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Abstract: The difficulty of acquiring data from numerous intergovernmental agencies/institutions for prone road 

traffic accidents (PRTA) spatial datasets produces a small-scale dataset that causes dataset imbalance. Class imbalance 

in small-scale datasets causes uncertainty in the results of the modeling PRTA classification. The proposed research 

is a scenario-based case representation model on the pre-processing data stage to increase the sensitivity of algorithm 

classification in a small-scale dataset that causes dataset imbalance using machine learning (ML), the synthetic over-

sampling method. The retrieval of attributes from the spatial dataset is transformed into the raw dataset, the normalized 

dataset, the synthetic minority over-sampling technique (SMOTE) raw dataset, and SMOTE normalized dataset 

scenarios. Balancing datasets using four variants of SMOTE, namely ADASYN, Borderline-SMOTE, K-Means 

SMOTE, and SVM-SMOTE resampled. To evaluate how well the PRTA classification model performed, we utilized 

the hyper-parameters optimization technique and the genetic algorithm (GA) search cross-validation. The experiment 

was run with the ML classifier method, including the k-nearest neighbor (KNN), support vector machines (SVM), 

multilayer perceptron (MLP), naive bayes (NB), logistic regression (LR), and random forest (RF). The Area Under 

Curve (AUC) was used to evaluate the results of the experiments. The results of the dataset test in a predetermined 

scenario conclude that a single algorithm that is computationally light to produce an optimal classifier tends to use a 

raw dataset that is balanced using SMOTE. The KNN method as a single algorithm for classification based on the 

distance between samples is superior, with an AUC value of 0.89, which is included in the good classification category 

of all ML classifiers proposed to handle small data sets imbalanced classes using SMOTE raw datasets for K-Means 

variants SMOTE. 

Keywords: Spatial analysis, Imbalance spatial dataset, Over-sampling method, Hyper-parameter optimization, Spatial 

cross-validation, Machine learning. 

 

 

1. Introduction 

The prone road traffic accidents (PRTA) 

classification is a critical research topic to contribute 

to intelligent transportation systems (ITS) [1-4]. 

Research with good performance for PRTA 

classification has offered many ITS methods. 

However, the method robustness has not been 

satisfactory [5, 6]. Different studies in the 

requirement gathering for spatial dataset parameters 

from expert judgments will affect the PRTA 

classification with the resulting model accuracy value. 

Spatial data modeling in geographic information 

systems (GIS) is related to behavior and the behavior 

of heterogeneous spatial-temporal datasets (HSTA) 

[7, 8] because 0.96 of the data uses private spatial 

datasets [9, 10]. The HSTA data types occur because 

of GIS characteristics used to solve specific region 

problems [11-17]. The term specific region can be 

interpreted as a linear network in spatial statistics [18]. 

The heterogeneous geospatial data results from the 
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acquisition of data from several different government 

agencies, which causes the data to have many other 

formats with various structures [19]. The public 

ontology is used to resolve government-owned public 

data types to show inconsistencies in acquiring data 

sources [19]. 

These characteristics will affect uncertainty in the 

spatial-temporal data obtained from many agencies 

or institutions interested in the spatial data modeling 

process PRTA classification. The existence of 

conflicting conflicts provides a small-scale dataset 

that causes dataset imbalance. Class imbalance in 

small-scale datasets produces uncertainty in the 

findings of the modeling PRTA classification. The 

numerical data set is considered imbalanced if the 

minority class reaches 0.40, which comes from one 

of the two classes in the classification. As a result, the 

classification algorithm to be tested will be biased in 

classifying instances of the minority class [20]. An 

imbalanced dataset will affect the classification 

sensitivity value in the minority class if it is not 

represented evenly [21, 22].  

Many studies have handled the problem of road 

accident data imbalance using the variant SMOTE 

method, a popular method in the field of software 

engineering. The results of the research [23] use 

SMOTE, Borderline SMOTE, and SVM SMOTE 

methods. The research result in paper [24, 25] uses 

SMOTE, random over-sampling (ROS), and random 

under-sampling (RUS) method. Meanwhile, 

SMOTE-over-sampling and random under-sampling 

methods [26], and balanced bagging [27] were used 

to overcome imbalanced datasets obtained in real-

time (time/hour). The random under-sampling, 

SMOTE over-sampling, and mixed technique 

methods overcome imbalanced data [28].  

The process of constructing an Artificial 

Intelligence (AI) model and combining it with 

experiments on spatial datasets is known as spatial 

analysis modeling [29]. It was collecting spatial 

knowledge through spatial datasets and supplying 

knowledge of models used in the framework through 

the use of artificial intelligence approaches based on 

machine learning models from various sources. In 

GIS, spatial datasets take on the role of the 

fundamental framework for developing spatial 

analysis algorithms, investigating algorithmic 

principles, or modifying pre-existing algorithms. [30]. 

The objective of the spatial analysis model is to 

describe the GIS software that will be produced and 

to conduct simulations to put models based on the AI 

in ML approach that will be utilized in the proposed 

framework that has previously been outlined. Spatial 

datasets in GIS refer to how primary and secondary 

data are gathered through the collection process and 

how the data are processed through spatial analysis to 

become information that can be used in a decision 

support system [31]. Cloud-terminal Integration GIS 

makes it possible to visualize spatial data and 

provides a convenient means of doing spatial analysis 

on a variety of spatial datasets [32] as well as an 

information retrieval system that is based on an 

aggregation of spatial datasets [33]. 

