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Abstract: This paper is proposed to reveal the classification of randomized thermograms tabulated by the four features 

in the second-order statistic features extraction method involving the angular second-moment, contrast, correlation, 

and entropy values. The randomized thermograms, or breast thermal images, are captured by the thermal camera in 

the radiotherapy laboratory and analyzed using the mathematical method of measurement. All four features are used 

as input principal component analysis (PCA) to classify the types of thermograms after preprocessed using the wiener 

filtering and histogram equalization. Experimental results show that the method is quite promising to distinguish the 

thermal images by the sensitivity and specificity rates at 92% and 95%, respectively. 

Keywords: Thermal images, Wiener filtering, Histogram equalization, Second-order statistic, Principal component 

analysis. 

 

 

1. Introduction 

Breast cancer is the most suffered cancer among 

women worldwide. WHO reported that about 2.1 

million cases each year, and estimated 627,000 

women died in 2018 due to breast cancer [1, 2]. These 

facts are significantly increased compared to the 2012 

cases, where there were 1.7 million cases with 

522,000 deaths [3]. In further reported that breast 

cancer killed more than 500,000 women on average 

around the world every year [4]. WHO also reported 

that breast cancer in the majority of women often 

detected in late stages because of the limited 

resources and low health system. The survival rates 

of women with breast cancer too low with ranging 

from 10 to 40%. To increase the survival rates, the 

two methods are recommended, which are early 

diagnosis and screening [1, 4-8]. Principally, when 

cancer can be detected at an early stage disease, it 

should save women's life [6].  

The early diagnosis method concerns to improve 

the diagnosis service by providing timely access to 

cancer treatment. Whereas, the screening method 

concerns to identify and evaluate cancer early before 

any symptoms appear. These are some popular 

screening methods, such as mammography, clinical 

breast exam, and breast self-exam [1, 4]. 

Mammography currently is used as the standard tool 

for screening breast cancer. However, due to the 

inherent disadvantages in imaging dense breast 

tissues, the new alternative technique has been 

developed using thermography [7-9].  

In the breast cancer field, thermography, which is 

also known as thermal imaging, is generally an 

imaging technique using an infrared camera to 

examine the temperature of the breast surface. 

Infrared thermography or thermogram is usually used 

in medical applications such as to identify the 

abnormal affected area to find the early malignant 

tumors and to assist in the treatment of breast cancer, 

different diabetes, peripheral neuropathy, and 

peripheral artery disorders [10]. Infrared 

thermography also has shown to be a promising 

technique for the early diagnosis of breast 

pathologies [6, 9]. Other studies related to 

thermography mostly discuss the comparison of 

sensitivity levels, a specificity of breast cancer 

screening methods with mammography, 

thermography, and ultrasonography [11].  
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The thermogram is more proper screening and 

has a lower cost than other types of screening 

methods like the mammogram, ultrasound, and 

magnetic resonance imaging depending on the 

temperature of the breast and surrounding area by 

using a special heat-sensing camera to determine the 

heat in the region of breasts [12]. Meanwhile, the 

image processing carried out on the thermogram 

mostly uses statistical methods to calculate the degree 

of asymmetry between the left and right breast [13]. 

Nurhayati et al. [13] proposed the first-order 

statistical method for breast thermal image 

classification. They revealed the randomized 

thermograms classification which is tabulated by the 

first-order statistics method including the mean 

values, entropy values after the mathematical method 

of measurement. Combining these statistical 

parameters with a principal component analysis 

method results in a better analysis to distinguish the 

types of thermal images.  

Thermogram, as biomedical or bioinformatics 

data, has commonly high dimensional in the number 

of attributes and/or record numbers [14-16]. Hence, it 

is necessary to select the most important attributes or 

features for classification using machine learning 

algorithms [15]. In breast cancer detection purposes, 

a principal component analysis (PCA) technique has 

widely used for feature selection and it is usually 

utilized with classification algorithms. Started with 

the PCA’s advantage, this study is only focused on 

the use of PCA in breast cancer detection and analysis, 

which is motivated by some following related works. 

Lyng et al. [3] proposed the combination of PCA 

with linear discriminant analysis (LDA) and 

quadratic discriminant analysis (QDA) methods for 

breast cancer diagnosis. However, both methods gave 

similar results in sensitivity and specificity 

performances. The sensitivity and specificity values 

are approximated by 83% and 80%, respectively. The 

PCA and LDA method for breast cancer diagnosis is 

also proposed by Moisoiu et al. [17] with the 

sensitivity and specificity of their proposed method 

are 81% and 95%, respectively. Jamal et al. [15] used 

PCA and 𝑘 −𝑚𝑒𝑎𝑛𝑠 clustering algorithm to predict 

breast cancer using Wisconsin Breast Cancer (WBC) 

datasets. The performance of PCA and 𝑘 −𝑚𝑒𝑎𝑛𝑠 
combined with support vector machine (SVM) and 

XGBoost are compared in their study. The 

performance of PCA combined with SVM and 

XGBoost outperformed the 𝑘 −𝑚𝑒𝑎𝑛𝑠 on almost of 

their experiments.   

Liu and Ma [16] utilized PCA with the SVM and 

backpropagation neural network (BPNN) algorithms 

to achieve breast cancer recognition effectively. The 

pathological images are extracted using PCA to get 

the most feature and then classified using SVM and 

BPNN. The combined PCA and SVM algorithms 

gave better accuracy, sensitivity, and specificity in 

breast cancer detection, rather than using the mixture 

of PCA and BPNN. The use of PCA and SVM is also 

proposed by Luna-Rosas et al. [18]. They proposed 

the PCA and parallel SVM to find the optimal 

response time in the automated breast cancer 

detection. They used the PCA method to find the 

distribution of two classes that are healthy and 

damaged tissue. Some classifiers were used to detect 

high specificity and sensibility rates and optimized by 

SVM to optimize the response time in automated 

breast detection.  

Sahu et al. [19] proposed a hybrid method 

between the PCA with an artificial neural network 

(ANN) and random forest (RF) to classify breast 

cancer using WBC datasets. After dimensional 

reduction using the PCA, the datasets then classified 

by ANN and RF. In terms of sensitivity and 

specificity, the hybrid of PCA and ANN performed 

better than the PCA and RF. However, the hybrid of 

PCA and RF performed better in accuracy than the 

PCA and ANN. Dzulkalnine et al. [20] proposed the 

fuzzy PCA (FPCA) with SVM for breast cancer 

classification. The fuzzy PCA is adopted as a feature 

selection method to find the optimum significant 

factors for breast cancer detection. The hybrid of 

FPCA and SVM is compared to the benchmark 

methods, which are the SVM method only, and the 

hybrid of PCA and SVM. Experimental results show 

that the FPCA and SVM performed better in accuracy, 

sensitivity, specificity, and also AUC compared to 

the SVM and the hybrid of PCA and SVM. 

Based on the advantage and popularity of the 

PCA for breast cancer detection and analysis, this 

study is also carried out to use the PCA to extract the 

thermogram features. In this paper, we propose the 

new approach to determine the thermogram 

classifications that are the normal thermogram, early 

cancer thermogram, and advanced cancer 

thermogram. For this classification purpose, the 

second-order statistical method is used to evaluate the 

important features from the thermogram image that 

affect breast cancer detection. The result of this study 

can be used to determine the condition of monitored 

cancer patients from the thermogram results. Thus, in 

this paper, the use of PCA and second-order 

statistical method is proposed to classify the breast 

thermal images for breast cancer detection. 

This paper is presented in several sections, as 

follows. Section 2 presents an underlying theory 

related to the use of PCA in breast cancer analysis. 

Section 3 presents the proposed method using the 

second-order statistical method based on PCA. The 
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pre-processing of the thermogram images using 

Wiener filtering and histogram equalization also 

presented in this section.  Section 4 presents the 

experimental setup of this study including the dataset 

preparation, scope definition, and performance 

evaluation method. The experimental results and 

discussion are presented in section 5. Finally, the 

conclusions and future works of this study are 

summarized in section 6.  

2. The underlying theory 

PCA is a popular technique in statistical data 

analysis, feature extraction, and data reduction based 

on a singular value decomposition [21, 22]. It is 

commonly used to reduce the dimensionality of data 

to examine its underlying structure and the 

covariance or correlation structure of a set of 

variables. While singular value decomposition 

provides a simple means for identification of the 

principal components for classical PCA, solutions 

achieved in this manner may not possess certain 

desirable properties including robustness, 

smoothness, and sparsity [8, 11, 23, 24].  

