойчивость одной полугруппы и приложения// Мат. заметки.- 2018.-103, № 5.-С. 702-719.
  5. Закора Д.А. Асимптотика решений в задаче о малых движениях сжимаемой жидкости Максвелла// Дифф. уравн.- 2019.- 55, № 9.-С. 1195-1208.
  6. Ильюшин А.А., Победря Б.Е. Основы математической теории термовязко-упругости.- М.: Наука, 1970.
  7. Като Т. Теория возмущений линейных операторов.-М.: Мир, 1972.
  8. Крейн C.Г. Линейные дифференциальные уравнения в банаховом пространстве.-М.: Наука, 1967.
  9. Alabau-Boussouria F., Cannarsa P. A general method for proving sharp energy decay rates for memorydissipative evolution equations// C. R. Math. Acad. Sci. Paris.-2009.- 347.-С. 867-872.
  10. Alabau-Boussouria F., Cannarsa P., Sforza D. Decay estimates for second order evolution equations with memory// J. Funct. Anal.- 2008.- 254.-С. 1342-1372.
  11. Ammar-Khodja F., Benabdallah A., Mun˜oz Rivera J.E., Racke R. Energy decay for Timoshenko systems of memory type// J. Differ. Equ. - 2003.-194, № 1.-С. 82-115.
  12. Amendola G., Fabrizio M., Golden J.M. Thermodynamics of Materials with Memory.-Boston: Springer, 2012.
  13. Dafermos C.M. Asymptotic stability in viscoelasticity// Arch. Ration. Mech. Anal.- 1970.-37.-С. 297- 308.
  14. Dafermos C.M. An abstract Volterra equation with applications to linear viscoelasticity// J. Differ. Equ. - 1970.-7, № 3.-С. 554-569.
  15. Dell’Oro F. Asymptotic stability of thermoelastic systems of Bresse type// J. Differ. Equ. - 2015.- 258, № 11.-С. 3902-3927.
  16. Engel K. -J., Nagel R. One-Parameter Semigroups for Linear Evolution Eqations.- New York: Springer, 2000.
  17. Fabrizio M., Morro A. Mathematical Problems in Linear Viscoelasticity.- Philadelphia: SIAM, 1992.
  18. Fatori L.H., Monteiro R.N., Sare H.D.F. The Timoshenko system with history and Cattaneo law// Appl. Math. Comput. -2014.- 228, № 1.-С. 128-140.
  19. Liu Z., Zheng S. Semigroups Associated with Dissipative Systems.-London: Chapman & Hall/CRC, 1999. 20. Ma Z., Zhang L., Yang X. Exponential stability for a Timoshenko-type system with history// J. Math. Anal. Appl. -2011.-380, № 1.- С. 299-312.
  20. Messaoudi S.A., Apalara T.A. General stability result in a memory-type porous thermoelasticity system of type III// Arab J. Math. Sci.- 2014.- 20, № 2.- С. 213-232.
  21. Mun˜oz Rivera J.E., Naso M.G. Asymptotic stability of semigroups associated with linear weak dissipative systems with memory// J. Math. Anal. Appl. -2007.- 326.-С. 691-707.
  22. Pandolfi L. Linear systems with persistent memory: An overview of the biblography on controllability// ArXiv. -2018.-1804.01865 [math.OC].
  23. Racke R., Said-Houari B. Global existence and decay property of the Timoshenko system in thermoelasticity with second sound// Nonlinear Anal. -2012.-75, № 13.- С. 4957-4973.
  24. Renardy M., Hrusa W.J., Nohel J.A. Mathematical problems in viscoelasticity.- Harlow: Longman Scientific & Technical, 1987.
  25. Zakora D. On the spectrum of rotating viscous relaxing fluid// Журн. мат. физ. анал. геом.- 2016.- 12, № 4.- С. 338-358.

Copyright (c) 2022 Contemporary Mathematics. Fundamental Directions

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies