
Received: September 13, 2020. Revised: December 29, 2020. 271

International Journal of Intelligent Engineering and Systems, Vol.14, No.2, 2021 DOI: 10.22266/ijies2021.0430.24

A Swarm Intelligence-based Approach for Dynamic Data Replication in a Cloud

Environment

Ahmed Awad1 Rashed Salem2 Hatem Abdelkader2 Mustafa Abdul Salam3*

1Information System Department, Cairo Higher Institute for Languages and Simultaneous Interpretation, Egypt

2Information System Department, Faculty of Computers and Information, Menoufia University, Egypt
3Artificial Intelligence Department, Faculty of Computers and Artificial Intelligence, Benha University, Egypt

* Corresponding author’s Email: mustafa.abdo@ymail.com

Abstract: In recent years, there has been increasing interest in cloud computing research, especially replication

strategies and their applications. When the number of replicas is increased and placed in different places, maintaining

the system’s data availability, performance and reliability will increase the cost. In this paper, two multi-objectives

swarm intelligence algorithms are used to optimize the data replication selection and placement in a cloud environment.

These algorithms are namely, multi-objective particle swarm optimization (MOPSO) and multi-objective ant colony

optimization (MOACO). The first algorithm, (MOPSO), is used to find the best selected data replica according to the

most popular data replication strategy. The improved time-based decay function (ITBDF), is used to enhance the

proposed model. The second algorithm, (MOACO), is used to find the best data replica placement according to the

minimum distance, the number of data transmissions and the availability of data replication. A simulation of the

suggested strategy has been performed using CloudSim. the Cloud is formed to simulate different kinds of datacenters

(DCs) with different structures. Moreover, 21 DCs are used. Each DC consists of a host that contains a set of virtual

machines (VMs) that provides blocks of available data replications. Three different data placements for high

datacenters were created. A total of one thousand cloudlets are randomly confirmed for the data replication order. All

replication files are placed in high datacenters and randomly distributed in the suggested system. The performance of

proposed strategy was evaluated relative to many well-known strategies such as, Enhance Fast Spread (EFS), Dynamic

Cost-aware Re-replication and Re-balancing Strategy (DCR2S), Genetic Algorithm (GA), Genetic adaptive Selection

Algorithm (GASA), Replica Selection and Placement (RSP), Dynamic Replica Selection Ant Colony Optimization

(DRSACO), Adaptive Replica Dynamic Strategy (ARDS), Popular File Replication First (PFRF). The experimental

results show that MOPSO, achieves better data replication than compared algorithms. Additionally, MOACO, achieves

higher data availability, lower cost, and less bandwidth consumption than compared algorithms.

Keywords: Dynamic replication, Cloud computing, Cloudsim, Knapsack problem, Particle swarm optimization, Ant

colony optimization and multi-objective optimization.

1. Introduction

Cloud environments provide many services such

as pay-per-use virtual computing, network resources

and services, which can be developed and have their

usage well scaled. The characteristics of the Cloud

include the bandwidth, storage and access to

important data resources [1, 2]. A Cloud environment

consists of software-as-a-service (SaaS), platform-as-

a-Service (PaaS) and infrastructure as a service (IaaS)

[3]. Moreover, the Cloud is less expensive than other

traditional systems and can feature subscription upon

request, scalability, elasticity and dynamicity [4].

Load balancing in the Cloud has a great effect on the

data transfer rate, performance and low overloads of

the Cloud network [5]. It distributes tasks in a virtual

machine (VM) to balance the loads in the Cloud to

retain low overloads and achieve optimal access to

available resources [6].

Replication techniques are generally used in data-

intensive applications such as sharing and

distribution from distant locations to near locations

Received: September 13, 2020. Revised: December 29, 2020. 272

International Journal of Intelligent Engineering and Systems, Vol.14, No.2, 2021 DOI: 10.22266/ijies2021.0430.24

through nodes or geographical sites [7]. Replication

techniques can be applied as a cluster in a Cloud

environment. The cluster allows scalability and data

availability to ensure the integrity and consistency

between different replications among nodes. This

includes reading and writing on data replication

through protocols according to the system

requirements [8]. In the reviewed literature [9], there

are surveys that address static and dynamic

replications through the Cloud and in the data grid

field. Static and dynamic replications are subject to

three important questions that require answers: 1)

what data should be replicated? 2) when should the

data be replicated? and 3) where should the new

replicas be placed? These are three important open

questions that need to be addressed for data

replication in Cloud environments [10].

In this paper, an efficient dynamic data

replication strategy using MOPSO and MOACO are

proposed. The proposed strategy is based on the

selection and placement of data replicas in different

datacenters. It evaluates data replication through

seven criteria, such as data replication access,

distance, costs, data availability, data replication

popularity, and the Zipf and geometric distributions.

Therefore, we have access to two optimal selection

and placement methods for data replicas in the Cloud.

The proposed model is validated using CloudSim,

and the two algorithms MOPSO and MOACO are

evaluated. The experimental results show that the

proposed strategies outperform the other strategies,

saving time, accelerating the access speed, reducing

the costs, ensuring high availability and finding the

least-cost path among the heterogeneous datacenters

in the Cloud.

The remainder of this paper is organized as

follows. Section 2 reviews the literature on

replication strategies in the Cloud. Section 3

introduces the proposed architecture for replica

selection and placement optimization. Section 4

focuses on the suggested MOPSO and MOACO

algorithms. Section 5 shows the experimental results

and configuration. It also provides the two suggested

algorithms with their performance and then compares

them to other algorithms. Finally, Section 6

concludes the paper and highlights future research.

2. Related work

Many related studies have researched data

replication strategies in the Cloud, such as the

following.

N. Mansouri et al. presented a dynamic

popularity-aware replication strategy (DPRS) to

recover and access data using the 80/20 idea. They

employed parallel data downloads from different

sites to improve the data file availability and storage

space. Network efficiency measures the average

service time to execute the required tasks for the set

number of files using the Cloud. The mentioned

algorithm was compared with five others algorithms

(SWORD, Adaptive Data Replication Strategy

(ADRS), DRSP, MORM and A2RS) and it was found

that DPRS was more efficient than the others [11].

D. Sun et al. designed the modeling a dynamic

data replication strategy (MDDRS). The research

also conducted an abridged survey of the suitable

distribution methodology in the Cloud [12].

N. Kaur and et al. suggested a dynamic, cost-

aware, optimized data replication strategy. Their

work is an extension of the work in [12] and

determined the minimum data replications and file

availability near the users in an ordinary tier without

losing data. Moreover, it considered a heterogeneous

system, which improved the costs of using the

knapsack problem [13].

N. Mansouri. showed an ADRS for the placement

and replacement of replicas through datacenters. It

considers the storage space of the system. When

placing new replicas once the space is full, the ADRS

will place new replicas instead of old ones. The

results confirmed its optimal efficiency over those of

the others [14].

K. Kumar et al. suggested a workload-aware data

replication strategy called (SWORD) to optimize the

resource consumption in Cloud environments. The

suggested strategy reduces the average time for either

a search request or another process and shares

mechanisms in the system environment to analyze

work-loads and place data using mathematical

models [15].

X. Bai et al. presented a response time-based

replica management (RTRM) model that

automatically selects replicas and places them in

nodes. RTRM depends on diagram theory to solve the

problems [16].

D. Yuan and et al. suggested a data placement

strategy based on a k-means matrix in cluster form to

place data workflows in a Cloud environment

containing two algorithms in the building stage and

work time. [17].

C. Hamdeni et al. designed a new adaptive

technique for calculating the data popularity in

database systems through nodes. The experimental

results that were achieved using OptorSim showed

that the suggested system can adapt the popular file

access time and achieve file availability [18].

N. Maheshwari et al. introduced a dynamic

energy-efficient data placement and cluster

reconfiguration algorithm using GridSim. The

Received: September 13, 2020. Revised: December 29, 2020. 273

International Journal of Intelligent Engineering and Systems, Vol.14, No.2, 2021 DOI: 10.22266/ijies2021.0430.24

suggested algorithms provide efficient power

availability for developing distributed data. [19].

Q. Xu et al. proposed a data-placement strategy

based on the genetic algorithm (DPSBGA) to

schedule data and optimize the placement of data

replications via datacenters. It is clear that using the

GA provides a better solution for placing and

accessing data replications [20].

Z. Li et al. suggested a different combined

replication structure to improve the performance of

high-level architecture (HLA). The suggested

structure depends on using different synchronization

methods to access and select rapid replications for

users. Messages are sent and received between users

to reduce the time and handle the replications [21].

Z. Tang et al. suggested an intermediate data

placement algorithm for load balancing in a Spark

environment that attempts to optimize the work

among the nodes in order to perform the required

processing data tasks through map tasks. The skewed

intermediate data blocks (SCID) algorithm attempts

to arrange key/value clusters of map tasks according

to their size. [22].

T. Yuan et al. suggested causal consistency

algorithms for partially and fully replicated systems.

The author presents two algorithms to realize the

causal consistency of partial and full replications to

perform causal consistency tasks in reliable large-

scale distributed systems [23].

H. Casanva et al. investigated the impacts of the

replication process on an application with large-scale

parallel executions and coordinated checkpointing of

full replications. They analyze the mean service time

to interrupt haphazard distributions and their failures

[24].

P. Matri et al. introduced the keeping up with

storage: decentralized, write-enabled dynamic geo-

replication (DWEDGR) method. DWEDGR allows

users to enable access to the nearest replication

among nodes without any previous request that

supports the changeable data [25].

M. Chang Lee et al. suggested the popular file

replicate first (PFRF) strategy, which is based on a

star network that accesses and determines the file and

popularity of each data replication. Both Zipf and

geometric distributions are used to evaluate the

suggested algorithm. [26].

3. Methodology and discussionon

3.1 Proposed architecture for replica selection and

placement optimization

This section addresses the suggested structural

model for sharing data among nodes by selecting and

placing replications in Cloud environments, which

has been used in many studies [12, 13]. In our case,

we used the heterogeneous system with swarm

intelligence (SI) techniques to optimize the selection

and placement of data replications. The first stage

consists of the high datacenters, which are more

deeply centralized and possess better data availability,

storage space, and performance and greater numbers

of hosts and VMs than the other datacenters. The

second stage consists of the mid-datacenters, which

have fewer whole components than the first stage.

The third stage is composed of low datacenters that

have fewer whole components than the second stage.

Overall, the datacenters are hierarchically related to

each other either in the same level or in other levels.

The suggested system consists of datacenters, a

broker, a replica catalog, a replica management

system, a virtual machine, hosts, tasks and

hierarchical network users who connect datacenters

with each other. To assure that the best SI techniques

with replication can be implemented in the optimal

suggested system, ACO and PSO can be applied to

the selection and placement of replications through

nodes. Appling the above SI techniques improves the

availability and support, reduces the cost, allows for

tasks to be performed, and is quicker than the

techniques that are used when selecting and placing

replications through CloudSim. Therefore, we can

realize the maximum use and optimal replications

through datacenters.

The datacenters can be represented in the form of

DCs = {dc1, dc2...dcn}, where n is the number of

different DCs in the Cloud environment. The

physical machine can be represented as PM = {pm1,

pm2… pmx}, where x is a group of different pms that

exist in DCs. Our different system for heterogeneous

Cloud datacenters is proposed. The virtual machines

can be represented as VM = {vm1, vm2… vms},

where s is the number of VMs that are placed in the

PMs. There are different spaces and different

operations such as space shards and time shards. The

data replication can be represented in the form of F=

{f1, f2… fy}, where y is the number of different data

replications that could be placed inside DCs. The

main storage unit is a block and can be represented as

B = {b1, b2…, by}, where y is a group of a different

data replications stored in DCs. All replication files

are placed in high datacenters and randomly

distributed in the suggested system. Different values

of the probability = pro (bap) can be saved in every

DC using the replica catalog that records every

replica location in the different DCs.

Received: September 13, 2020. Revised: December 29, 2020. 274

International Journal of Intelligent Engineering and Systems, Vol.14, No.2, 2021 DOI: 10.22266/ijies2021.0430.24

3.1.1. Data file availability

Generally, availability can be defined as

“readiness to offer correct services”. The data

replications should be made fully available to all users

upon request. Therefore, the availability of data is an

important issue in the Cloud for users. A system with

unavailable data is caused by a data replication or node

failure in the Cloud. Data availability is an important

issue in the Cloud [23, 24]. The replicas can be located

in many DCs, and many replicas can be located in the

same DC to ensure the availability of different blocks

in the DCs. High DCs have higher costs, better data

availability and reliability, and consequently, the

blocks that are inside the DCs have high availability.

However, low DCs have lower costs, worse

availability, and worse reliability, and the blocks that

are inside the DCs are likely to have low availability.