PCA is a deterministic method for reducing the 

dimensionality of a dataset by transforming some 

possibly correlated variables into a smaller number of 

linearly uncorrelated variables, which are called 

principal components [13, 23]. Technically, PCA 

involves the variances and covariances through linear 

combinations of the provenience variables without 

missing significant information of the source data 

[25]. The goal of the PCA is to reduce the variable 

space from a large set of variables into a smaller set 

of variables. These goals are achieved by maximizing 

the variance of projected data and minimizing the 

mean squared error between the data points and 

projected data. PCA of a large data space will 

produce some orthonormal basis vectors in the form 

of a collection of eigenvectors from a particular 

covariant matrix, which can optimally represent the 

distribution of data [26]. 

In the imaging technique, the form of eigenspace 

representation can be obtained by transforming the 

PCA into a set of images. The result of this 

transformation is an orthonormal basis vector which 

is used to form a sub-vector space called a feature 

space [22, 26]. The main advantages of PCA are 

mainly in computational aspects by reducing the 

complexity so that more efficient in capacity and 

memory requirements than the nonlinear 

computational. PCA is also reducing the redundancy 

of data through the orthonormal components and 

increasing the maximum variation so that it produces 

a low noise sensitivity. Once the patterns in the data 

have been found and the data and examples have been 

compressed by reducing the number of dimensions, 

the information in it would not be much in lost [13].  

3. Proposed method 

This research involves image processing 

methods to process thermograms. For pre-processing, 

this study uses a Wiener filtering and histogram 

equalization to improve the image quality of the 

breast thermogram, as illustrated in Fig. 1. 

After the pre-processing image, the next step is to 

extract the features of an image. Feature extraction is 

the process of taking the characteristics found in an 

object in the image to recognize the object. Feature 

extraction is the first step in image classification and 

interpretation [27]. One method used in feature 

extraction is first-order statistical feature extraction 

and second-order feature extraction [13]. 

First-order feature extraction is a method of 

characterization based on image histogram 

characteristics. The histogram shows the probability 

of the appearance of the grey pixel degree values in 

an image [10, 11, 13, 28]. Second-order statistical 

feature extraction is done with a co-occurrence 

matrix, which is an intermediate matrix that 

represents correlations of pixels in the image in 

various orientations and spatial distance as describes 

in Fig. 2. Co-occurrence means joint events, i.e. the 

number of occurrences in one level of neighboring 

pixel value with another pixel value level within a 

certain distance (d) and angle orientation (θ). 

Distance is expressed in pixels and orientation is 

expressed in degrees. The orientation is formed in 

four angular directions with 45° angle intervals, 

namely 0°, 45°, 90°, and 135° while the distance 

between pixels is usually set at 1 pixel [27]. After 

obtaining the co-occurrence matrix, the second-order 

statistical characteristics that represent the observed 

image can be calculated. 

 

 

 
(a)                   (b)                    (c) 

Figure. 1 (a) original thermogram, (b) thermogram after 

filtered wiener, and (c) after histogram equalization 

 

Citra Termogram kanker lanjut T1.bmp Citra Keabuan

Ditapis Wiener Ekualisasi Histogram
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(a) 

 
(b) 

Figure. 2 (a) Image histogram and (b) the relationship 

between neighboring pixels as a function of orientation 

and spatial distance [27] 

 

Several second-order statistical features are 

calculated, namely angular second moment, contrast, 

correlation, and entropy [27]. 

a. Angular Second Moment (ASM) functions to 

show the characteristics of the image homogeneity 

that can be obtained by Eq. (1) where 𝑝(𝑖, 𝑗) 
represents the value in row 𝑖 and column 𝑗 in the 

co-occurrence matrix. 

 

𝐴𝑆𝑀 =∑∑{𝑝(𝑖, 𝑗)}2

𝑖𝑖

 (1) 

 
b. Contrast (𝐶𝑂𝑁) functions to show the range of the 

spread (moment of inertia) elements of the image 

matrix. If it is located far from the main diagonal, 

the contrast value is large. Visually, the contrast 

value is a measure of variation in the grey degrees 

of an image range shown in Eq. (2). 

