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Abstract: In recent years, there has been increasing interest in cloud computing research, especially replication 

strategies and their applications. When the number of replicas is increased and placed in different places, maintaining 

the system’s data availability, performance and reliability will increase the cost. In this paper, two multi-objectives 

swarm intelligence algorithms are used to optimize the data replication selection and placement in a cloud environment. 

These algorithms are namely, multi-objective particle swarm optimization (MOPSO) and multi-objective ant colony 

optimization (MOACO). The first algorithm, (MOPSO), is used to find the best selected data replica according to the 

most popular data replication strategy. The improved time-based decay function (ITBDF), is used to enhance the 

proposed model. The second algorithm, (MOACO), is used to find the best data replica placement according to the 

minimum distance, the number of data transmissions and the availability of data replication. A simulation of the 

suggested strategy has been performed using CloudSim. the Cloud is formed to simulate different kinds of datacenters 

(DCs) with different structures. Moreover, 21 DCs are used. Each DC consists of a host that contains a set of virtual 

machines (VMs) that provides blocks of available data replications. Three different data placements for high 

datacenters were created. A total of one thousand cloudlets are randomly confirmed for the data replication order. All 

replication files are placed in high datacenters and randomly distributed in the suggested system. The performance of 

proposed strategy was evaluated relative to many well-known strategies such as, Enhance Fast Spread (EFS), Dynamic 

Cost-aware Re-replication and Re-balancing Strategy (DCR2S), Genetic Algorithm (GA), Genetic adaptive Selection 

Algorithm (GASA), Replica Selection and Placement (RSP), Dynamic Replica Selection Ant Colony Optimization 

(DRSACO), Adaptive Replica Dynamic Strategy (ARDS), Popular File Replication First (PFRF). The experimental 

results show that MOPSO, achieves better data replication than compared algorithms. Additionally, MOACO, achieves 

higher data availability, lower cost, and less bandwidth consumption than compared algorithms. 

Keywords: Dynamic replication, Cloud computing, Cloudsim, Knapsack problem, Particle swarm optimization, Ant 

colony optimization and multi-objective optimization. 

 

 

1. Introduction 

Cloud environments provide many services such 

as pay-per-use virtual computing, network resources 

and services, which can be developed and have their 

usage well scaled. The characteristics of the Cloud 

include the bandwidth, storage and access to 

important data resources [1, 2]. A Cloud environment 

consists of software-as-a-service (SaaS), platform-as-

a-Service (PaaS) and infrastructure as a service (IaaS) 

[3]. Moreover, the Cloud is less expensive than other 

traditional systems and can feature subscription upon 

request, scalability, elasticity and dynamicity [4]. 

Load balancing in the Cloud has a great effect on the 

data transfer rate, performance and low overloads of 

the Cloud network [5]. It distributes tasks in a virtual 

machine (VM) to balance the loads in the Cloud to 

retain low overloads and achieve optimal access to 

available resources [6].  

Replication techniques are generally used in data-

intensive applications such as sharing and 

distribution from distant locations to near locations 
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through nodes or geographical sites [7]. Replication 

techniques can be applied as a cluster in a Cloud 

environment. The cluster allows scalability and data 

availability to ensure the integrity and consistency 

between different replications among nodes. This 

includes reading and writing on data replication 

through protocols according to the system 

requirements [8]. In the reviewed literature [9], there 

are surveys that address static and dynamic 

replications through the Cloud and in the data grid 

field. Static and dynamic replications are subject to 

three important questions that require answers: 1) 

what data should be replicated? 2) when should the 

data be replicated? and 3) where should the new 

replicas be placed? These are three important open 

questions that need to be addressed for data 

replication in Cloud environments [10]. 

In this paper, an efficient dynamic data 

replication strategy using MOPSO and MOACO are 

proposed. The proposed strategy is based on the 

selection and placement of data replicas in different 

datacenters. It evaluates data replication through 

seven criteria, such as data replication access, 

distance, costs, data availability, data replication 

popularity, and the Zipf and geometric distributions. 

Therefore, we have access to two optimal selection 

and placement methods for data replicas in the Cloud. 

The proposed model is validated using CloudSim, 

and the two algorithms MOPSO and MOACO are 

evaluated. The experimental results show that the 

proposed strategies outperform the other strategies, 

saving time, accelerating the access speed, reducing 

the costs, ensuring high availability and finding the 

least-cost path among the heterogeneous datacenters 

in the Cloud.  

The remainder of this paper is organized as 

follows. Section 2 reviews the literature on 

replication strategies in the Cloud. Section 3 

introduces the proposed architecture for replica 

selection and placement optimization. Section 4 

focuses on the suggested MOPSO and MOACO 

algorithms. Section 5 shows the experimental results 

and configuration. It also provides the two suggested 

algorithms with their performance and then compares 

them to other algorithms. Finally, Section 6 

concludes the paper and highlights future research. 

2. Related work 

Many related studies have researched data 

replication strategies in the Cloud, such as the 

following. 

N. Mansouri et al. presented a dynamic 

popularity-aware replication strategy (DPRS) to 

recover and access data using the 80/20 idea. They 

employed parallel data downloads from different 

sites to improve the data file availability and storage 

space. Network efficiency measures the average 

service time to execute the required tasks for the set 

number of files using the Cloud. The mentioned 

algorithm was compared with five others algorithms 

(SWORD, Adaptive Data Replication Strategy 

(ADRS), DRSP, MORM and A2RS) and it was found 

that DPRS was more efficient than the others [11].  

D. Sun et al. designed the modeling a dynamic 

data replication strategy (MDDRS). The research 

also conducted an abridged survey of the suitable 

distribution methodology in the Cloud [12].  

N. Kaur and et al. suggested a dynamic, cost-

aware, optimized data replication strategy. Their 

work is an extension of the work in [12] and 

determined the minimum data replications and file 

availability near the users in an ordinary tier without 

losing data. Moreover, it considered a heterogeneous 

system, which improved the costs of using the 

knapsack problem [13]. 

N. Mansouri. showed an ADRS for the placement 

and replacement of replicas through datacenters. It 

considers the storage space of the system. When 

placing new replicas once the space is full, the ADRS 

will place new replicas instead of old ones. The 

results confirmed its optimal efficiency over those of 

the others [14].  

K. Kumar et al. suggested a workload-aware data 

replication strategy called (SWORD) to optimize the 

resource consumption in Cloud environments. The 

suggested strategy reduces the average time for either 

a search request or another process and shares 

mechanisms in the system environment to analyze 

work-loads and place data using mathematical 

models [15].  

X. Bai et al. presented a response time-based 

replica management (RTRM) model that 

automatically selects replicas and places them in 

nodes. RTRM depends on diagram theory to solve the 

problems [16]. 

D. Yuan and et al. suggested a data placement 

strategy based on a k-means matrix in cluster form to 

place data workflows in a Cloud environment 

containing two algorithms in the building stage and 

work time. [17].  

C. Hamdeni et al. designed a new adaptive 

technique for calculating the data popularity in 

database systems through nodes. The experimental 

results that were achieved using OptorSim showed 

that the suggested system can adapt the popular file 

access time and achieve file availability [18].  

N. Maheshwari et al. introduced a dynamic 

energy-efficient data placement and cluster 

reconfiguration algorithm using GridSim. The 
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suggested algorithms provide efficient power 

availability for developing distributed data. [19]. 

Q. Xu et al. proposed a data-placement strategy 

based on the genetic algorithm (DPSBGA) to 

schedule data and optimize the placement of data 

replications via datacenters. It is clear that using the 

GA provides a better solution for placing and 

accessing data replications [20].  

Z. Li et al. suggested a different combined 

replication structure to improve the performance of 

high-level architecture (HLA). The suggested 

structure depends on using different synchronization 

methods to access and select rapid replications for 

users. Messages are sent and received between users 

to reduce the time and handle the replications [21].  

Z. Tang et al. suggested an intermediate data 

placement algorithm for load balancing in a Spark 

environment that attempts to optimize the work 

among the nodes in order to perform the required 

processing data tasks through map tasks. The skewed 

intermediate data blocks (SCID) algorithm attempts 

to arrange key/value clusters of map tasks according 

to their size. [22].  

T. Yuan et al. suggested causal consistency 

algorithms for partially and fully replicated systems. 

The author presents two algorithms to realize the 

causal consistency of partial and full replications to 

perform causal consistency tasks in reliable large-

scale distributed systems [23].  

H. Casanva et al. investigated the impacts of the 

replication process on an application with large-scale 

parallel executions and coordinated checkpointing of 

full replications. They analyze the mean service time 

to interrupt haphazard distributions and their failures 

[24].   

P. Matri et al. introduced the keeping up with 

storage: decentralized, write-enabled dynamic geo-

replication (DWEDGR) method. DWEDGR allows 

users to enable access to the nearest replication 

among nodes without any previous request that 

supports the changeable data [25].  

M. Chang Lee et al. suggested the popular file 

replicate first (PFRF) strategy, which is based on a 

star network that accesses and determines the file and 

popularity of each data replication. Both Zipf and 

geometric distributions are used to evaluate the 

suggested algorithm. [26].   

3. Methodology and discussionon 

3.1 Proposed architecture for replica selection and 

placement optimization 

This section addresses the suggested structural 

model for sharing data among nodes by selecting and 

placing replications in Cloud environments, which 

has been used in many studies [12, 13]. In our case, 

we used the heterogeneous system with swarm 

intelligence (SI) techniques to optimize the selection 

and placement of data replications. The first stage 

consists of the high datacenters, which are more 

deeply centralized and possess better data availability, 

storage space, and performance and greater numbers 

of hosts and VMs than the other datacenters. The 

second stage consists of the mid-datacenters, which 

have fewer whole components than the first stage. 

The third stage is composed of low datacenters that 

have fewer whole components than the second stage. 

Overall, the datacenters are hierarchically related to 

each other either in the same level or in other levels. 

The suggested system consists of datacenters, a 

broker, a replica catalog, a replica management 

system, a virtual machine, hosts, tasks and 

hierarchical network users who connect datacenters 

with each other. To assure that the best SI techniques 

with replication can be implemented in the optimal 

suggested system, ACO and PSO can be applied to 

the selection and placement of replications through 

nodes. Appling the above SI techniques improves the 

availability and support, reduces the cost, allows for 

tasks to be performed, and is quicker than the 

techniques that are used when selecting and placing 

replications through CloudSim. Therefore, we can 

realize the maximum use and optimal replications 

through datacenters. 

The datacenters can be represented in the form of 

DCs = {dc1, dc2...dcn}, where n is the number of 

different DCs in the Cloud environment. The 

physical machine can be represented as PM = {pm1, 

pm2… pmx}, where x is a group of different pms that 

exist in DCs. Our different system for heterogeneous 

Cloud datacenters is proposed. The virtual machines 

can be represented as VM = {vm1, vm2… vms}, 

where s is the number of VMs that are placed in the 

PMs. There are different spaces and different 

operations such as space shards and time shards. The 

data replication can be represented in the form of F= 

{f1, f2… fy}, where y is the number of different data 

replications that could be placed inside DCs. The 

main storage unit is a block and can be represented as 

B = {b1, b2…, by}, where y is a group of a different 

data replications stored in DCs. All replication files 

are placed in high datacenters and randomly 

distributed in the suggested system. Different values 

of the probability = pro (bap) can be saved in every 

DC using the replica catalog that records every 

replica location in the different DCs. 
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3.1.1. Data file availability 

Generally, availability can be defined as 

“readiness to offer correct services”. The data 

replications should be made fully available to all users 

upon request. Therefore, the availability of data is an 

important issue in the Cloud for users. A system with 

unavailable data is caused by a data replication or node 

failure in the Cloud. Data availability is an important 

issue in the Cloud [23, 24]. The replicas can be located 

in many DCs, and many replicas can be located in the 

same DC to ensure the availability of different blocks 

in the DCs. High DCs have higher costs, better data 

availability and reliability, and consequently, the 

blocks that are inside the DCs have high availability. 

However, low DCs have lower costs, worse 

availability, and worse reliability, and the blocks that 

are inside the DCs are likely to have low availability. 

They can be calculated using Eq. (1) to Eq. (4) as 

follows: 

𝑝𝑟𝑜(𝑏𝑎𝑝𝑗)ℎ𝑖𝑔 𝐷𝐶 > 𝑝𝑟𝑜(𝑏𝑎𝑝𝑗)𝑚𝑖𝑑 𝐷𝐶 >

𝑝𝑟𝑜(𝑏𝑎𝑝𝑗)𝑙𝑜𝑤 𝐷𝐶                         (1) 

 

𝑝𝑟𝑜(𝑓𝑙𝑎𝑘) =                                                                          

{
(1 − ∏ (1 − 𝑝𝑟𝑜(𝑏𝑎𝑝𝑗)𝑖))𝑛𝑏𝑘    𝑓𝑜𝑟 𝑐𝑎𝑠𝑒 1

𝑏𝑛𝑟𝑘
𝑖=1

∏ (1 − ∏ (1 − 𝑝𝑟𝑜(𝑏𝑎𝑝𝑗)𝑖) 𝑓𝑜𝑟 𝑐𝑎𝑠𝑒 2
𝑏𝑛𝑟𝑘
𝑖=1

𝑛𝑏𝑘
𝑖=1

    

(2) 

 

𝑝𝑟𝑜(𝑓𝑙𝑎𝑘)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ =                                                                          

{
1 − (1 − ∏ (1 − 𝑝𝑟𝑜(𝑏𝑎𝑝𝑗)𝑖))𝑛𝑏𝑘     𝑓𝑜𝑟 𝑐𝑎𝑠𝑒 1

𝑏𝑛𝑟𝑘
𝑖=1

1 − ∏ (1 − ∏ (1 − 𝑝𝑟𝑜(𝑏𝑎𝑝𝑗)𝑖))   𝑓𝑜𝑟 𝑐𝑎𝑠𝑒 2
𝑏𝑛𝑟𝑘
𝑖=1

𝑛𝑏𝑘
𝑖=1

 

 
(3) 

 

Let the block available probability Pro (bapj) 

 

ℎ𝑖𝑔ℎ𝑑𝑐 = 0.9 > 𝑚𝑖𝑑𝑑𝑐 = 0.6 > 𝑙𝑜𝑤𝑑𝑐 = 0.3 (4) 

 

blocks Where, B 
Probability of file availability Pro(flak) 

Number of block nbk 
Number of replica of a data file       

dfk 
bnrk 

Block unavailability probability 

ofblock 
𝑃𝑟𝑜(𝑓𝑙𝑎𝑗 )̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  

Number of access task have request nak 
Probability of file unavailability 𝑃𝑟𝑜(𝑓𝑙𝑎𝑘 )̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  
High Datacenters High DCs 

Mid Datacenters Mid DCs 

Low Datacenters Low DCs 

                                                                                                                           

3.1.2. Replication costs in datacenters 

There is a set of DC costs that differentiate low DCs, 

mid DCs, high DCs, and this set includes the costs, 

availability probabilities, velocities, reliabilities and 

performances in the Cloud. The costs of DCs are 

important factors that include the factors of MOO that 

select and place replicas through DCs. The total 

replication costs must be kept as reasonable as possible 

to save replications through DCs and to ensure that the 

budget is sufficient for users. 

 

𝑐𝑜𝑠𝑡𝑘(𝑑𝑐𝑠) =  ∑ (𝑐𝑜𝑠𝑡(𝑑𝑐𝑦) . 𝑏𝑛𝑟𝑘(𝑑𝑐𝑦))
𝑦
𝑥=1  (5) 

 

3.1.3. Minimum distance between datacenters 

The distance between DCs is calculated according 

to the access to data replications, which can be 

calculated using the following Eqs. (6) and (7) [1]. The 

best solution uses the connection between two DCs (I 

and j). This equation indicates that dci and dcj are 

passed by confirming that this equation assures their 

nonpassing in an endless ring. 

 

𝑀𝑖𝑛 ∑ ∑ 𝑑𝑖𝑗𝑥𝑖𝑗
𝑛
𝑗=1

𝑛
𝑖=1                      (6) 

  St.: 

 

∑ 𝑛𝑖𝑥𝑖≥𝑘,                    𝑥𝑖∈{0,1}                  (1≤𝑖≤𝑛)
𝑛
𝑖=1     (7) 

3.1.4. knapsack problem 

The knapsack problem is NP-hard. Any item has an 

assigned value and weight. The aim is to minimize the 

cost in the Cloud by ensuring that the budget is 

sufficient for users by using the following Eqs. (8) and 

(9):  

 

𝑚𝑎𝑥𝑖𝑚𝑖𝑧𝑒 𝑝𝑥 = ∑ 𝑝𝑗𝑥𝑗
𝑛
𝑗=1                   (8) 

St.: 

 

𝑤𝑥 = ∑ 𝑤𝑖𝑗𝑥𝑗 ≤𝑛
𝑗=1 𝑣𝑖                      (9) 

 

𝑥𝑗 ∈ {0,1} ,    𝑗 = 1,2, … … 𝑛 

𝑝 = (𝑝1, 𝑝2, … … 𝑝𝑛) 

𝑤 =  𝑤1, 𝑤2, … … 𝑤𝑛 
𝑖 = 1,2, … … . . 𝑚 

 
Each object j ∈ J  has profit pj and weight wj in 

dimension i (1 ≤ i ≤ m)  

Binary variable xj  indicates whether object j is 

included in the knapsack (xj = 1) or not (xj = 0). 

We use the MOO process with AI techniques of 

PSO and ACO to determine the data availability, 
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optimal costs and different path distances in DCs. We 

perform the three processes together based on the AI 

techniques to optimize the access, selection and 

placement of replications in the suggested system. 

3.2 Proposed PSO and ACO-based algorithm for 

the cloud environment 

The suggested system incorporates two different 

algorithms: PSO and ACO. PSO selects the data 

replications and ACO places the data replications. 

Therefore, the suggested functional system consists 

of three basic characteristics: file availability, access 

time and costs. Meanwhile Zipf and geometric 

distribution are used to distribute the data replications 

in the Cloud. 

3.2.1. The proposed method to determine which file to 

replicate and when to replicate using PSO 

In this subsection, we discuss the PSO algorithm 

on a wide scale to assess the data replication using 

CloudSim. To solve the suggested problem, we use 

MOO along with PSO in the suggested method. The 

PSO optimizes many problems in the optimization 

and determination process, and this algorithm has 

two important aspects: exploration and exploitation. 

[27-31] In this stage, exploration aims at discovering 

the optimal search space solutions and local adjacent 

space. Exploitation searches the recent solutions and 

selects the best-suggested solutions. A fitness 

function evaluates the optimally selected data 

replication for every particle along with the best. 

Then, the process updates the particle velocity, 

position and inertia weight using Eqs. (10), (11), and 

(12) as follows. [32]. We update the velocities for 

every dimension as follows: 

 

𝑉
𝑘 + 1

𝑖, 𝑗
= 𝑊. 𝑉

𝑘
𝑖, 𝑗

+ 𝐶1𝑅1 (𝑝𝑏𝑒𝑠𝑡
𝑘

𝑖, 𝑗
− 𝑋

𝑘
𝑖, 𝑗

) +

𝐶2𝑅2 (𝑔𝑏𝑒𝑠𝑡
𝑘

𝑖, 𝑗
− 𝑋

𝑘
𝑖. 𝑗

)                              (10) 

 

Where 

𝑉
𝑘 + 1

𝑖, 𝑗
  Represents the new velocity of a particle 

𝑉
𝑘

𝑖, 𝑗
 𝑟𝑒𝑝𝑟𝑒𝑠𝑒𝑛𝑡𝑠 𝑖𝑡𝑠 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦.  

𝐶1, 𝐶2 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡𝑠 𝑎𝑐𝑐𝑒𝑙𝑒𝑟𝑎𝑡𝑖𝑜𝑛  
𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠. 

𝑝𝑏𝑒𝑠𝑡
𝑘

𝑖, 𝑗
  𝑝𝑒𝑟𝑠𝑜𝑛𝑎𝑙 𝑏𝑒𝑠𝑡 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 𝑝𝑎𝑟𝑡𝑖𝑐𝑎𝑙. 

𝑋
𝑘

𝑖, 𝑗
  𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 𝑜𝑓 𝑖𝑡ℎ 𝑝𝑎𝑟𝑡𝑖𝑐𝑎𝑙 𝑖𝑛 𝑗𝑡ℎ 𝑠𝑤𝑎𝑟𝑚. 

𝑅1, 𝑅2  two random variables in the range [0,1]. 

𝑔𝑏𝑒𝑠𝑡
𝑘

𝑖, 𝑗
  𝑔𝑙𝑜𝑎𝑏𝑒𝑙 𝑏𝑒𝑠𝑡 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 𝑝𝑎𝑟𝑡𝑖𝑐𝑎𝑙. 

𝑋
𝑘 + 1

𝑖, 𝑗
= 𝑋

𝑘
𝑖, 𝑗

+ 𝑉
𝑘 + 1

𝑖, 𝑗
                   (11) 

 

Where 

 

𝑋
𝑘 + 1

𝑖, 𝑗
  𝑛𝑒𝑤 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 𝑜𝑓 𝑝𝑎𝑟𝑡𝑖𝑐𝑎𝑙. 

𝑘 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛. 
𝑖 1,2,3, … . . 𝑚   𝑚 𝑖𝑠 𝑡ℎ𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑚𝑒𝑚𝑏𝑒𝑟𝑠  
                       𝑖𝑛 𝑎 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠. 
𝑗 1,2,3, … . . . 𝑑    𝑑 𝑖𝑠 𝑡ℎ𝑒 𝑠𝑖𝑧𝑒 𝑜𝑓 𝑡ℎ𝑒 𝑠𝑤𝑎𝑟𝑚. 
 