In the field of spatial data mining (SDM), spatial 

datasets as the key to the value of big data refer to a 

description of attribute data requirements, how the 

data is gathered, and what AI approach is utilized to 

execute spatial analysis of the data [34, 32]. In the 

discipline of machine learning, the categorization 

model is widely used [35] to be used to research in 

the field of geographic information system (GIS) 

spatial analysis. However, since the accuracy tests in 

each study employ different types of sample data, 

there is no definitive judgment that can be made 

regarding which classification algorithm is the most 

effective to apply. In addition, it is dependent on the 

field of study, which is never the same as the subject 

of the research carried out. 

Over the last three decades, many ML techniques 

have been proposed to improve GIS-Spatial accuracy 

for the PRTA classification on imbalanced dataset 

types [23, 28]. The study literature for the PRTA 

classification in terms of handling imbalanced class 

in small spatial datasets through the synthetic over-

sampling method that integrates with 

hyperparameters through accuracy testing the ML 

method in the highway safety domain with testing 

data on road accidents. The unfortunate truth is that 

spatial data modeling does not now have any 

available techniques that have a high-performance 

accuracy value that can be used on the behavior of 

various spatial datasets (temporal dependency, 

spatial dependency, spatial-temporal dependency, 

and exogenous dependency), there is no guarantee 

that the performance will be satisfactory when one 

method is applied to different spatial datasets [36]. 

The ML integrates various algorithms with combined 

machine learning models to complete tasks in the data 

mining field, including their classification, clustering, 

prediction, etc. [37] to improve the robustness [38, 4]. 

The methods for the single ML classifiers are widely 

used to determine the effectiveness of the proposed 

model, including LR, DT, RF, and AdaBoost [24]; 

RF, NB, KNN, and ANNs [25]; Bayes classifiers 

[28]; binary classifiers [26, 27]; SVMs and 

Probabilistic Neural Network (PNN) [23]; Decision 

Tree (DT), NB, kNN, Linear Discriminant Analysis 

(LDA), Quadratic Discriminant Analysis (QDA), LR, 

SGD Classifier, SVMs, SVM-linear (SVM-L), SVM-
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RBF (SVM-R), SVM-polynomial (SVM-P), and 

MLP [39]. 

Researchers widely use the ML method to 

achieve the best performance from the model's 

accuracy value, which is very dependent on the 

hyper-parameter optimization technique [40]. The 

choice of tuning parameter technique in the ML 

model used has an essential role in determining the 

resulting sensitivity analysis [41] and validating the 

increased best performance model [42, 43]. A hyper-

parameter optimization technique is a process of 

tuning parameters that is suitable for training on the 

ML model [44]. The classification technique in the 

ML model has a complexity assessment level for 

hyper-parameter optimization [40]. The hyper-

parameter process is determined before the training 

data is carried out, where the weight and bias of the 

model used in ML are the parameters that will be 

learned from the data during training [44].  

This paper aims to determine the appropriate 

approach through scenario procedures at the pre-

processing spatial datasets in the GIS spatial data 

modeling field with a sample of private datasets in the 

PRTA classification field. The pre-processing stage 

involves scenarios for prediction modeling PRTA 

using the raw dataset, the normalized dataset, the 

synthetic minority oversampling technique 

(SMOTE) raw dataset, and the SMOTE normalized 

dataset. This stage handles behavior on small spatial 

datasets that causes imbalanced classes. The new 

dataset from the scenario procedure with the best area 

under the curve (AUC) of receiver operating 

characteristic (ROC) will be used in the data 

balancing process with the SMOTE variant, namely 

ADASYN, Borderline-SMOTE, K-Means SMOTE, 

and SVM-SMOTE resampled. In order to evaluate 

the performance of various classification algorithms, 

including KNN, SVM, MLP, NB, and RF. The model 

performance derived from the over-sampling method 

variant used a hyperparameter optimization 

technique that was performed with a genetic 

algorithm (GA) search cross-validation. 

The results of this study stated that the KNN 

method is superior with an average AUC value of 

0.89 to all single competition algorithms to handle 

small datasets in pre-processing data using 3rd 

scenario and imbalanced datasets process using 

KMeans-SMOTE. The results of this study can be 

recommendation steps that must be carried out in the 

process of pre-processing spatial analysis for the type 

of private spatial datasets. This recommendation 

function can improve the performance of the 

proposed model.  PRTA classification is a very 

important research topic to contribute to intelligent 

transportation systems (ITS) [1-4]. Researchers with 

good performance for PRTA classification have 

offered many ITS methods. However, the methods 

robustness has not been satisfactory [5, 6]. Different 

studies in the requirement gathering for spatial 

dataset parameters from expert judgments will affect 

the PRTA classification with the resulting model 

accuracy value.  

The following discussion in this paper will be 

explained in sections 2 to 5. Section 2 discusses the 

related work. Section 3 discusses research 

methodology related to spatial data collection and 

imbalanced data techniques. Section 4 discusses the 

results and discussion for the effectiveness of 

scenarios on ML classifier and the effects of synthetic 

data on ML classifier performance using hyper-

parameter optimization. Section 5 discusses the 

conclusions of the entire process in the discussion of 

this paper. 

2. Related work 

This section will review several previous studies 

on imbalanced data techniques on small road accident 

datasets to create new synthetic data, the PRTA 

classification method approach used to test the best-

imbalanced data techniques, and hyperparameter 

tuning methods to improve the performance of the 

classification method. 

In the paper [23], the researchers convey the 

results using the SMOTE method to overcome the 

imbalanced dataset that caused the number of 

accidents in the dataset to be insufficient (small 

dataset category). The dataset was tested using the 

ML classifier method, namely SVM and PNN; the 

results of the tests stated that the PNN method was 

superior to SVM, with AUC values of 0.90 [23]. The 

weakness of the results of this study [23] is that there 

is no data pre-processing process to select the best 

data to be tested on the ML classifier; this is because 

the dataset used is based on real-time traffic condition 

data (depending on weather conditions, accident, and 

loop detector data). 