 

𝐶𝑂𝑁 =∑𝑛2

{
 
 

 
 

∑ ∑ 𝑝(𝑖, 𝑗)
𝑗

|𝑖−𝑗|=𝑛
𝑖

}
 
 

 
 

𝑛

 (2) 

c. Correlation (𝐶𝑂𝑅) functions to show the size of 

the linear dependence of the grey image degree so 

that it can provide a hint for the linear structure in 

the image that can be obtained in Eq. (3) with 

𝜇𝑥  and 𝜇𝑦 are the average values of 𝑝𝑥  and 𝑝𝑦, 

respectively. Whereas, 𝜎𝑥 and 𝜎𝑦 are and the 

standard deviation values of values of 𝑝𝑥  and 𝑝𝑦, 

respectively.  

 

𝐶𝑂𝑅 =
∑ ∑ (𝑖𝑗)𝑝(𝑖, 𝑗) − 𝜇𝑖𝜇𝑗𝑗𝑖

𝜎𝑥𝜎𝑦
 (3) 

 
d. Entropy ( 𝐸𝑁𝑇 ) describes the value of shape 

irregularity. The entropy value is large for images 

with a uniformly greyed-out degree transition and 

is of little value for the irregular (varied) image 

structure obtained in Eq. (4). 

  

𝐸𝑁𝑇 = −∑∑𝑝(𝑖, 𝑗)2log (𝑝(𝑖, 𝑗)

𝑗𝑖

) (4) 

 

4. Experimental setup 

This study uses 170 breast thermogram images in 

256 × 192 of size for the experiment. These breast 

thermogram images are categorized into the normal 

thermograms (50 images), early breast cancer 

thermograms (50 images), advanced breast cancer 

thermograms (50 images), and undergoing breast 

cancer thermograms (20 images). All of these 

thermogram images were taken from breast cancer 

patients using a thermal camera in the radiotherapy 

laboratory of the general hospital Dr. Sarjito, 

Indonesia. All of the patients of this study were only 

female patients, without any age restrictions, and the 

observed cancer location around in the breast area.  

The scope of this experiment is specifically to 

simulate and evaluate a breast cancer detection 

method using thermogram images by applying a 

second-order statistical feature extraction. The 

features used in this proposed method are the 𝐴𝑆𝑀, 

𝐶𝑂𝑁, 𝐶𝑂𝑅𝑅, and 𝐸𝑁𝑇, which are formulated in Eq.  

(1) to Eq. (4), respectively.  Besides, this study also 

uses the PCA method to calculate eigenvalues, 

eigenvectors, and covariance matrix of thermogram 

data images. The PCA method flow chart is presented 

in Fig. 3.  

For evaluation, the performance of the second-

order statistical method for breast thermal image 

classification in this study is measured by sensitivity, 

specificity, and receiver operating characteristics 

(ROC) curve. Sensitivity, also called true positive 
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Figure. 3 The PCA method flow chart  

 

 

rate (TPR), measures the percentage of actual 

positives or cancer detected that are correctly 

positives. The sensitivity value represents the 

probability of a positive result that the patient has the 

disease. Specificity (also called true negative rate) 

measures the percentage of actual negatives or no 

cancer detected that are correctly negatives. 

The specificity value represents the probability of 

a negative result that the patient is healthy. The 

sensitivity and specificity values are computed using 

the following terminology. The diagnostic activities 

of this research can be seen as probability events as 

follows: 

a. 𝑇 +: a positive result or cancer detected. 

b. 𝑇 −: a negative result or cancer undetected. 

c. 𝐷 +: indicates diseases (positive). 

d. 𝐷 −: indicates no disease (negative). 

The quality of a procedure or diagnostic test can 

be seen from the conditional probabilities below: 

a. Sensitivity: 𝑆𝑒𝑛𝑠 =  𝑃(𝑇 + | 𝐷+) (5) 

b. Specificity: 𝑆𝑝𝑒𝑐 =  𝑃(𝑇 − | 𝐷−) (6) 

A measurement or diagnostic test is considered to be 

good if it has high sensitivity and specificity value 

(close to 1). The plot of TPR versus the false positive 

rate (FPR or 1 − 𝑠𝑒𝑛𝑠) will generate the curve in the 

unit square, which called the ROC curve [23]. 