𝑤 = 𝑤𝑚𝑎𝑥 −
𝑤𝑚𝑎𝑥−𝑤𝑚𝑖𝑛

𝑖𝑡𝑒𝑟𝑚𝑎𝑥
. 𝑖𝑡𝑒𝑟           (12) 

 

Where 

𝑤  𝑖𝑛𝑒𝑟𝑡𝑖𝑎 𝑤𝑒𝑖𝑔ℎ𝑡  
𝑤𝑚𝑎𝑥  𝑖𝑛𝑖𝑡𝑖𝑎𝑙 𝑣𝑎𝑙𝑢𝑒 𝑜𝑓 𝑖𝑛𝑒𝑟𝑡𝑖𝑎 𝑤𝑒𝑖𝑔ℎ𝑡. 
𝑤𝑚𝑖𝑛  𝑓𝑖𝑛𝑎𝑙 𝑣𝑎𝑙𝑢𝑒 𝑜𝑓 𝑖𝑛𝑒𝑟𝑡𝑖𝑎 𝑤𝑒𝑖𝑔ℎ𝑡. 
𝑖𝑡𝑒𝑟𝑚𝑎𝑥  𝑚𝑎𝑥𝑖𝑚𝑢𝑚 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠 

𝑖𝑡𝑒𝑟  𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛 𝑛𝑢𝑚𝑏𝑒𝑟.  
 

When the replica access task is performed by 

users, we determine that the algorithm accesses and 

selects the optimal replica. It calculates the fitness 

function of the optimally selected replica for every 

particle and uses MOO to determine the shortest 

paths, lowest costs and lowest access times for data 

replication in the Cloud. 

3.2.2. Analyze the type of fragment's and access time to 

replication 

The improved time-based decay function 

(ITBDF) is used to determine the priorities, data 

replication weights or importance's in DCs along with 

different accesses and data interval times. For this 

concept, the ITBDF weights the access to recent data 

replications and distinguishes previously accessed 

data. The ITBDF gives priority and weights to data 

replication access based on the PSO that is 

implemented in our system. The ITBDF has a 

concept called data replication that continuously 

analyzes DCs functions over time. It can be 

calculated through the following Eqs. (13) and (14): 

 

𝐼𝑇𝐵𝐷𝐹(𝑡𝑎, 𝑡𝑏) = e−(ta−tb)k                (13) 

 

𝑘 ∈  {1,2,3, … … . } 

 

𝐼𝑇𝐵𝐷𝐹(𝑡𝑎, 𝑡𝑏) = 𝑒−(∆𝑡)𝑘                (14) 

 

𝑤ℎ𝑒𝑟𝑒 ∆𝑡 = (𝑡𝑎 − 𝑡𝑏) 
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Where: 

ta is current time. 

tb starts time. 
k value is increase. 

e exponential function decay. 

 

𝑅𝐹𝑘 =
∑ (𝑛𝑎𝑘(𝑡𝑖,𝑡𝑖+1).𝐼𝑇𝐵𝐷𝐹(𝑡𝑖,𝑡𝑎))

𝑡𝑎
𝑡𝑖=𝑡𝑏

𝑏𝑛𝑟𝑘 .∑ 𝑠𝑏𝑖
𝑛𝑏𝑘
𝑖=1

       (15) 

 

where: 

𝑡𝑎   𝑖𝑠 𝑡ℎ𝑒 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑡𝑖𝑚𝑒 

𝑡𝑏 𝑖𝑠 𝑡ℎ𝑒 𝑠𝑡𝑎𝑟𝑡 𝑡𝑖𝑚𝑒 

𝑛𝑎𝑘  𝑖𝑠 𝑡ℎ𝑒𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑎𝑐𝑐𝑒𝑠𝑠𝑒𝑠 

𝑏𝑛𝑟𝑘 𝑖𝑠 𝑡ℎ𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑟𝑒𝑝𝑙𝑖𝑐𝑎𝑠 

𝑛𝑏𝑘  𝑖𝑠 𝑡ℎ𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑏𝑙𝑜𝑐𝑘𝑠 

𝑠𝑏𝑖  𝑖𝑠 𝑡ℎ𝑒 𝑠𝑖𝑧𝑒 𝑜𝑓 𝑎 𝑏𝑙𝑜𝑐𝑘 

 

Algorithm 1. The Proposed MOPSO for Selecting 

Data Replicas in a Cloud Environment 

        Input: Size of Population  

                    Number of Particles 

                    Number of Iterations  

                    Datacenters 

                    Data Availability 

                    Improved Time-Based Decay Function 

       Output: Selected Optimally Best Replica  

                       Total Execution Time and Costs 

           Initialization: 

Define Values of parameters, Size of Pop, Num of 

Iterations and Num of Particles; 

Initialize set values of particle swarm (Num of 

Iterations and Num of Particles); 

Initialize availability and unavailability probabilities; 

Initialize best replica according to costs and time; 

Repeat 

For j=1 to number of particles; 

Pvelocity ←Random velocity(); 

Pposition ←Random position(); 

Pbest ← Pposition 

End for 

For each data replication in DC do; 

Calculate the ITBDF of the data replication; 

Calculate the replica factor of the data replication; 

Calculate the costs of the data  replication; 

End for  

If α ≤ 0 then 

Exploitation 

Else 

Exploration 

Select best data replication; 

End if 

Until maximum number of iterations is reached or 

access solution found; 

Return the optimal best replica solution;  

3.2.3 The proposed placement of new replications using 

ACO 

In this section, we discuss applying the suggested 

ACO algorithm on a wide scale to perform the 

placement in CloudSim. In this stage, replica 

management decides the new replica placements 

based on the replication costs and space of DCs. 