The authors of [25] develop a sampling technique 

scenario of RAW, RUS, ROS, and SMOTE to 

overcome the imbalance road accidents dataset with 

hyperparameter optimization using two techniques, 

namely random hold-out, and 5-fold CV, which were 

tested on the ML classifier RF, NB, KNN, and ANN. 

The AUC values were 0.83, 0.68, 0.76, and 0.78, 

respectively, based on the RUS, RUS, ROS, and ROS 

sampling techniques. The weakness of this study is 

that high accuracy values will be achieved if there are 

many features of the accident data extracted. 

Researchers in the paper [26] proposed the 

SMOTE-over-sampling and random under-sampling 
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method to handle imbalanced data based on a time-

dependent accident event dataset (hours); the ML 

binary classifier NB, LR, MARS, and RF methods 

were used to test the dataset with AUC values of 0.50, 

0.66, 0.65, 0.65, respectively. The limitation of this 

study is that the variables used to depend on the data 

set that displays hourly values on the determinants 

associated with the incidence of PRTA dataset; this 

creates uncertainty in the results due to increased 

missing information because it does not consider the 

Spatio-temporal so that the AUC value low [26].  

In [27], researchers used a generative adversarial 

networks (GANs) model to overcome small 

imbalanced datasets (i.e., traffic incidents datasets, 

including traffic flow volume, traffic speed, and 

building), which were tested on the SVM ML 

classifier with an accuracy value of 0.89. The 

weakness of this study's results is the dataset's 

behavior that will affect the performance of the ML 

classifier, where training data samples affect the 

overall detection performance [27].  

The results of the study researchers [28] used 

RUS, SMOTE over-sampling, and mix technique 

methods to overcome imbalanced data, the results of 

the study [28] stated that the over-sampling technique 

with test data processed using the Bayes classifier 

between NB and Bayesian networks improved the 

performance of the proposed model with an AUC 

value of 0.68, while for the original pre-processing 

dataset, the AUC value is 0.64, and the mix-model is 

0.66.  

Many previous researchers have carried out 

Studies related to the hyper-parameter method on the 

ML model. The hyper-parameter methods, i.e., 

manual tuning, grid search, randomized search, GA, 

PSO, and Bayesian optimization (BO) methods [44, 

42]. The researchers [45] used the Hyper-parameter 

technique to determine the model's sensitivity by 

testing the accuracy of model validation. In a case 

study of predicting injury severity of traffic accidents 

using the Recurrent Neural Network (RNN) method, 

the results of the RNN method were 71.77% superior 

to the MLP model, which only reached 65.48%, and 

the Bayesian Logistic Regression (BLR) only got 

58.30%. The Bayesian inference method uses a 

random parameter approach to model the hyper-

parameter effects of road-level factors on crash 

frequency. However, this model is limited to data 

with a small sample size and is only suitable for 

hierarchical model structures [46, 47]. The most 

widely used hyper-parameter methods are random 

search, grid search, and manual search. However, this 

method is computationally impractical [40]. The GA 

[48] and PSO methods are popular methods used for 

hyper-parameter techniques [42, 49, 50]. 

Based on the literature study conducted, some of 

the models produced experienced several 

shortcomings and, for now, have not made a 

satisfactory accuracy value. This study will propose 

a scenario model to overcome imbalanced data in 

creating new synthetic data. The function of this 

scenario will be used to assess the best dataset that 

can be used to improve the performance of the 

selected classification method, namely KNN SVM, 

MLP, NB, LR, and RF methods. 1st scenario using the 

raw dataset, 2nd scenario using the normalized raw 

dataset, 3rd scenario using a raw dataset that is 

processed with the SMOTE algorithm, and 4th uses a 

Min-Max normalized dataset that is processed using 

the SMOTE algorithm. All scenario models will be 

tested on the selected classification method by 

looking at the resulting performance value. The best 

scenario data model based on the results of the 

classification chosen method will be utilized to tune 

hyperparameters through GA search cross-validation. 

3. Research methodology 

The experimental procedure based on the flow in 

Figure 1 is used at the pre-processing data stage in the 

proposed machine learning approach for spatial 

analysis on PRTA classification. This is done to 

handle small datasets, which cause imbalanced class 

classifications in spatial datasets for attribute data 

categories. 

The experiment procedure step: 

(a) The dataset validation by taking attributes from 

private spatial datasets to be transformed into 

types of raw datasets and normalized raw datasets. 

The two types of datasets will be used for 

scenarios for prediction modeling for PRTA 

classification on arterial and collector road types, 

including the raw dataset, the normalized raw 

dataset, the raw dataset which is processed by the 

SMOTE oversampling method (SMOTE raw 

dataset), and the normalized dataset which is then 

processed to the SMOTE oversampling method 

(SMOTE normalized dataset). 

(b) Validation of the performance of the selected 

dataset scenario based on the highest AUC value 

resulting from the performance of the 

classification method in machine learning, namely 

KNN, SVM, MLP, Naïve Bayes, Logistic 

Regression, and Random Forest. 

(c) This research proposes a hyper-parameter 

optimization technique model using genetic 

algorithm (GA) search cross-validation to 

improve the optimization of the P-RTA 

classification parameters. This technique aims to 

improve the performance accuracy value in PRTA  
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The retrieval of attributes from the 
spatial dataset that is transformed 

into the raw dataset and the 
normalized dataset.