Graphically, the ROC curve represents the ability of 

the diagnostic tests to distinguish the "diseased" and 

"non-diseased" states [29]. 

5. Results and discussion 

The results of this study are carried out with 

diagnostic tests of sensitivity and specificity 

parameters to determine whether the patient was 

 

Table 1. The diagnostic activities from patients data  

 𝑇 − 𝑇 + Total patient 

𝐷 − 74 4 78 

𝐷 + 8 98 106 

𝐷1 − 65 4 69 

𝐷1 + 4 15 19 

𝐷2 − 74 8 84 

𝐷2 + 4 83 89 

Note: 𝐷1 +, 𝑇 + = early cancer; 𝐷2 +, 𝑇 + = advanced 

cancer; 𝐷 − = no cancer detected 

 

 
Table 2. Sensitivity and specificity based on score level 

Positive test 

criteria 
Sensitivity Specificity 

1- 

Specificity 

1 ≥ score 1.00 0.00 1.00 

1 ≤ score ≤ 2 0.79 0.94 0.06 

3 ≤ score 0.93 0.88 0.12 

Note: 1 = normal; 2 = early cancer; 3 = advanced cancer 

 

 
Table 3. Average results of second-order statistical 

characteristic values 

Type of 

thermogram 
ASM CON COR ENT 

Normal 0.0024 103.10 0.97 11.001 

Early  0.0012 141.86 0.94 11.410 

Advanced  0.0010 145.04 0.96 11.627 

 

 

diseased or not. The data distribution of the 

diagnostic activities is summarized in Table 1. The 

values of 𝐷 +  and 𝑇 +  are categorized as early 

cancer. The values of 𝐷2 + and 𝑇 + are categorized 

as advanced cancer, while the 𝐷 −  values are 

categorized as no cancer detected. 

The diagnostic activities values in Table 1 are 

then used to compute the sensitivity and specificity 

that are formulated in Eq. (5) and Eq. (6), respectively. 

The sensitivity and specificity of the diagnostic score 

level are summarized in Table 2, where there are 

three levels, that are: normal, early cancer, and 

advanced cancer criteria. 

The four second-order statistical features 

extracted from each thermogram are the 𝐴𝑆𝑀, 𝐶𝑂𝑁, 

𝐶𝑂𝑅𝑅, and 𝐸𝑁𝑇. The average results of the second-

order statistical characteristic values are presented in 

Table 3.  

Using the PCA method, the eigenvectors and the 

eigenvalues of the second-order statistical features 

are shown in Table 4. The 𝐴𝑆𝑀 plot characteristics in 

the correlations of all raw thermogram data for 

normal, early cancer, and advanced cancer are shown 

in Fig. 4. 
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Table 4. The eigenvectors and eigenvalues range of the second-order statistical features 

Features 
Eigenvectors Eigenvalues 

Normal Early Advanced Normal Early Advanced 

𝐴𝑆𝑀; 𝐶𝑂𝑁 [-1,0]; [0,1] [0,1]; [1,0] [0,-1]; [-1,0] [2124; 0] [2470; 0] [2124; 0] 

𝐴𝑆𝑀;  𝐶𝑂𝑅𝑅 
[-1,-0.001]; 

[-0.001,1] 

[0.05,0.99]; 

[0.99,-0.05] 
[0,1]; [1,0] [0.002; 0] [0; 0] [0.002; 0] 

𝐴𝑆𝑀; 𝐸𝑁𝑇 
[-1,-0.003]; 

[-0.003,1] 

[-0.002,1]; 

[1, 0.002] 
[0,-1]; [-1,0] [0.767; 0] [1.07; 0] [0.767; 0] 

𝐶𝑂𝑁;  𝐶𝑂𝑅𝑅 
[-0.0003,-1]; 

[-1,0.0003] 

[-1,0.0002]; 

[0.0002,1] 
[0,1]; [1,0] [2124; 0] [2470; 0] [2124; 0] 

𝐶𝑂𝑁;  𝐸𝑁𝑇 
[-0.01,-1]; 

[-1,0.01] 

[-0.99,-0.02]; 

[-0.02,0.99] 
[0,-1]; [-1,0] [2124; 0.6] [2470; 0.3] [2124; 0.6] 