Thereafter, data replications are made available to 

users and data access occurs according to the 

suggested system. The ACO algorithm is used to 

optimally place replicas in DCs to meet user requests, 

which are created according to the suggested system.  

ACO is the most important algorithm to find the 

best shortest and least expensive way. The total 

pheromones at positions on the different routes are 

measured using the objective function, and we also 

calculate the transition from DCi to DCj according to 

the following equations from Eqs. (16) to (21): [33]. 

 

𝑝𝑖𝑗 = {

[𝜏𝑖𝑗]𝛼[𝜂𝑖𝑗]𝛽

∑ [𝜏𝑖𝑠]𝛼[𝜂𝑖𝑗]𝛽
𝑠∈𝑘

   

0   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒    𝑖𝑓 𝑗 ∈ 𝑎𝑙𝑙𝑜𝑤𝑒𝑑 𝑘
    (16) 

 

The calculation of the next DC that is selected by 

ant k is as follows: 

 

j =                                                                     

{
arg maxs∈allowed k {[τij]

α[ηij]
β},   if q ≤ q0, if q > q0

j        otherwise
(17) 

 

The calculation of the detection array of the ant 

proceeds according to the following Eq. (18):  

 

𝜂𝑖𝑗 =
1

𝑑𝑖𝑗
                             (18) 

 

The pheromone values on routes are updated after 

every repetition. When ants reach the end of their 

travel path, the pheromone value is a positive 

constant. The updated local pheromone value can be 

calculated as follows Eq. (19): 

 

𝜏𝑖𝑗 = (1 − 𝑝)𝜏𝑖𝑗 + 𝑝𝜏0, ∀(𝑖, 𝑗) ∈ 𝑡𝑘 , 𝑤ℎ𝑒𝑟𝑒 (0 <

𝑝 ≤ 1)     (19) 

After evaporation, every ant adds pheromones to 

the routes according to the set method, and the 

updated global pheromone value is calculated Eq. 

(20) as follows:  

 

𝜏𝑖𝑗 = (1 − 𝑝) + 𝑝. ∑ ∆𝜏𝑖𝑗
𝑚
𝑘=1              (20) 
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∆𝜏𝑖𝑗: is the amount of pheromone that is added by ant 

k on their route. It can be represented Eq. (21) as 

follows: 

 

∆𝜏𝑖𝑗=  {
1

𝑐𝑘           𝑖𝑓 ∀(𝑖, 𝑗) ∈  𝑡𝑘

0              𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒     
           (21) 

 

We find that the algorithm places and accesses 

optimal replicas based on geometric and Zipf 

distributions. The calculations of the fitness function 

for every MOACO of the replica positions through 

DCs in the Cloud occur as follows. 

 

Algorithm 2. The Proposed MOACO for the 

Placement of Data Replicas in a Cloud Environment 

        Input: Number of Ants  

                    Number of Iterations  

                    Datacenters 

                    Zipf, Geometric Distribution 

                    Min Distance between Datacenters 

       Output: Selected Optimally Best Data Replica 

Placement  

                       Total Execution Time and Costs 

 

      Initialization: 

Define Values of parameters, Num of Iterations and 

Num of Ants; 

Initialize availability and unavailability probabilities; 

Initialize distance between DCs; 

Initialize costs of data replication and size; 

Initialize optimal best data replication placement in 

DC solution; 

Repeat 

For I=1 to (Num of ants); 

Step = step + 1; 

Set all ant distribution in DC; 

End for 

Repeat 

For each DC in current system; 

Calculate desirability of the movement; 

Calculate probability of the movement; 

End for 

If q ≤ q0  then 

Exploitation 

Else 

Exploration 

End if 

Set local pheromone update;  

Set global pheromone update; 

Set determine replica placement in DC; 

Until all replicas are selected; 

Until all replicas are  placed; 

End for 

End for 

If the storage space of the DC is insufficient; 

Then 

Apply the global update rule;  

Else if 

Delete small replica popularities; 

End if 

Until maximum number of iterations is reached or 

access solution is found; 

Return the optimally best data replication placement in 

the DC; 

3.2.4 Zipf and geometric distributions 

Zipf and geometric distributions are used to select 

and place replicas through DCs in the Cloud. A 

distribution follows users' behaviors to determine the 

more popular data replications and places those data 

replications in DCs that are nearer to users. A Zipf 

distribution is used to randomly model the size and 

selects the replica locations according to their 

popularity and rapid user access: 

 

𝑝(𝑓𝑖) =
1

𝑖𝑎                              (22) 

 

where i = 1, 2. . . N; and α is a factor determining 

the data access distribution, where 0 ≤ α < 1. 

A geometric distribution provides the most 

popular data that are more distinct with more access 

and higher weights. The data can be distributed 

through DCs and more random solutions can be 

discovered through the search space. Therefore, the 

most dispersed distribution is called the geometric 

distribution and it has a different formula: 

 

𝑝(𝑖) = (1 − 𝑝)𝑖−1. 𝑝                  (23) 

 

where i = 1, 2. . . n and 0 < p < 1. A larger p 

represents that a smaller portion of the data are 

repeatedly accessed. 