(a) PRTA classification modeling scenario on arterial and collector road 
types with 4 types of data sets

Dataset 
Validation ?

true

false

Choose a 
representative dataset

(d) Measuring the model performance
(Accuracy, Precision, Recall, F1score, AUC)

End

(b) Over-sampling method to balancing the small datasets using 4 
variants SMOTE

(c) Hyper-parameter optimization using GA search cross-
validation with set value 5-fold baseon 6 singular classifier 

 
Figure. 1 The experiment procedure 

 

classification. Choose a representative dataset to 

balance classes on small dataset types using four 

variants SMOTE, such as ADASYN, Borderline-

SMOTE, K-Means SMOTE, and SVM-SMOTE 

resampled to form each new synthetic dataset.  

GA is a global optimization algorithm based on 

natural selection theory. To solve the optimization 

problem, GA represents the intelligent exploits of 

random searches used to solve optimization 

problems [51, 52]. Although randomly assigned, 

GA is not at all random, but they exploit historical 

information to direct the search to better 

performing areas in the search space. The basic 

process of genetic algorithm is as follows, 

although a number of variations are possible [53]. 

(d) Measuring the Model Performance on the new 

synthetic dataset is done by comparing the 

performance results of each classification method 

in machine learning (including KNN, SVM, MLP, 

NB, LR, and RF) through the acquisition of 

accuracy, precision, recall, F1score, and AUC. 

Classifications with scores between 91-100% 

(very good), 81-90% (good), 71-80%(fair), and 

61-70% (poor), and values below 60% are 

considered to be false classifications [54]. 

3.1 Spatial datasets collection 

The spatial datasets used in the discussion of this 

paper use private spatial datasets type for the 

classification of PRTA based on multi-criteria 

parameters. The primer data is a map of the arterial 

and collector road network from a specific region in 

the National Road Implementation Centre for East 

Java, Bali, Indonesia. The multi-criteria parameters 

used for spatial data modeling include volume-to-

capacity ratio, international roughness index, vehicle 

type, horizontal alignment, vertical alignment, design 

speed, and shoulder [55, 56]. 

3.2 Imbalanced data techniques 

The class imbalance for small datasets will be 

overcome using state-of-the-art oversampling 

algorithms, including ADASYN, Borderline-

SMOTE, K-Means SMOTE, and SVM-SMOTE. 

Data processing uses a new dataset generated from 4 

procedural scenarios, including raw dataset, 

normalized raw dataset, SMOTE raw dataset, and 

SMOTE normalized dataset. 

3.2.1. Synthetic minority oversampling technique 

(SMOTE) 

The SMOTE method works at random 

observations to increase the number of minority class 

examples to be equivalent to the majority class 

through data synthesis based on a k-nearest neighbor. 

The synthetic sample quality can be done using the 

first five KNN [21] using Eq. (1) by obtaining a 

Value Difference Metric (VDM) to make the distance 

between the two observation vectors through the 

value of weight (𝑤) and distance (𝛿) [57]. The data 

set points from the SMOTE method are placed at any 

point on the extrapolation line [58]. 

 

∆(𝑋, 𝑌) = 𝑤𝑥𝑤𝑦 ∑ 𝛿(𝑉𝑖, 𝑉𝑖)𝑟𝑁
𝑖=1              (1) 
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Where the ∆(𝑋, 𝑌) the variable is the observation 

distance between vector X and Y, the 𝑤𝑥𝑤𝑦 variable 

represents the weight of VDM (section 3.1), the 𝑁 

variable is the number of predictors, the 𝑟 variable is 

the synthetic data generator measured by its 

proximity, the value of r=1 if using Manhattan 

distance for categorical data, and r=2 if using 

Euclidean distance for numerical data. The value of 

𝛿(𝑥𝑖, 𝑦𝑖)  is the distance between X and Y vector 

observations on each explanatory variable based on 

Eq. (2) [57]. 

 

𝛿(𝑥𝑖, 𝑦𝑖) = ∑ |
𝐶1𝑖

𝐶1
−

𝐶2𝑖

𝐶2
|

𝑘
𝑛
𝑖=1                  (2) 

 

Where variable 𝑛  is the number of class 

categories in the 1st variable, variable 𝐶1  is the 

number of values of the 1st category in each 𝑥𝑖 occurs, 

variable 𝐶1𝑖 is the number of the 1st category in each 

𝑥𝑖 which belongs to the i-th class, variable 𝐶2 is the 

number of values in the 2nd category in each 𝑦𝑖 that 

occurs, variable 𝐶2𝑖 is the number of the 2nd category 

in each 𝑦𝑖 which belongs to the i-th class, variable 𝑘 

is a constant value usually set to 1. 

3.2.2. ADASYN (adaptive synthetic sampling) 

resampled 

ADASYN is a method for balancing data by 

approaching it through sampling from imbalanced 

datasets [59]. The purpose of this method is to reduce 

the bias caused by class imbalance by learning 

adaptively about the classification decision. 

ADASYN generates more synthetic data [59] using 

Eq. (3) for minority class examples that are harder to 

learn than minority class examples that are easier to 

learn. The number of synthetic samples using the 

ADASYN method will be calculated automatically 

by determining the weight size for each minority 

class sample [60]. 

 

𝑠𝑖 = 𝑥𝑖 + (𝑥𝑧𝑖 − 𝑥𝑖) × 𝜆                (3) 

 

Where the 𝑥𝑖  variable is the minority class 

examples for each sample data, the 𝑥𝑧𝑖  is minority 

data selected randomly from k- nearest neighbors on 

data 𝑥𝑖 , the 𝑥𝑧𝑖 − 𝑥𝑖  variable is a vector value that 

states the difference between raw and synthetic data, 

and the 𝜆 variable is a random value of λ∈ [0, 1]. 