They can be calculated using Eq. (1) to Eq. (4) as

follows:

𝑝𝑟𝑜(𝑏𝑎𝑝𝑗)ℎ𝑖𝑔 𝐷𝐶 > 𝑝𝑟𝑜(𝑏𝑎𝑝𝑗)𝑚𝑖𝑑 𝐷𝐶 >

𝑝𝑟𝑜(𝑏𝑎𝑝𝑗)𝑙𝑜𝑤 𝐷𝐶 (1)

𝑝𝑟𝑜(𝑓𝑙𝑎𝑘) =

{
(1 − ∏ (1 − 𝑝𝑟𝑜(𝑏𝑎𝑝𝑗)𝑖))𝑛𝑏𝑘 𝑓𝑜𝑟 𝑐𝑎𝑠𝑒 1

𝑏𝑛𝑟𝑘
𝑖=1

∏ (1 − ∏ (1 − 𝑝𝑟𝑜(𝑏𝑎𝑝𝑗)𝑖) 𝑓𝑜𝑟 𝑐𝑎𝑠𝑒 2
𝑏𝑛𝑟𝑘
𝑖=1

𝑛𝑏𝑘
𝑖=1

(2)

𝑝𝑟𝑜(𝑓𝑙𝑎𝑘)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ =

{
1 − (1 − ∏ (1 − 𝑝𝑟𝑜(𝑏𝑎𝑝𝑗)𝑖))𝑛𝑏𝑘 𝑓𝑜𝑟 𝑐𝑎𝑠𝑒 1

𝑏𝑛𝑟𝑘
𝑖=1

1 − ∏ (1 − ∏ (1 − 𝑝𝑟𝑜(𝑏𝑎𝑝𝑗)𝑖)) 𝑓𝑜𝑟 𝑐𝑎𝑠𝑒 2
𝑏𝑛𝑟𝑘
𝑖=1

𝑛𝑏𝑘
𝑖=1

(3)

Let the block available probability Pro (bapj)

ℎ𝑖𝑔ℎ𝑑𝑐 = 0.9 > 𝑚𝑖𝑑𝑑𝑐 = 0.6 > 𝑙𝑜𝑤𝑑𝑐 = 0.3 (4)

blocks Where, B
Probability of file availability Pro(flak)

Number of block nbk
Number of replica of a data file

dfk
bnrk

Block unavailability probability

ofblock
𝑃𝑟𝑜(𝑓𝑙𝑎𝑗)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅

Number of access task have request nak
Probability of file unavailability 𝑃𝑟𝑜(𝑓𝑙𝑎𝑘)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅
High Datacenters High DCs

Mid Datacenters Mid DCs

Low Datacenters Low DCs

3.1.2. Replication costs in datacenters

There is a set of DC costs that differentiate low DCs,

mid DCs, high DCs, and this set includes the costs,

availability probabilities, velocities, reliabilities and

performances in the Cloud. The costs of DCs are

important factors that include the factors of MOO that

select and place replicas through DCs. The total

replication costs must be kept as reasonable as possible

to save replications through DCs and to ensure that the

budget is sufficient for users.

𝑐𝑜𝑠𝑡𝑘(𝑑𝑐𝑠) = ∑ (𝑐𝑜𝑠𝑡(𝑑𝑐𝑦) . 𝑏𝑛𝑟𝑘(𝑑𝑐𝑦))
𝑦
𝑥=1 (5)

3.1.3. Minimum distance between datacenters

The distance between DCs is calculated according

to the access to data replications, which can be

calculated using the following Eqs. (6) and (7) [1]. The

best solution uses the connection between two DCs (I

and j). This equation indicates that dci and dcj are

passed by confirming that this equation assures their

nonpassing in an endless ring.

𝑀𝑖𝑛 ∑ ∑ 𝑑𝑖𝑗𝑥𝑖𝑗
𝑛
𝑗=1

𝑛
𝑖=1 (6)

 St.:

∑ 𝑛𝑖𝑥𝑖≥𝑘, 𝑥𝑖∈{0,1} (1≤𝑖≤𝑛)
𝑛
𝑖=1 (7)

3.1.4. knapsack problem

The knapsack problem is NP-hard. Any item has an

assigned value and weight. The aim is to minimize the

cost in the Cloud by ensuring that the budget is

sufficient for users by using the following Eqs. (8) and

(9):

𝑚𝑎𝑥𝑖𝑚𝑖𝑧𝑒 𝑝𝑥 = ∑ 𝑝𝑗𝑥𝑗
𝑛
𝑗=1 (8)

St.:

𝑤𝑥 = ∑ 𝑤𝑖𝑗𝑥𝑗 ≤𝑛
𝑗=1 𝑣𝑖 (9)

𝑥𝑗 ∈ {0,1} , 𝑗 = 1,2, … … 𝑛

𝑝 = (𝑝1, 𝑝2, … … 𝑝𝑛)

𝑤 = 𝑤1, 𝑤2, … … 𝑤𝑛
𝑖 = 1,2, … … . . 𝑚

Each object j ∈ J has profit pj and weight wj in

dimension i (1 ≤ i ≤ m)

Binary variable xj indicates whether object j is

included in the knapsack (xj = 1) or not (xj = 0).

We use the MOO process with AI techniques of

PSO and ACO to determine the data availability,

Received: September 13, 2020. Revised: December 29, 2020. 275

International Journal of Intelligent Engineering and Systems, Vol.14, No.2, 2021 DOI: 10.22266/ijies2021.0430.24

optimal costs and different path distances in DCs. We

perform the three processes together based on the AI

techniques to optimize the access, selection and

placement of replications in the suggested system.

3.2 Proposed PSO and ACO-based algorithm for

the cloud environment

The suggested system incorporates two different

algorithms: PSO and ACO. PSO selects the data

replications and ACO places the data replications.

Therefore, the suggested functional system consists

of three basic characteristics: file availability, access

time and costs. Meanwhile Zipf and geometric

distribution are used to distribute the data replications

in the Cloud.

3.2.1. The proposed method to determine which file to

replicate and when to replicate using PSO

In this subsection, we discuss the PSO algorithm

on a wide scale to assess the data replication using

CloudSim. To solve the suggested problem, we use

MOO along with PSO in the suggested method. The

PSO optimizes many problems in the optimization

and determination process, and this algorithm has

two important aspects: exploration and exploitation.

[27-31] In this stage, exploration aims at discovering

the optimal search space solutions and local adjacent

space. Exploitation searches the recent solutions and

selects the best-suggested solutions. A fitness

function evaluates the optimally selected data

replication for every particle along with the best.

Then, the process updates the particle velocity,

position and inertia weight using Eqs. (10), (11), and

(12) as follows. [32]. We update the velocities for

every dimension as follows:

𝑉
𝑘 + 1

𝑖, 𝑗
= 𝑊. 𝑉

𝑘
𝑖, 𝑗

+ 𝐶1𝑅1 (𝑝𝑏𝑒𝑠𝑡
𝑘

𝑖, 𝑗
− 𝑋

𝑘
𝑖, 𝑗

) +

𝐶2𝑅2 (𝑔𝑏𝑒𝑠𝑡
𝑘

𝑖, 𝑗
− 𝑋

𝑘
𝑖. 𝑗

) (10)

Where

𝑉
𝑘 + 1

𝑖, 𝑗
 Represents the new velocity of a particle

𝑉
𝑘

𝑖, 𝑗
 𝑟𝑒𝑝𝑟𝑒𝑠𝑒𝑛𝑡𝑠 𝑖𝑡𝑠 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦.

𝐶1, 𝐶2 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡𝑠 𝑎𝑐𝑐𝑒𝑙𝑒𝑟𝑎𝑡𝑖𝑜𝑛
𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠.

𝑝𝑏𝑒𝑠𝑡
𝑘

𝑖, 𝑗
 𝑝𝑒𝑟𝑠𝑜𝑛𝑎𝑙 𝑏𝑒𝑠𝑡 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 𝑝𝑎𝑟𝑡𝑖𝑐𝑎𝑙.