4. Experimental evaluation 

4.1 Experiments of optimization 

This section discusses the experimental results 

and configures the replication model in the suggested 

Cloud. Further, it places the replications by using the 

suggested PSO and ACO algorithms. These 

algorithms are performed on CloudSim. The 

execution time, costs, access speed, high replication 

availability and placement efficiency of this method 

are compared with those of other algorithms.  
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4.2 Configuration details 

The Cloud is formed to simulate different kinds 

of DCs with different structures. Moreover, 21 DCs 

are used. The system configurations are shown in 

Table 1. Each DC consists of a host that contains a 

set of VMs that provides blocks of available data 

replications. We created three different data 

placements for high datacenters. A total of one 

thousand cloudlets are randomly confirmed for the 

data replication order. PSO and ACO algorithms 

parameters are shown in Tables 2 and 3. A 

comparison between related work and proposed 

model is shown in Table 4. 
 

Table 1. Simulation parameters of the configuration 

system 

Low 

DCs 

Mid 

DCs 

High 

DCs 

Proposed System NO 

Datacenters (DCs) 

15 5 1 No. of DCs (21) 1 

100 300 500 Cost of DCs 2 

60 30 20 No. of hosts per DC 

(110) 

3 

Host 

1 - 4 4 - 8 12 - 

16 

How many processing 

elements per host? 

4 

100 - 

500 

500 - 

1000 

1000 - 

2000 

How many MIPS per 

Processing Element? 

5 

1 – 2 

GB 

2 – 4 

GB 

5 – 10 

GB 

How much Bandwidth 

per Processing 

Element 

6 

Virtual machines (VMs) 

120 150 200 Number of VMs (470) 7 

200 400 800 MIPS 8 

512 

MB 

1 

GB 2 GB 

Memory ram 9 

1 GB 

2 

GB 10 GB 

Bandwidth 10 

1 - 4 4 - 8 8 - 16 No of processing 

elements 

11 

time &space shard Cloudlet scheduler 12 

VM scheduler 13 

Cloudlet 

1000 task Cloudlet task 14 

1000 - 20000 Length of task 15 

File 

Using zipf distribution and geometric distribution 

A three different data files (3 files) are placed in the 

Cloud storage environment, with each size in the range 

of [0.1, 10] GB. 

C B A No of file (3) 16 

100 300 500 Cost of replication 17 

Users 

10 – 50 No. of users 18 

 

 

 

Table 2. PSO parameters 

values parameters No. 

50 No. of particles 1 

2 C1 2 

2 C2 3 

[0 –1] R1 4 

[0 –1] R2 5 

0.9 𝑤𝑚𝑎𝑥  6 

0.4 𝑤𝑚𝑖𝑛 7 

1000 No. of iteration 8 

1 W 9 

 

Table 3. ACO parameters 

values parameters No. 

1 𝛼 1 

2 𝛽 2 

0.3 p 3 

1 q 4 

50 m 5 

0.9 𝑝𝜏0 6 

 

Table 4. Comparison between related work and my 

proposed 

S
trateg

y
 

Y
ear 

A
v
ailab

ility
 

L
o
ad

 B
alan

cin
g
 

H
etero

g
en

eity
 

K
n
ap

sack
 p

ro
b
lem

 

D
istan

ce 

L
east C

o
st P

ath
 

O
p
tim

al L
o
catio

n
 

P
ath

 L
en

g
th

 T
ask

s 

R
ep

lica d
ecisio

n
 

Fuzzy-FP [34] 2016 √ √        

EFS [35] 2011 √ √        

DCR2S [13] 2016 √ √ √ √      

ACO [36] 2016 √ √        

GASA [37] 2016 √ √        

DRSACO [38] 2013 √ √        

Genetic [39] 2015 √ √        

My Strategy 2019 √ √ √ √ √ √ √ √ √ 

5. Results and discussion 

This paper uses CloudSim to conduct the 

experiments on the dynamic selection and placement 

of replicas in the Cloud. It uses the MOPSO and 

MOACO algorithms and verifies the experimental 

results by comparing them with other algorithms. 

5.1 The selecting the optimally best replica 

Fig. 1 shows the influence of using the MOPSO, 

DCR2S and EFS on the replication costs as the users' 

number of tasks increases. It is obvious that our 

MOPSO method decreases the replication costs 

compared with the DCR2S and EFS. The MOPSO 

algorithm has been shown to select replicas by  
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Figure. 1 Replication costs and number of cloudlets 

 

 
Figure. 2 Probability of data availability and no of replicas 

 

 
Figure. 3 Different number about Zipf and geo in cloudsim 

 

changing the number of particles and the number of 

iterations, as shown in Table 3. The replication costs 

are very expensive for the EFS compared to the 

DCR2S, where the replication costs equal the budget. 

There are three gaps: “constant cost, optimize replica 

and waiting time for users”. Hence, MOPSO is highly 

beneficial in optimizing the cost of replication as well 

as high availability and ITBDF. Finally, optimization 

of selecting replicas is performed through cloudlets. 

In Fig. 2, the experimental results show the access 

ability with the most popular replica through the 

MOPSO algorithm to select optimal replicas that are 

based on ITBDF. These findings have therefore 

clarified that our algorithm is more effective in the 

execution time necessary to access optimal replicas 

than that of other algorithms. 

5.2 Different number of replicas using the zipf and 

geo distributions: 

In Fig. 3 shows the requesting the number of data 

replications, the average response time of the 

selection of data replication greatly increases Our 

MOPSO strategy shows a reduced average response 

time within the requested number of data replications 

by users. 