3.2.3. Borderline-SMOTE resampled 

The classification results on the algorithm will 

achieve better predictive results if learn each class in 

the training datasets on the borderline instance. 

Borderline-SMOTE is an over-sampling method that 

only processes borderline instances from the over-

sampled minority class [61]. The synthetic data 

generator is only carried out in the example 

borderline [61] to generate a new instance using Eq. 

(4) by measuring between borderline instances and 

minority instants using k-nearest neighbors [20]. 

 

𝑁𝑒𝑤 𝑖𝑛𝑠𝑡𝑎𝑐𝑒 = 𝑃𝑖 + 𝑔𝑎𝑝 ∗ (𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 (𝑃𝑖, 𝑃𝑗)) (4) 

 

Where the 𝑃𝑖 variable is the borderline minority 

instance class, gap is a random value between 0 and 

1, and the 𝑃𝑗 variable is the data set chosen at random 

on the minority instance. 

3.2.4. K-Means SMOTE resampled 

K-Means SMOTE is an oversampling technique 

that handles imbalanced classes, consisting of 

clustering, filtering, and oversampling [62]. 

Identifying locations in the input space generates 

synthetic data [63] based on Eq. (4). The sample class 

clustered by K-means and the original sample class 

are calculated to select safe samples whose sample 

classes have not been modified. The new sample 

synthesis data was obtained from linear interpolation 

on the safe sample class [64]. 

 

𝑠𝑎𝑚𝑝𝑙𝑒_𝑤𝑒𝑖𝑔ℎ𝑡[𝑘] =
𝑠𝑝𝑎𝑟𝑠𝑖𝑡𝑦[𝑘]

∑ 𝑠𝑝𝑎𝑟𝑠𝑖𝑡𝑦[𝑖]𝑎𝑙𝑙 𝑖
          (4) 

 

Where the 𝑠𝑎𝑚𝑝𝑙𝑒_𝑤𝑒𝑖𝑔ℎ𝑡[𝑘]  variable is the 

weight of k-th cluster that has been assigned, the 

∑ 𝑠𝑝𝑎𝑟𝑠𝑖𝑡𝑦[𝑖]𝑎𝑙𝑙 𝑖  variable is the sparsity total of the 

i-th cluster. 

3.2.5. SVM-SMOTE resampled 

SVM-SMOTE is an oversampling method to 

overcome imbalanced classes, how to generate new 

synthesis data by taking samples in the minority class 

that is close to the supporting vector in determining 

the decision limit (SVM) using Eq. (5) [65]. 

4. Result and discussion 

This section will explain experimental results 

applied to datasets. 

4.1 Effectivity of scenario on ML classifier 

To overcome the availability of small datasets, 

most researches show that small datasets on class-

imbalanced can damage the performance of the ML 

classifier [66, 67]. Scenario models are employed in 

the pre-processing data stage to deal with the small 

datasets that lead to uneven class classifications. The 
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following is a proposed scenario for validating 

datasets to enhance data quality, including: 

• 1st scenario: Raw dataset 

• 2nd scenario: Normalized raw dataset 

• 3rd scenario: SMOTE raw dataset 

• 4th scenario: SMOTE normalized dataset 

The proposed model for using data on a small 

imbalanced dataset type was tested using a scenario 

model at the pre-processing data stage, with the 

results in Fig. 2 and 3. These results show the 

performance of scenarios 1 to 4 tested on the ML 

classifier method, including KNN, SVM, MLP, NB, 

LR, and RF. Scenario 3 is superior to all the ML 

classifiers, the details can be found in Table 1 to 4, 

where the mean AUC values for scenarios 1 to 4 are 

0.55, 0.53, 0.70, and 0.67, respectively. The ML 

classifier hyperparameter optimization will be 

processed using GA search cross-validation, and this 

table will be part of Section 4.2. 

The experimental results in Fig. 2 and 3 states that 

to obtain a superior classification value, a small 

imbalanced dataset can be pre-processing data using 

3rd scenarios. The test results state that the KNN 

method in 5-fold GA cross-validation is superior for 

the arterial and collector datasets, as shown in Fig. 4. 

 

 
Figure. 2 Scenarios for prediction modeling PRTA on 

arterial road datasets 

 

 
Figure. 3 Scenarios for prediction modeling PRTA on 

collector road datasets 
 

The results in Table 1 are the performance 

evaluation values for the 1st scenario for the 

experiment using raw dataset types tested on two 

datasets, namely the PRTA classification for arterial 

and collector road types. The SVM method got the 

highest AUC values, namely 62.8% and 60%, 

respectively, while the lowest AUC values were in 

the NB method, which was 47.4% and 49.4%, 

respectively. 

Table 2 contains the value for the performance 

evaluation that was determined for the 2nd scenario of 

the experiment, which made use of the Normalized 

raw dataset type. These values were validated using 

two distinct datasets, especially the PRTA 

categorization for arterial and collector road types. 