𝑋
𝑘

𝑖, 𝑗
 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 𝑜𝑓 𝑖𝑡ℎ 𝑝𝑎𝑟𝑡𝑖𝑐𝑎𝑙 𝑖𝑛 𝑗𝑡ℎ 𝑠𝑤𝑎𝑟𝑚.

𝑅1, 𝑅2 two random variables in the range [0,1].

𝑔𝑏𝑒𝑠𝑡
𝑘

𝑖, 𝑗
 𝑔𝑙𝑜𝑎𝑏𝑒𝑙 𝑏𝑒𝑠𝑡 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 𝑝𝑎𝑟𝑡𝑖𝑐𝑎𝑙.

𝑋
𝑘 + 1

𝑖, 𝑗
= 𝑋

𝑘
𝑖, 𝑗

+ 𝑉
𝑘 + 1

𝑖, 𝑗
 (11)

Where

𝑋
𝑘 + 1

𝑖, 𝑗
 𝑛𝑒𝑤 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 𝑜𝑓 𝑝𝑎𝑟𝑡𝑖𝑐𝑎𝑙.

𝑘 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛.
𝑖 1,2,3, … . . 𝑚 𝑚 𝑖𝑠 𝑡ℎ𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑚𝑒𝑚𝑏𝑒𝑟𝑠
 𝑖𝑛 𝑎 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠.
𝑗 1,2,3, … . . . 𝑑 𝑑 𝑖𝑠 𝑡ℎ𝑒 𝑠𝑖𝑧𝑒 𝑜𝑓 𝑡ℎ𝑒 𝑠𝑤𝑎𝑟𝑚.

𝑤 = 𝑤𝑚𝑎𝑥 −
𝑤𝑚𝑎𝑥−𝑤𝑚𝑖𝑛

𝑖𝑡𝑒𝑟𝑚𝑎𝑥
. 𝑖𝑡𝑒𝑟 (12)

Where

𝑤 𝑖𝑛𝑒𝑟𝑡𝑖𝑎 𝑤𝑒𝑖𝑔ℎ𝑡
𝑤𝑚𝑎𝑥 𝑖𝑛𝑖𝑡𝑖𝑎𝑙 𝑣𝑎𝑙𝑢𝑒 𝑜𝑓 𝑖𝑛𝑒𝑟𝑡𝑖𝑎 𝑤𝑒𝑖𝑔ℎ𝑡.
𝑤𝑚𝑖𝑛 𝑓𝑖𝑛𝑎𝑙 𝑣𝑎𝑙𝑢𝑒 𝑜𝑓 𝑖𝑛𝑒𝑟𝑡𝑖𝑎 𝑤𝑒𝑖𝑔ℎ𝑡.
𝑖𝑡𝑒𝑟𝑚𝑎𝑥 𝑚𝑎𝑥𝑖𝑚𝑢𝑚 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠

𝑖𝑡𝑒𝑟 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛 𝑛𝑢𝑚𝑏𝑒𝑟.

When the replica access task is performed by

users, we determine that the algorithm accesses and

selects the optimal replica. It calculates the fitness

function of the optimally selected replica for every

particle and uses MOO to determine the shortest

paths, lowest costs and lowest access times for data

replication in the Cloud.

3.2.2. Analyze the type of fragment's and access time to

replication

The improved time-based decay function

(ITBDF) is used to determine the priorities, data

replication weights or importance's in DCs along with

different accesses and data interval times. For this

concept, the ITBDF weights the access to recent data

replications and distinguishes previously accessed

data. The ITBDF gives priority and weights to data

replication access based on the PSO that is

implemented in our system. The ITBDF has a

concept called data replication that continuously

analyzes DCs functions over time. It can be

calculated through the following Eqs. (13) and (14):

𝐼𝑇𝐵𝐷𝐹(𝑡𝑎, 𝑡𝑏) = e−(ta−tb)k (13)

𝑘 ∈ {1,2,3, … … . }

𝐼𝑇𝐵𝐷𝐹(𝑡𝑎, 𝑡𝑏) = 𝑒−(∆𝑡)𝑘 (14)

𝑤ℎ𝑒𝑟𝑒 ∆𝑡 = (𝑡𝑎 − 𝑡𝑏)

Received: September 13, 2020. Revised: December 29, 2020. 276

International Journal of Intelligent Engineering and Systems, Vol.14, No.2, 2021 DOI: 10.22266/ijies2021.0430.24

Where:

ta is current time.

tb starts time.
k value is increase.

e exponential function decay.

𝑅𝐹𝑘 =
∑ (𝑛𝑎𝑘(𝑡𝑖,𝑡𝑖+1).𝐼𝑇𝐵𝐷𝐹(𝑡𝑖,𝑡𝑎))

𝑡𝑎
𝑡𝑖=𝑡𝑏

𝑏𝑛𝑟𝑘 .∑ 𝑠𝑏𝑖
𝑛𝑏𝑘
𝑖=1

 (15)

where:

𝑡𝑎 𝑖𝑠 𝑡ℎ𝑒 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑡𝑖𝑚𝑒

𝑡𝑏 𝑖𝑠 𝑡ℎ𝑒 𝑠𝑡𝑎𝑟𝑡 𝑡𝑖𝑚𝑒

𝑛𝑎𝑘 𝑖𝑠 𝑡ℎ𝑒𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑎𝑐𝑐𝑒𝑠𝑠𝑒𝑠

𝑏𝑛𝑟𝑘 𝑖𝑠 𝑡ℎ𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑟𝑒𝑝𝑙𝑖𝑐𝑎𝑠

𝑛𝑏𝑘 𝑖𝑠 𝑡ℎ𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑏𝑙𝑜𝑐𝑘𝑠

𝑠𝑏𝑖 𝑖𝑠 𝑡ℎ𝑒 𝑠𝑖𝑧𝑒 𝑜𝑓 𝑎 𝑏𝑙𝑜𝑐𝑘

Algorithm 1. The Proposed MOPSO for Selecting

Data Replicas in a Cloud Environment

 Input: Size of Population

 Number of Particles

 Number of Iterations

 Datacenters

 Data Availability

 Improved Time-Based Decay Function

 Output: Selected Optimally Best Replica

 Total Execution Time and Costs

 Initialization:

Define Values of parameters, Size of Pop, Num of

Iterations and Num of Particles;

Initialize set values of particle swarm (Num of

Iterations and Num of Particles);

Initialize availability and unavailability probabilities;

Initialize best replica according to costs and time;

Repeat

For j=1 to number of particles;

Pvelocity ←Random velocity();

Pposition ←Random position();

Pbest ← Pposition

End for

For each data replication in DC do;

Calculate the ITBDF of the data replication;

Calculate the replica factor of the data replication;

Calculate the costs of the data replication;

End for

If α ≤ 0 then

Exploitation

Else

Exploration

Select best data replication;

End if

Until maximum number of iterations is reached or

access solution found;

Return the optimal best replica solution;

3.2.3 The proposed placement of new replications using

ACO

In this section, we discuss applying the suggested

ACO algorithm on a wide scale to perform the

placement in CloudSim. In this stage, replica

management decides the new replica placements

based on the replication costs and space of DCs.