𝐶𝑂𝑅𝑅;  𝐸𝑁𝑇 
[-1,0.008]; 

[0.008,1] 

[-0.009,1]; 

[1,0.009] 
[0,-1]; [-1,0] 

[0.767; 

0.002] 
[1.07; 0] 

[0.767; 

0.002] 

 
Figure. 4 𝐴𝑆𝑀 plot characteristics result in the 

correlations of all raw thermogram 
 

 
Figure. 5 The plot of the normalization thermogram data 

of the 𝐴𝑆𝑀 feature towards the 𝐶𝑂𝑅𝑅 

 

The plot of the normalization thermogram data of 

the 𝐴𝑆𝑀  feature towards the correlation feature is 

displayed in Fig. 5. The decoupling results from the 

transformation of the matrix 𝐴 =
[cos 𝜃 sin 𝜃 ; − sin 𝜃 cos 𝜃] and the characteristics of 

the thermogram data correlation are shown in Fig. 6. 

Whilst the decoupling results of the matrix 𝐵 =
[cos 𝜃−sin𝜃 ; sin𝜃 cos 𝜃] and the characteristics of 

the thermogram data correlation are presented in Fig. 

7.  

 

 
Figure. 6 The decoupling results of the first 

transformation at angle 𝐴 characterize 𝐴𝑆𝑀 vs 𝐶𝑂𝑅𝑅 

   

 
Figure. 7 The further decoupling results of the angle 𝐵 

characterize 𝐴𝑆𝑀 vs 𝐶𝑂𝑅𝑅 
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The further decoupling results of the angle 𝐵 of 

the 𝐴𝑆𝑀 characteristic pair to the correlation feature, 

as shown in Fig. 7, give significant results in 

separating the three types of thermograms, namely 

normal thermogram, early cancer thermogram, and 

advanced cancer thermogram. As shown in Fig. 7, the 

normal thermograms have values close to 1, the early 

cancer thermograms have values close to -1, and the 

advanced cancer thermograms have values close to 

zero (0). 

The plot for contrast characteristics results 

towards the correlation characteristics after 

decoupling due to the transformation of the 

trigonometric matrix 𝐵  is presented in Fig. 8. It 

provides significant information to the separability of 

the thermogram gives a much different range. The 

normal thermograms have values close to 1, the early 

cancer thermograms have values close to -1, and the 

advanced cancer thermograms have values close to 

zero (0).  

 

 
Figure. 8 The decoupling results due to the 

transformation of angle 𝐵 on the contrast characteristic 

towards correlation 

 

 
Figure. 9 The further decoupling results in angle 𝐵 of the 

contrast characteristic towards entropy 

 

 
Figure. 10 The decoupling results of the 𝐵 trigonometric 

matrix 𝐴𝑆𝑀 characteristic towards contrast and 

correlation 

 

Similarly, the plot of the contrast towards the 

entropy after further decoupling at angle 𝐵 is shown 

in Fig. 9. It shows the further decoupling results of 

the trigonometric matrix 𝐵  in contrast and entropy 

characteristics. The three types of thermograms are 

well separated so that there is no information 

redundancy among the three types of thermograms. 

The normal thermograms have a range of values 5 to 

15, the early cancer thermograms have a range of 

values -5 to -15, and the advanced cancer 

thermograms have a range of values -4 to 4.  

Some of the second-order statistical 

characteristics result in three dimensions on 𝐴𝑆𝑀 , 

𝐶𝑂𝑁, 𝐶𝑂𝑅𝑅, and 𝐸𝑁𝑇 features are divided into two 

groups, namely the classification results with strong 

correlation and the classification results with weak 

correlation. The further decoupling results using 

eigenvalues on the 𝐴𝑆𝑀 characteristic towards 𝐶𝑂𝑁 

and 𝐶𝑂𝑅𝑅 are shown in Fig. 10. The computational 

time to display the thermogram results after the final 

transformation is about 1.906 seconds. 