The AUC values obtained using the SVM approach 

were the highest, coming in at 62.8% and 57.6%, 

respectively. In contrast, the NB and MLP methods 
 

Table 1. 1st scenario model performance evaluation using 

raw dataset type 

Methods 
Performance evaluation 

Accuracy Precision Recall F1score AUC 

Arterial datasets 

KNN 0.780 0.780 1.000 0.880 0.610 

SVM 0.780 0.780 1.000 0.880 0.628 

MLP 0.762 0.774 0.978 0.868 0.522 

NB 0.734 0.796 0.884 0.838 0.474 

LR 0.768 0.776 0.986 0.872 0.596 

RF 0.780 0.780 1.000 0.880 0.602 

Collector datasets 

KNN 0.788 0.788 1.000 0.880 0.506 

SVM 0.694 0.808 0.804 0.806 0.600 

MLP 0.788 0.788 1.000 0.880 0.542 

NB 0.314 0.292 0.18 0.186 0.494 

LR 0.788 0.788 1.000 0.880 0.566 

RF 0.788 0.788 1.000 0.880 0.562 

 
Table 2. 2nd Scenario model performance evaluation 

using normalized raw dataset type 

Methods 
Performance evaluation 

Accuracy Precision Recall F1score AUC 

Arterial datasets 

KNN 0.780 0.780 1.000 0.880 0.610 

SVM 0.780 0.780 1.000 0.880 0.628 

MLP 0.762 0.774 0.978 0.868 0.522 

NB 0.734 0.796 0.884 0.838 0.474 

LR 0.768 0.776 0.986 0.872 0.596 

RF 0.780 0.780 1.000 0.880 0.602 

Collector datasets 

KNN 0.792 0.790 1.000 0.884 0.542 

SVM 0.788 0.788 1.000 0.880 0.576 

MLP 0.788 0.788 1.000 0.880 0.484 

NB 0.320 0.392 0.186 0.198 0.494 

LR 0.216 0.000 0.000 0.000 0.500 

RF 0.788 0.788 1.000 0.880 0.512 
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Table 3. 3rd Scenario model performance evaluation using 

SMOTE raw dataset type 

Methods 
Performance evaluation 

Accuracy Precision Recall F1score AUC 

Arterial datasets 

KNN 0.698 0.78 0.58 0.658 0.784 

SVM 0.718 0.736 0.692 0.71 0.784 

MLP 0.554 0.566 0.522 0.508 0.588 

NB 0.476 0.39 0.208 0.252 0.530 

LR 0.546 0.538 0.628 0.58 0.590 

RF 0.726 0.716 0.748 0.73 0.766 

Collector datasets 

KNN 0.702 0.788 0.562 0.654 0.812 

SVM 0.712 0.724 0.702 0.708 0.782 

MLP 0.674 0.682 0.654 0.666 0.762 

NB 0.486 0.394 0.168 0.142 0.606 

LR 0.542 0.780 0.120 0.202 0.612 

RF 0.718 0.750 0.66 0.700 0.796 

 

produced the lowest AUC values, which came in at 

47.4% and 48.4%, respectively. 

The result of the performance evaluation value in 

the 3rd scenario model using the raw dataset type 

processed with the SMOTE algorithm can be seen in 

Table 3. The PRTA classification values were tested 

on the arterial and collector road datasets. The AUC 

values obtained for the arterial roads using the SVM 

and KNN methods are equally superior, 78.4% and 

57.6%, respectively. The KNN method on the 

collector dataset is also superior, with an AUC value 

of 81.2%. In contrast, the NB method on both datasets 

produces the lowest AUC values, 53% and 60.6%, 

respectively. 

The experimental results in scenario 4 using the 

normalized min-max dataset type processed with the 

smote algorithm can be seen in Table 4. These values 

were tested for the classification of PRTA on two  
 

 
Table 4. 4th Scenario model performance evaluation using 

min-max normalized and smote datasets type 

Methods 
Performance evaluation 

Accuracy Precision Recall F1score AUC 

Arterial datasets 

KNN 0.744 0.794 0.664 0.722 0.792 

SVM 0.674 0.720 0.592 0.648 0.724 

MLP 0.542 0.560 0.484 0.496 0.598 

NB 0.474 0.408 0.208 0.250 0.504 

LR 0.516 0.510 0.556 0.528 0.538 

RF 0.692 0.682 0.728 0.700 0.746 

Collector datasets 

KNN 0.724 0.786 0.614 0.684 0.812 

SVM 0.666 0.670 0.678 0.666 0.720 

MLP 0.652 0.658 0.660 0.654 0.696 

NB 0.498 0.480 0.198 0.200 0.602 

LR 0.536 0.358 0.216 0.270 0.590 

RF 0.656 0.690 0.584 0.628 0.730 

types of arterial and collector road datasets. The AUC 

value to measure the performance of the 

classification method, where the KNN method is 

equally superior in the arterial and collector datasets, 

is 79.2% and 81.2%, respectively. In contrast, the NB 

and LR methods produce the lowest AUC values, 

50.4% and 59%, respectively. 

4.2 Effect of synthetic data on ML classifier 

performance using hyper-parameter 

optimization 

In this section, the impact of using a new 

synthetic dataset in the field of road safety will be 

explained which was obtained at the pre-processing 

stage of the data through a four-scenario approach to 

be tested on the ML classifier. Test data based on 

parameters in section 3.1 [55, 56] with experimental 

results using a data set selected at the pre-processing 

data stage. Table 5 shows the best scenario model 

proposed to validate the data set to improve the data 

quality. Table 5 uses synthetic data generated by 

several developments of synthetic data generated 

using the variant SMOTE over-sampling method, 

including ADASYN, Borderline SMOTE, K-Means-

SMOTE, and SVM-SMOTE will be combined with 

the raw dataset to determine the effectiveness of the 

performance of ML classifier hyper-parameter 

optimization using GA search cross-validation. The 

GA is a metaheuristic optimization method that has 

been developed in several domains [68-70]. The best 

ROC-AUC value is declared in bold, whereas the 

worst value is declared in italics underline. 

The experimental results in Table 5 were tested 

on two road types of datasets: arterial and collector. 