Thereafter, data replications are made available to

users and data access occurs according to the

suggested system. The ACO algorithm is used to

optimally place replicas in DCs to meet user requests,

which are created according to the suggested system.

ACO is the most important algorithm to find the

best shortest and least expensive way. The total

pheromones at positions on the different routes are

measured using the objective function, and we also

calculate the transition from DCi to DCj according to

the following equations from Eqs. (16) to (21): [33].

𝑝𝑖𝑗 = {

[𝜏𝑖𝑗]𝛼[𝜂𝑖𝑗]𝛽

∑ [𝜏𝑖𝑠]𝛼[𝜂𝑖𝑗]𝛽
𝑠∈𝑘

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 𝑖𝑓 𝑗 ∈ 𝑎𝑙𝑙𝑜𝑤𝑒𝑑 𝑘
 (16)

The calculation of the next DC that is selected by

ant k is as follows:

j =

{
arg maxs∈allowed k {[τij]

α[ηij]
β}, if q ≤ q0, if q > q0

j otherwise
(17)

The calculation of the detection array of the ant

proceeds according to the following Eq. (18):

𝜂𝑖𝑗 =
1

𝑑𝑖𝑗
 (18)

The pheromone values on routes are updated after

every repetition. When ants reach the end of their

travel path, the pheromone value is a positive

constant. The updated local pheromone value can be

calculated as follows Eq. (19):

𝜏𝑖𝑗 = (1 − 𝑝)𝜏𝑖𝑗 + 𝑝𝜏0, ∀(𝑖, 𝑗) ∈ 𝑡𝑘 , 𝑤ℎ𝑒𝑟𝑒 (0 <

𝑝 ≤ 1) (19)

After evaporation, every ant adds pheromones to

the routes according to the set method, and the

updated global pheromone value is calculated Eq.

(20) as follows:

𝜏𝑖𝑗 = (1 − 𝑝) + 𝑝. ∑ ∆𝜏𝑖𝑗
𝑚
𝑘=1 (20)

Received: September 13, 2020. Revised: December 29, 2020. 277

International Journal of Intelligent Engineering and Systems, Vol.14, No.2, 2021 DOI: 10.22266/ijies2021.0430.24

∆𝜏𝑖𝑗: is the amount of pheromone that is added by ant

k on their route. It can be represented Eq. (21) as

follows:

∆𝜏𝑖𝑗= {
1

𝑐𝑘 𝑖𝑓 ∀(𝑖, 𝑗) ∈ 𝑡𝑘

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (21)

We find that the algorithm places and accesses

optimal replicas based on geometric and Zipf

distributions. The calculations of the fitness function

for every MOACO of the replica positions through

DCs in the Cloud occur as follows.

Algorithm 2. The Proposed MOACO for the

Placement of Data Replicas in a Cloud Environment

 Input: Number of Ants

 Number of Iterations

 Datacenters

 Zipf, Geometric Distribution

 Min Distance between Datacenters

 Output: Selected Optimally Best Data Replica

Placement

 Total Execution Time and Costs

 Initialization:

Define Values of parameters, Num of Iterations and

Num of Ants;

Initialize availability and unavailability probabilities;

Initialize distance between DCs;

Initialize costs of data replication and size;

Initialize optimal best data replication placement in

DC solution;

Repeat

For I=1 to (Num of ants);

Step = step + 1;

Set all ant distribution in DC;

End for

Repeat

For each DC in current system;

Calculate desirability of the movement;

Calculate probability of the movement;

End for

If q ≤ q0 then

Exploitation

Else

Exploration

End if

Set local pheromone update;

Set global pheromone update;

Set determine replica placement in DC;

Until all replicas are selected;

Until all replicas are placed;

End for

End for

If the storage space of the DC is insufficient;

Then

Apply the global update rule;

Else if

Delete small replica popularities;

End if

Until maximum number of iterations is reached or

access solution is found;

Return the optimally best data replication placement in

the DC;

3.2.4 Zipf and geometric distributions

Zipf and geometric distributions are used to select

and place replicas through DCs in the Cloud. A

distribution follows users' behaviors to determine the

more popular data replications and places those data

replications in DCs that are nearer to users. A Zipf

distribution is used to randomly model the size and

selects the replica locations according to their

popularity and rapid user access:

𝑝(𝑓𝑖) =
1

𝑖𝑎 (22)

where i = 1, 2. . . N; and α is a factor determining

the data access distribution, where 0 ≤ α < 1.

A geometric distribution provides the most

popular data that are more distinct with more access

and higher weights. The data can be distributed

through DCs and more random solutions can be

discovered through the search space. Therefore, the

most dispersed distribution is called the geometric

distribution and it has a different formula:

𝑝(𝑖) = (1 − 𝑝)𝑖−1. 𝑝 (23)

where i = 1, 2. . . n and 0 < p < 1. A larger p

represents that a smaller portion of the data are

repeatedly accessed.

4. Experimental evaluation

4.1 Experiments of optimization

This section discusses the experimental results

and configures the replication model in the suggested

Cloud. Further, it places the replications by using the

suggested PSO and ACO algorithms. These

algorithms are performed on CloudSim. The

execution time, costs, access speed, high replication

availability and placement efficiency of this method

are compared with those of other algorithms.

Received: September 13, 2020. Revised: December 29, 2020. 278

International Journal of Intelligent Engineering and Systems, Vol.14, No.2, 2021 DOI: 10.22266/ijies2021.0430.24

4.2 Configuration details

The Cloud is formed to simulate different kinds

of DCs with different structures. Moreover, 21 DCs

are used. The system configurations are shown in

Table 1. Each DC consists of a host that contains a

set of VMs that provides blocks of available data

replications. We created three different data

placements for high datacenters. A total of one

thousand cloudlets are randomly confirmed for the

data replication order. PSO and ACO algorithms

parameters are shown in Tables 2 and 3. A

comparison between related work and proposed

model is shown in Table 4.

Table 1. Simulation parameters of the configuration

system

Low

DCs

Mid

DCs

High

DCs

Proposed System NO

Datacenters (DCs)

15 5 1 No. of DCs (21) 1

100 300 500 Cost of DCs 2

60 30 20 No. of hosts per DC

(110)

3

Host

1 - 4 4 - 8 12 -

16

How many processing

elements per host?

4

100 -

500

500 -

1000

1000 -

2000

How many MIPS per

Processing Element?

5

1 – 2

GB

2 – 4

GB

5 – 10

GB

How much Bandwidth

per Processing

Element

6

Virtual machines (VMs)

120 150 200 Number of VMs (470) 7

200 400 800 MIPS 8

512

MB

1

GB 2 GB

Memory ram 9

1 GB

2

GB 10 GB

Bandwidth 10

1 - 4 4 - 8 8 - 16 No of processing

elements

11

time &space shard Cloudlet scheduler 12

VM scheduler 13

Cloudlet

1000 task Cloudlet task 14

1000 - 20000 Length of task 15

File

Using zipf distribution and geometric distribution

A three different data files (3 files) are placed in the

Cloud storage environment, with each size in the range

of [0.1, 10] GB.