5.3 The optimally best placement of replicas: 

   This experiment assesses the use of the MOACO 

algorithm to evaluate the placement of replicas 

through the ant's behavior and the number of cycles 

through DCs. To assess the optimal placements in 
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Figure. 4 The data transmissions with different data nodes 

 

 
Figure. 5 Total data transmission and number of tasks 

 

 
Figure. 6 Path length of data transmission between other strategies in DCs 

 

DCs, we use different distributions such as Zipf and 

geometric distributions, in CloudSim. The 

experiments show that our MOACO strategy 

provides the best results, and its results are compared 

with those of other algorithms. The suggested 

strategy is evaluated for many aspects, including the 

least-cost path and the distance to reach the optimal 

replica placement locations in DCs according to Zipf 

and geometric distributions. Several approaches are 

implemented to assess the transmission process in 

DCs such as the number of tasks and number nodes. 

In Figs. 4 and 5 MOACO is used to determine the 

number of replications through DCs and the data 

transmission rate that reduces time and costs. The 

results show that our strategy is superior to other 

algorithms. The comparison of the results of our 

strategy with the results of other algorithms shows 

that our strategy is superior to other algorithms with 

respect to the time and costs of optimizing the 

placement of replicas.  

5.4 Different number of replicas using the Path 

length based on MOACO: 

In this section, the calculation of the shortest path 

based on ACO with MOO is shown, and the new 

strategy approach to solve optimal placement is 

provided. Fig. 6 shows the comparison between the 

MOACO algorithm and GASA algorithm based on 

the shortest path problem, which affects the 

decreased shortest path of optimal data replication in 

nodes. Therefore, when requesting the number of 

data replications, the shortest path of data replications 

greatly increases. Our MOACO strategy has been 

shown to reduce the shortest path within the 

requested number of data replications by users. 

Regarding the comparison of the GASA algorithm in 

reducing the shortest path, we note that the MOACO 

algorithm is superior to the GASA algorithm.  
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(a) 
 

 

(b) 
 

Figure. 7 Different scenarios about cost of data replication with the number of replicas: (a) the first type of scenario cost 

replication and (b) the second type of scenario cost replication 

 

 

Figure. 8 Average response time for different data replication strategies in the cloud 

 

5.5 Cost of replication and number of replicas 

using the knapsack problem 

Fig. 7 shows the comparison between the 

MOACO algorithm and DCR2S algorithm based on 

the budget of replication with the knapsack problem, 

which affects the decreased budget of data replication. 

Therefore, when requesting the number of data 

replications, the costs of data replication greatly 

increase. There are many different scenarios from (a) 

and (b), and we have made different budget scenarios 

from 500 to 5000. Thus, the MOACO algorithm can 

enhance the budget of data file replication with the 

knapsack problem when users require the number of 

data replications. 

5.6 Performance evaluation 

5.6.1. Average response time 

In Fig. 8 the average response times of the 

replication strategy using Zipf and geometric 

distributions are given. Through the experiments, we 

see that our suggested strategy reduces the average 

response time by 12% more than the familiar PDR 

algorithm. As the number of user tasks to determine 

and placement replications increases, the average 

response time rapidly increases but our strategy 

efficaciously reduces the time. 
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5.6.2. Effective network usage (ENU) 

In Fig. 9 the effective network usage measures the 

data percentage that passes through a network in the 

domain on a scale from 0 to 1. It includes the number 

of suitable accesses, the response time and the 

replications to other places that are closer and have 

lower costs among DCs. It shows that the bandwidth 

use was more efficient and effective with our strategy. 

Further, the most familiar algorithm, the PDR, has an 

ENU that improves by approximately 25% through 

the Cloud.  

5.6.3 Storage usage 

In Fig. 10, the different storage use rates in our 

heterogeneous system assess the relative size of the 

data when transferring and storing data replications 

with respect to the DCs' size. Nevertheless, it is 

another measure of the costs and transfer time among 

DCs. By comparing our strategy with the most 

familiar algorithm, the PDR, the results show that our 

strategy is superior and that it provides the best 

percentage at approximately 20%. Moreover, it 

maintains the most popular data replication in near 

places.  

 

 
Figure. 9 Effective network usage for different data 

replication strategies in the cloud 

 

 
Figure. 10 Storage use rates for different data replication 

strategies in the cloud 

 

 

Figure. 11 Hit ratios for different data replication 

strategies in the cloud 

5.6.4. Hit Ratio 

Fig. 11 the hit ratio is represented as the 

percentage of accessible data that are either closer to 

or farther from tasks as distances between 1000 to 

3000. Our strategy achieved a higher hit ratio 

compared with the most familiar PDR algorithm, 

which shows that our method can be accurately 

applied to model users' behavior when accessing 

closer and farther replications.  

6. Conclusion 

The Cloud environment is one of the most 

important scenarios that can be leveraged to achieve 

high availability and optimize the performance of 

replicas. This paper proposed two swarm intelligence 

algorithms (MOPSO and MOACO) for dynamic data 

replication and placement. MOPSO determines the 

optimal access to the most popular data replications 

and selects the optimal replication using ITBDF. 

MOACO is used to optimize the placement of data 

replicas, which was previously determined using 

MOPSO in suitable sites near users. The suggested 

system architecture was constructed and 

implemented using CloudSim. The performance of 

proposed model was compared with different 

replication algorithms such as, EFS, D2RS, ADRS, 

DRACO, and GA. The simulation results showed that 

the proposed algorithms were more efficient and 

better than the compared algorithms. 

In future work, the suggested system architecture 

will be assessed using a real computing environment. 

Also, the knapsack problem will be improved to 

optimize costs, storage space, waiting times, data 

availability, performance and access speed for data 

replications through the cloud. 
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