Variant SMOTE algorithm using ADASYN method 

respectively showed that the highest AUC values in 

the RF method were 79% and KNN 78%. The NB 

method obtained the lowest values of 50% and 55.8%, 

respectively. The highest AUC value in the 

Borderline SMOTE method for the SMOTE 

algorithm variant shows that the highest AUC value 

in SVM is 80.6% and KNN at 82%. The NB method 

obtained the lowest values of 55.8% and 57.4%. The 

variant SMOTE algorithm with the K-Means-

SMOTE method shows that the highest AUC values 

are 89% and 86.6%, respectively, for the KNN 

method. The lowest values are Logistic Regression 

82.6% and Random Forest 75%, respectively. 

Variant SMOTE algorithm uses the SVM-SMOTE 

method with the highest AUC values in the Random 

Forest method of 78.6% and KNN 77%. The Naïve 

Bayes method obtained the lowest values of 50% and 

50%. Whereas for some other algorithms, the AUC 

value is almost the same. 
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Table 5. The result of balancing datasets and ML classifier hyper-parameter optimization using GA search cross-

validation 

Imbalance 

Data Method 
Classifiers 

Arterial datasets Collector datasets 

Accuracy Precision Recall F1score AUC Accuracy Precision Recall F1score AUC 

ADASYN KNN 0.744 0.800 0.65 0.714 0.772(2) 0.69 0.746 0.552 0.628 0.780(1) 

SVM 0.696 0.686 0.722 0.702 0.760(3) 0.696 0.688 0.684 0.686 0.748(2) 

MLP 0.518 0.510 0.872 0.642 0.574(5) 0.684 0.714 0.594 0.642 0.696(4) 

NB 0.482 0.414 0.186 0.24 0.500(6) 0.522 0.208 0.144 0.132 0.558(6) 

LR 0.500 0.500 1.000 0.67 0.580(4) 0.516 0.000 0.000 0.000 0.596(5) 

RF 0.734 0.75 0.722 0.732 0.790(1) 0.666 0.726 0.516 0.596 0.728(3) 

Borderline 

SMOTE 
KNN 0.714 0.754 0.642 0.69 0.790(2) 0.702 0.776 0.578 0.654 0.820(1) 

SVM 0.728 0.714 0.756 0.732 0.806(1) 0.714 0.734 0.698 0.710 0.754(3) 

MLP 0.614 0.612 0.642 0.618 0.678(5) 0.680 0.700 0.632 0.664 0.734(4) 

NB 0.478 0.406 0.25 0.296 0.558(6) 0.526 0.602 0.212 0.226 0.574(6) 

LR 0.612 0.580 0.814 0.68 0.682(4) 0.598 0.638 0.488 0.548 0.636(5) 

RF 0.724 0.730 0.73 0.726 0.764(3) 0.724 0.82 0.576 0.674 0.800(2) 

K-Means-

SMOTE 
KNN 0.814 0.842 0.778 0.804 0.890(1) 0.788 0.832 0.722 0.774 0.866(1) 

SVM 0.862 0.824 0.92 0.868 0.888(2) 0.830 0.832 0.824 0.826 0.846(3) 

MLP 0.800 0.772 0.858 0.812 0.844(4) 0.502 0.000 0.000 0.000 0.764(5) 

NB 0.774 0.768 0.786 0.776 0.832(5) 0.796 0.812 0.766 0.788 0.862(2) 

LR 0.806 0.778 0.856 0.814 0.826(6) 0.796 0.828 0.752 0.786 0.836(4) 

RF 0.858 0.826 0.912 0.866 0.880(3) 0.574 0.766 0.25 0.302 0.750(6) 

SVM-SMOTE KNN 0.744 0.800 0.65 0.714 0.772(2) 0.658 0.696 0.506 0.584 0.770(1) 

SVM 0.700 0.678 0.766 0.714 0.766(3) 0.694 0.676 0.710 0.690 0.744(2) 

MLP 0.554 0.536 0.792 0.638 0.568(5) 0.682 0.700 0.608 0.646 0.692(4) 

NB 0.482 0.414 0.186 0.240 0.500(6) 0.482 0.414 0.186 0.240 0.500(6) 

LR 0.500 0.500 1.000 0.670 0.580(4) 0.516 0.000 0.000 0.000 0.596(5) 

RF 0.706 0.708 0.72 0.710 0.786(1) 0.660 0.708 0.510 0.586 0.736(3) 

 
Based on the literature study in Section 2, the 

experimental results in Table 5 refer to the research 

development [25]. The suggestions given for future 

work are to observe and apply the performance of the 

Nominal and Continuous-SMOTE (SMOTE-NC) 

oversampling techniques, Borderline-SMOTE (BL-

SMOTE), K-Means-SMOTE (KM-SMOTE), and 

SVM- SMOTE as an effort to improve the 

performance of the ML classifier by testing the 

accident dataset, and in this case study we apply it to 

the road traffic accident dataset.  
The overall experimental results for dealing with 

the imbalance of small spatial datasets that use traffic 

road accidents as datasets show that KNN-KM-

SMOTE is the method that has the highest 

performance in improving the performance of the ML 

classifier with an AUC value rating of 0.89 (good 

classification [56]). The SVM-KM-SMOTE, KNN-

BL-SMOTE, NB-KM-SMOTE, MLP-KM-SMOTE, 

LR-KM-SMOTE, and RF-ADASYN-SVM-SMOTE 

methods are 0.88, 0.82, 0.86, 0.84, 0.84, 0.83 and 

0.79, respectively. As a whole, KNN is the method 

that has the highest significant effect. KNN is one of 

the simplest algorithms for looking at the nearest 

neighbor value [71], even though KNN is considered 

a poor test on the IRIS dataset [72]. 