C B A No of file (3) 16

100 300 500 Cost of replication 17

Users

10 – 50 No. of users 18

Table 2. PSO parameters

values parameters No.

50 No. of particles 1

2 C1 2

2 C2 3

[0 –1] R1 4

[0 –1] R2 5

0.9 𝑤𝑚𝑎𝑥 6

0.4 𝑤𝑚𝑖𝑛 7

1000 No. of iteration 8

1 W 9

Table 3. ACO parameters

values parameters No.

1 𝛼 1

2 𝛽 2

0.3 p 3

1 q 4

50 m 5

0.9 𝑝𝜏0 6

Table 4. Comparison between related work and my

proposed

S
trateg

y

Y
ear

A
v
ailab

ility

L
o
ad

 B
alan

cin
g

H
etero

g
en

eity

K
n
ap

sack
 p

ro
b
lem

D
istan

ce

L
east C

o
st P

ath

O
p
tim

al L
o
catio

n

P
ath

 L
en

g
th

 T
ask

s

R
ep

lica d
ecisio

n

Fuzzy-FP [34] 2016 √ √

EFS [35] 2011 √ √

DCR2S [13] 2016 √ √ √ √

ACO [36] 2016 √ √

GASA [37] 2016 √ √

DRSACO [38] 2013 √ √

Genetic [39] 2015 √ √

My Strategy 2019 √ √ √ √ √ √ √ √ √

5. Results and discussion

This paper uses CloudSim to conduct the

experiments on the dynamic selection and placement

of replicas in the Cloud. It uses the MOPSO and

MOACO algorithms and verifies the experimental

results by comparing them with other algorithms.

5.1 The selecting the optimally best replica

Fig. 1 shows the influence of using the MOPSO,

DCR2S and EFS on the replication costs as the users'

number of tasks increases. It is obvious that our

MOPSO method decreases the replication costs

compared with the DCR2S and EFS. The MOPSO

algorithm has been shown to select replicas by

Received: September 13, 2020. Revised: December 29, 2020. 279

International Journal of Intelligent Engineering and Systems, Vol.14, No.2, 2021 DOI: 10.22266/ijies2021.0430.24

Figure. 1 Replication costs and number of cloudlets

Figure. 2 Probability of data availability and no of replicas

Figure. 3 Different number about Zipf and geo in cloudsim

changing the number of particles and the number of

iterations, as shown in Table 3. The replication costs

are very expensive for the EFS compared to the

DCR2S, where the replication costs equal the budget.

There are three gaps: “constant cost, optimize replica

and waiting time for users”. Hence, MOPSO is highly

beneficial in optimizing the cost of replication as well

as high availability and ITBDF. Finally, optimization

of selecting replicas is performed through cloudlets.

In Fig. 2, the experimental results show the access

ability with the most popular replica through the

MOPSO algorithm to select optimal replicas that are

based on ITBDF. These findings have therefore

clarified that our algorithm is more effective in the

execution time necessary to access optimal replicas

than that of other algorithms.

5.2 Different number of replicas using the zipf and

geo distributions:

In Fig. 3 shows the requesting the number of data

replications, the average response time of the

selection of data replication greatly increases Our

MOPSO strategy shows a reduced average response

time within the requested number of data replications

by users.

5.3 The optimally best placement of replicas:

 This experiment assesses the use of the MOACO

algorithm to evaluate the placement of replicas

through the ant's behavior and the number of cycles

through DCs. To assess the optimal placements in

Received: September 13, 2020. Revised: December 29, 2020. 280

International Journal of Intelligent Engineering and Systems, Vol.14, No.2, 2021 DOI: 10.22266/ijies2021.0430.24

Figure. 4 The data transmissions with different data nodes

Figure. 5 Total data transmission and number of tasks

Figure. 6 Path length of data transmission between other strategies in DCs

DCs, we use different distributions such as Zipf and

geometric distributions, in CloudSim. The

experiments show that our MOACO strategy

provides the best results, and its results are compared

with those of other algorithms. The suggested

strategy is evaluated for many aspects, including the

least-cost path and the distance to reach the optimal

replica placement locations in DCs according to Zipf

and geometric distributions. Several approaches are

implemented to assess the transmission process in

DCs such as the number of tasks and number nodes.

In Figs. 4 and 5 MOACO is used to determine the

number of replications through DCs and the data

transmission rate that reduces time and costs. The

results show that our strategy is superior to other

algorithms. The comparison of the results of our

strategy with the results of other algorithms shows

that our strategy is superior to other algorithms with

respect to the time and costs of optimizing the

placement of replicas.

5.4 Different number of replicas using the Path

length based on MOACO:

In this section, the calculation of the shortest path

based on ACO with MOO is shown, and the new

strategy approach to solve optimal placement is

provided. Fig. 6 shows the comparison between the

MOACO algorithm and GASA algorithm based on

the shortest path problem, which affects the

decreased shortest path of optimal data replication in

nodes. Therefore, when requesting the number of

data replications, the shortest path of data replications

greatly increases. Our MOACO strategy has been

shown to reduce the shortest path within the

requested number of data replications by users.

Regarding the comparison of the GASA algorithm in

reducing the shortest path, we note that the MOACO

algorithm is superior to the GASA algorithm.

Received: September 13, 2020. Revised: December 29, 2020. 281

International Journal of Intelligent Engineering and Systems, Vol.14, No.2, 2021 DOI: 10.22266/ijies2021.0430.24

(a)

(b)

Figure. 7 Different scenarios about cost of data replication with the number of replicas: (a) the first type of scenario cost

replication and (b) the second type of scenario cost replication

Figure. 8 Average response time for different data replication strategies in the cloud

5.5 Cost of replication and number of replicas

using the knapsack problem

Fig. 7 shows the comparison between the

MOACO algorithm and DCR2S algorithm based on

the budget of replication with the knapsack problem,

which affects the decreased budget of data replication.

Therefore, when requesting the number of data

replications, the costs of data replication greatly

increase. There are many different scenarios from (a)

and (b), and we have made different budget scenarios

from 500 to 5000. Thus, the MOACO algorithm can

enhance the budget of data file replication with the

knapsack problem when users require the number of

data replications.

5.6 Performance evaluation

5.6.1. Average response time

In Fig. 8 the average response times of the

replication strategy using Zipf and geometric

distributions are given. Through the experiments, we

see that our suggested strategy reduces the average

response time by 12% more than the familiar PDR

algorithm. As the number of user tasks to determine

and placement replications increases, the average

response time rapidly increases but our strategy

efficaciously reduces the time.

Received: September 13, 2020. Revised: December 29, 2020. 282

International Journal of Intelligent Engineering and Systems, Vol.14, No.2, 2021 DOI: 10.22266/ijies2021.0430.24

5.6.2. Effective network usage (ENU)

In Fig. 9 the effective network usage measures the

data percentage that passes through a network in the

domain on a scale from 0 to 1. It includes the number

of suitable accesses, the response time and the

replications to other places that are closer and have

lower costs among DCs. It shows that the bandwidth

use was more efficient and effective with our strategy.

Further, the most familiar algorithm, the PDR, has an

ENU that improves by approximately 25% through

the Cloud.

5.6.3 Storage usage

In Fig. 10, the different storage use rates in our

heterogeneous system assess the relative size of the

data when transferring and storing data replications

with respect to the DCs' size. Nevertheless, it is

another measure of the costs and transfer time among

DCs. By comparing our strategy with the most

familiar algorithm, the PDR, the results show that our

strategy is superior and that it provides the best

percentage at approximately 20%. Moreover, it

maintains the most popular data replication in near

places.

Figure. 9 Effective network usage for different data

replication strategies in the cloud

Figure. 10 Storage use rates for different data replication

strategies in the cloud

Figure. 11 Hit ratios for different data replication

strategies in the cloud

5.6.4. Hit Ratio

Fig. 11 the hit ratio is represented as the

percentage of accessible data that are either closer to

or farther from tasks as distances between 1000 to

3000. Our strategy achieved a higher hit ratio

compared with the most familiar PDR algorithm,

which shows that our method can be accurately

applied to model users' behavior when accessing

closer and farther replications.

6. Conclusion

The Cloud environment is one of the most

important scenarios that can be leveraged to achieve

high availability and optimize the performance of

replicas. This paper proposed two swarm intelligence

algorithms (MOPSO and MOACO) for dynamic data

replication and placement. MOPSO determines the

optimal access to the most popular data replications

and selects the optimal replication using ITBDF.

MOACO is used to optimize the placement of data

replicas, which was previously determined using

MOPSO in suitable sites near users. The suggested

system architecture was constructed and

implemented using CloudSim. The performance of

proposed model was compared with different

replication algorithms such as, EFS, D2RS, ADRS,

DRACO, and GA. The simulation results showed that

the proposed algorithms were more efficient and

better than the compared algorithms.

In future work, the suggested system architecture

will be assessed using a real computing environment.

Also, the knapsack problem will be improved to

optimize costs, storage space, waiting times, data

availability, performance and access speed for data

replications through the cloud.

Conflicts of Interest

The authors declare no conflict of interest about

this research.

Author Contributions

Conceptualization: Ahmed Awad, Rashed Salem,

Hatem Abdelkader, Mustafa Abdul Salam.

Methodology: Ahmed Awad, Rashed Salem, Hatem

Abdelkader, Mustafa Abdul Salam. Software:

Ahmed Awad, Mustafa Abdul Salam. Validation:

Rashed Salem, Hatem Abdelkader, Mustafa Abdul

Salam. Formal Analysis: Ahmed Awad.

Investigation: Ahmed Awad. Resources: Ahmed

Awad, Mustafa Abdul Salam. Data Curation: Ahmed

Awad, Mustafa Abdul Salam. Writing - Original

Draft: Ahmed Awad. Writing - Review & Editing:

Received: September 13, 2020. Revised: December 29, 2020. 283

International Journal of Intelligent Engineering and Systems, Vol.14, No.2, 2021 DOI: 10.22266/ijies2021.0430.24

Ahmed awad, Rashed Salem, Hatem Abdelkader,

Mustafa Abdul Salam. Visualization: Ahmed Awad,

Rashed Salem, Hatem Abdelkader, Mustafa Abdul

Salam. Supervision: Rashed Salem, Hatem

Abdelkader, Mustafa Abdul Salam.

References

[1] R. Salem, M. Abdul-Salam, H. Abdel-kader, and

A. Awad, “Anartificial bee colony algorithm for

data replication optimization in cloud

environments”, IEEE Access, Vol. 8, pp. 51841–

51852, 2020.

[2] R. Buyya, C. Yeo, S. Venugopal, J. Broberg, and

I. Brandic, “Cloud computing and emerging IT

platforms: Vision, hype, and reality for

delivering computing as the 5th utility”, Future

Generation Computer Systems, Vol. 25, No. 6,

pp. 599-616, 2009.

[3] R. Calheiros, R. Ranjan, A. Beloglazov, C. De

Rose, and R. Buyya, “CloudSim: a toolkit for

modeling and simulation of cloud computing

environments and evaluation of resource

provisioning algorithms”, Software Practice and

Experience, Vol. 41, No. 1, pp. 23–50, 2011.

[4] N. Rajeshirke, R. Sawant, S. Sawant, and H.

Shaikh, “Load Balancing in Cloud Computing”,

International Journal of Recent Trends in

Engineering & Research, Vol. 3, No. 3, pp. 260–

267, 2017.

[5] E. Ghomi, A. Rahmani, and N. Qader, “Load-

balancing Algorithms in Cloud Computing: A

Survey”, Journal of Network and Computer

Applications, Vol. 17, pp. 1–62, 2017.

[6] H. Ahn, K. Lee, and Y. Lee, “Dynamic erasure

coding decision for modern block-oriented

distributed storage systems”, J Supercomput,

Vol. 72, No. 7, pp. 1312–1341, 2016.

[7] N. Maheshwari, R. Nanduri, and V. Varma,

“Dynamic energy efficient data placement and

cluster reconfiguration algorithm for

MapReduce framework”, Future Generation

Computer Systems, Vol. 28, pp. 119–127,2014.

[8] B. Milani and N. Navimipour, “A

comprehensive review of the data replication

techniques in the cloud environments: Major

trends and future directions”, Journal of

Network and Computer Applications, Vol. 64,

pp. 229–238, 2016.

[9] Z. Fadaie and A. Rahmani, “A new Replica

Placement Algorithm in Data Grid”,

International Journal of Computer Science

Issues, Vol. 9, No. 3, pp. 491-507, 2012.

[10] A. Rajalakshmi, D. Vijayakumar, and K.

Srinivasagan, “An Improved Dynamic Data

Replica Selection and Placement in Hybrid

Cloud”, International Journal of Innovative

Research in Science, Engineering and

Technology, Vol. 3, No. 3, pp. 2187-2192, 2014.

[11] N. Mansouri, M. Rafsanjani, and M. Javidi,

“DPRS: A dynamic popularity aware replication

strategy with parallel download scheme in cloud

environments”, Simulation Modelling Practice

and Theory, Vol. 77, pp. 177–196, 2017.

[12] D. Sun, G. Chang, S. Gao, L. Jin, and X. Wang,

“Modeling a Dynamic Data Replication Strategy

to Increase System Availability in Cloud

Computing Environments”, Journal of

Computer Science and Technology, Vol. 27, No.

2, pp. 256 – 272, 2012.