The performance of the ML classifier for the 

AUC value of KNN-KM-SMOTE (0.89), and KNN-

BL-SMOTE (0.82) is superior to the AUC value of 

KNN-RUS 0.68 [25]. The AUC value of RF-

ADASYN-SVM-SMOTE (0.79) decreased by 0.04 

from the AUC value of 0.83 of RF-RUS [25]. In 

comparison, the AUC value of 0.86 for NB-KM-

SMOTE is better than the AUC NB-ROS value, 

which only reaches an AUC value of 0.76 [25]. The 

ML classifier and oversampling method SVM-KM- 

SMOTE with an AUC value of 0.88 are better than 

the SVM-SMOTE, which only reaches the AUC 

value of 0.74 [23], while with the ML classifier SVM 

and GANs oversampling method (SVM-GANs) the 

difference is 0.01 for the AUC value of 0.89 [27]. The 

ML classifier method with a combination of 

oversampling methods for NB-KM-SMOTE, LR-

KM-SMOTE, RF-ADASYN-SVM-SMOTE with 

AUC values of 0.86, 0.83, and 0.79, respectively, is 

far superior to the results of research [26] for NB, LR, 

RF-SMOTE-maximum dissimilarity sampling AUC 

values are 0.50, 0.66, and 0.65, respectively. 

4.3 Spatial cross-validation 

A cross-validation is an approach in statistical 

methods that works to evaluate the performance of  
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(a) 

 

 
(b) 

Figure. 4 The results of the spatial analysis of the PRTA classification using the KNN method with 5-fold GA spatial 

cross-validation for arterial and collector datasets: (a) Arterial spatial datasets and (b) Collector spatial datasets 

 

 

the model that is built, and this can reduce the bias of 

the results obtained from the model's performance 

[73]. The process of cross-validation will divide the 

data into two parts which are used for learning and 

validation. The purpose of cross-validation in 

hyperparameter tuning of spatial data, spatial 

partitioning can be utilized [74]. 

Fig. 4 is the result of the 5-fold GA spatial cross-

validation in the spatial analysis for the classification 

of PRTA on the arterial in Fig. 4 (a) and collector 

datasets in Fig. 4 (b) using the KNN method, which 

is a good classifier category based on Table 5 with 

the K-Means-SMOTE variant dataset. The arterial 

road dataset type consists of 281 data (178 roads from 

the real world and 103 data generated from synthetic 

data in sections 4.1 and 4.2) and uses 5-fold GA 

spatial cross-validation resulting in total predictions 

of 1410, correct predictions 1302 with an accurate 

prediction rate of 92.34%. The collector road dataset 

type includes 316 data, including 201 roads from the 

real world and 115 data generated from synthetic data 

in section 4.1. It also employs 5-fold GA spatial 

cross-validation, which results in a total of 1585 

predictions, of which 1378 are accurate, for an 

accuracy rate of 86.94%. Comparison of the size of 

the dataset rate in previous studies, including papers 

with as many as 85.182 datasets [23], 120.277 

datasets [25], 16.728 datasets [26], and 1.560 datasets 

[27]. 

5. Conclusion 

The result of 48 experiments, the raw dataset 

produced the highest AUC on 11 experiments for 1st 

and 3rd scenarios. The models' results using a dataset 

based on the 4th scenario are less superior than the 3rd 

scenario in the 0.50% to 0.81 ROC-AUC score range. 

While the dataset that needs to be normalized only 
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produces the highest AUC in 3 experiments of the 4th 

scenario. While the prediction model using 1st and 2nd 

scenario datasets all underperformed is 0.47 to 0.62 

ROC-AUC score. Regarding balance datasets, the 11 

experiments that produced the highest ROC-AUC, 

namely ten experiments, were in the 3rd scenario for 

SMOTE raw datasets. The results of the classifier 

with the SMOTE variant are very satisfying, 

especially for KNN-SMOTE with a ROC of almost 

0.90 on the other metrics for more balanced accuracy, 

precision, recall, and F1score values. The conclusion 

is that to produce an optimal classifier, the tendency 

is to use a balanced raw dataset using SMOTE. 

Based on the results of the singular classifier 

experiment by adding hyper-parameter optimization 

using GA search cross-validation on each variant of 

SMOTE for the PRTA classification. The KNN 

method as a single algorithm for ML classifier based 

on the distance between samples is superior to using 

the dataset in the 3rd scenario and using K-Means 

SMOTE oversampling technique (KNN-KM-

SMOTE) from all algorithms to handle small data 

sets in unbalanced classes with an AUC value is 0.89, 

including the good classification category based on 

experiments using the traffic accident dataset. 

Complex algorithms on the ML classifier SVM, NB, 

MLP, KNN, and LR to rank 2nd with average AUC 

values of 0.88, 0.86, 0.86, 0.84, 0.82, and 0.83, 

respectively, is a good ML classification category. 

The RF classifier gets the smallest AUC value, which 

is 0.79 is a fair ML classification category. The 

overall conclusion from all experiments is that a 

simple, computationally light algorithm can produce 

a PRTA classification with a good classification 

category based on the condition that the dataset must 

be balanced using the SMOTE variant first (3rd 

scenario).  

However, the overall performance of several 

compared algorithms has almost the same or close 

performance. In further research, it is necessary to 

conduct studies based on empirical studies to add 

other scenario models that can handle small dataset 

types that cause imbalanced classes using specific 

regions on different private datasets samples. The 

AUC value can increase the performance of the 

classification method in ML from 91 to 100%, which 

is a very good classification category using ML 

ensemble learning through bagging, boosting, and 

stacking model experiments. 
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