[13] N. Gill and S. Singh, “A dynamic, cost-aware,

optimized data replication strategy for

heterogeneous cloud data centers”, Future

Generation Computer Systems, Vol. 65, pp. 10–

32, 2016.

[14] N. MANSOURI, “Adaptive data replication

strategy in cloud computing for performance

improvement”, Front. Comput. Sci., Vol. 6, pp.

1-11, 2015.

[15] K. Kumar, A. Quamar, A. Deshpande, and S.

Khuller, “SWORD: workload-aware data

placement and replica selection for cloud data

management systems”, The VLDB Journal, Vol.

1, pp. 1-26, 2014.

[16] X. Bai, H. Jin, X. Liao, X. Shi, and Z. Shao,

“RTRM: A Response Time-Based Replica

Managementm Strategy for Cloud Storage

System”, In: Proc. of International Conf. on

Grid and Pervasive Computing, Wuhan, China,

pp.124-133, 2013.

[17] D. Yuan, Y. Yang, X. Liu, and J. Chen, “A data

placement strategy in scientific cloud

workflows”, Future Generation Computer

Systems, Vol. 26, pp. 1200-1214, 2010.

[18] C. Hamdeni, T. Hamrouni, and F. Charrada,

“Adaptive measurement method for data

popularity in distributed systems”, Cluster

Comput, Vol. 19, pp. 1801-1818, 2016.

[19] N. Maheshwari, R. Nanduri, and V. Varma,

“Dynamic energy efficient data placement and

cluster reconfiguration algorithm for

MapReduce framework”, Future Generation

Computer Systems, Vol. 28, pp. 119– 127, 2012.

[20] Q. Xu, Z. Xu, and T. Wang, “A Data-Placement

Strategy Based on Genetic Algorithm in Cloud

Computing”, International Journal of

Intelligence Science, Vol. 5, pp. 145-157, 2015.

[21] Z. Li, W. Cai, and S. Turner, “Un-identical

federate replication structure for improving

performance of HLA-based simulations”,

Received: September 13, 2020. Revised: December 29, 2020. 284

International Journal of Intelligent Engineering and Systems, Vol.14, No.2, 2021 DOI: 10.22266/ijies2021.0430.24

Simulation Modelling Practice and Theory, Vol.

48, pp. 112–128, 2014.

[22] Z. Tang, X. Zhang, and K. Li, “An intermediate

data placement algorithm for load balancing in

Spark computing environment”, Future

Generation Computer Systems, Vol. 78, No. 1,

pp. 287-301, 2018.

[23] T. Hsu, A. Kshemkalyani, and M. Shen, “Causal

consistency algorithms for partially replicated

and fully replicated Systems”, Future

Generation Computer Systems, Vol. 86, pp.

1118-1133, 2018.

[24] H. Casanova, Y. Robert, F. Vivien, and D.

Zaidouni, “On the impact of process replication

on executions of large-scale parallel applications

with coordinated checkpointing”, Future

Generation Computer Systems, Vol. 51, pp. 7–

19, 2015.

[25] P. Matri, M. S. Perez, A. Costan, L. Bouge, and

G. Antoniu, “Keeping up with Storage:

Decentralized, write-enabled dynamic geo-

replication”, Future Generation Computer

Systems, Vol. 86, pp. 1093-1105, 2017.

[26] M. Lee, F. Leu, and Y. Chen, “PFRF: An

adaptive data replication algorithm based on star

topology data grids”, Future Generation

Computer Systems, Vol. 28, pp. 1045–1057,

2012.

[27] O. Hegazy, O. Soliman, and M. Abdul-Salam,

“A Machine Learning Model for Stock Market

Prediction”, International Journal of Computer

Science and Telecommunications, Vol. 4, No. 12,

pp. 17-23, 2013.

[28] O. Hegazy, O. Soliman, and M. Abdul-Salam,

“Comparative Study between FPA, BA, MCS,

ABC, and PSO Algorithms in Training and

Optimizing of LS-SVM for Stock Market

Prediction”, International Journal of Advanced

Computer Research, Vol. 5, No. 18, pp. 35-45,

2015.

[29] O. Hegazy, O. Soliman, and M. Abdul-Salam,

“LSSVM-ABC Algorithm for Stock Price

prediction”, International Journal of Computer

Trends and Technology, Vol.7, No. 2, pp. 81-92,

2014.

[30] O. Hegazy, O. Soliman, and M. Abdul-Salam,

“Optimizing LS-SVM using Modified Cuckoo

Search Algorithm (MCS) for Stock Price

Prediction”, International Journal of Advanced

Computer Research in Computer Science and

Management Studies, Vol. 3, No. 2, pp. 204-224,

2015.

[31] O. Hegazy, O. Soliman, and M. Abdul-Salam,

“FPA-ELM Model for Stock Market Prediction”,

International Journal of Advanced Research in

Computer Science and Software Engineering,

Vol. 5, No. 2, pp. 1050-1063, 2014.

[32] K. Kavitha and R. Neela, “Optimal allocation of

multi-type FACTS devices and its effect in

enhancing system security using BBO, WIPSO

& PSO”, Journal of Electrical Systems and

Information Technology, Vol. 5, No. 3, pp. 777–

793, 2018.

[33] Y. Moon, H. Yu, J. Gil, and J. Lim, “A slave ants

based ant colony optimization algorithm for task

scheduling in cloud computing environments”,

Human-centric Computing and Information

Sciences, Vol. 7, No. 28, pp. 1-10, 2017.

[34] P. Elango and D. Kuppusamy, “Fuzzy FP-Tree

based Data Replication Management System in

Cloud”, International Journal of Engineering

Trends and Technology, Vol. 36, No. 9, pp. 481-

489, 2016.

[35] M. Bsoul, A. Al-Khasawneh, E. Abdallah, and

Y. fKilani, “Enhanced Fast Spread Replication

strategy for Data Grid”, Journal of Network and

Computer Applications, Vol. 34, pp. 575–580,

2011.

[36] N. Navimipour and B. Milani, “Replica

selection in the cloud environments using an ant

colony algorithm”, In: Proc. of International

Conf. on Control Engineering and

Communication Technology, Moscow, Russia,

pp. 1-9, 2016.

[37] T. Junfeng and L. Weiping, “Pheromone-Based

Genetic Algorithm Adaptive Selection

Algorithm in Cloud Storage”, International

Journal of Grid and Distributed Computing, Vol.

9, No. 6, pp. 269-278, 2016.

[38] L. Wang, J. Luo, J. Shen, and F. Dong, “Cost and

time aware ant colony algorithm for data replica

in alpha magnetic spectrometer experiment”, In:

Proc. of International Conf. on Big Data, Santa

Clara, USA, Vol. 1, pp. 247-254,2013.

[39] L. Cui, J. Zhang, L. Yue, Y. Shi, H. Li, and D.

Yuan, “A Genetic Algorithm Based Data

Replica Placement Strategy for Scientific

Applications in Clouds”, IEEE Transaction on

Services Computing, Vol. 11, pp. 727-739, 2018.