Table 5 describes strong correlations and 

computational time resulting from second-order 

statistical features. The lowest computational time is 

achieved by the pair of the 𝐶𝑂𝑁 and 𝐶𝑂𝑅𝑅 attributes 

with 1.734 seconds. Whilst the highest computational 

time is achieved by the pair of the 𝐴𝑆𝑀 and 𝐶𝑂𝑁 

attributes with 5.328 seconds. Overall, the 

computational time average of all feature pairs is 

2.205 seconds. Table 6 presents weak correlations 

and computational time resulting from second-order 

statistical features. The only one of weak correlation 

is obtained by the 𝐶𝑂𝑁 attribute towards the pair of 

𝐶𝑂𝑅𝑅 and 𝐸𝑁𝑇  attributes with computational time 

in 1.891 seconds. 
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Table 5. Strong correlations and computational time of 

second-order statistical feature pair 

No Features Pair Computational 

Time (s) 

1 𝐴𝑆𝑀 and 𝐶𝑂𝑁 5.328 

2 𝐴𝑆𝑀 and 𝐶𝑂𝑅𝑅 1.766 

3 𝐴𝑆𝑀 and 𝐸𝑁𝐷 1.766 

4 𝐶𝑂𝑁 and 𝐶𝑂𝑅𝑅 1.734 

5 𝐶𝑂𝑁 and 𝐸𝑁𝑇 1.750 

6 𝐶𝑂𝑅𝑅 and 𝐸𝑁𝑇 1.750 

7 𝐴𝑆𝑀 towards 𝐶𝑂𝑁 and 

𝐶𝑂𝑅𝑅 

1.906 

8 𝐴𝑆𝑀 towards 𝐶𝑂𝑁 and 

𝐸𝑁𝑇 

1.906 

9 𝐴𝑆𝑀 towards 𝐶𝑂𝑅𝑅 and 

𝐸𝑁𝑇 

1.938 

Average 2.205 

 

Table 6. Weak correlations and computational time of 

second-order statistical characteristic pairs 

No. Features Pair 
Computational 

Time (s) 

1. 𝐶𝑂𝑁 towards 𝐶𝑂𝑅𝑅 and 𝐸𝑁𝑁 1.891 

 

 

 Table 7 illustrates the statistical characteristic 

correlation coefficients. It shows the linear 

dependence between the two variables 𝑥 and 𝑦, the 

two variables 𝑥 and 𝑧, as well as the two variables 𝑦 

and 𝑧  in the second-order statistical characteristic 

plot. The variables 𝑥, 𝑦, and 𝑧 range between -1 and 

+1 which indicate the degree of linear dependence 

between the two variables. The results of the first 

transformation to the thermogram raw data have a 

correlation coefficient on the variables 𝑥𝑡1, 𝑦𝑡1, and 

𝑧𝑡1 indicates that there are no transformations on the 

𝑥 or 𝑦 variables. 

The results of the first transformation to the 

thermogram raw data have a correlation coefficient 

on the variables 𝑥𝑡1, 𝑦𝑡1, and 𝑧𝑡1 indicates that there 

are no transformations on the 𝑥  or 𝑦  variables. 

However, there are variable 𝑧𝑡1 that transformed into 

the independent variable of the two other variables, 

which is indicated by the correlation coefficient 

𝑧𝑡1 =  0.  

Similarly, the second transformation results, 

which has a correlation coefficient on the variables 

𝑥𝑡2 , 𝑦𝑡2 , and 𝑧𝑡2  indicates that there are no 

transformations on the 𝑥𝑡1 or 𝑦𝑡1 variables. However, 

there are variable 𝑧𝑡2  that transformed into the 

independent variable of the two other variables, 

which is indicated by the correlation coefficient 

𝑧𝑡2  =  0. Weak correlations give incorrect grouping 

results because it provides redundant information so 

that there are still some thermograms that will be read 

as normal thermograms, early cancer thermograms, 

or advanced cancer thermograms. 

Thermogram analysis is used to monitor the 

examination of breast cancer patients who are 

undergoing radiation and/or chemotherapy. 

Monitoring data collection was carried out for three 

consecutive weeks, which was divided into 3 groups, 

namely: monitoring1, monitoring2, and monitoring3 

of 11 patients who were undergoing radiation and/or 

chemotherapy examinations. 

Using the PCA approach, the monitoring results 

of the cancer thermogram to the normal thermogram 

will be obtained. Second-order statistical feature 

extraction is done by taking the most significant 

characteristics to distinguish the type of thermogram, 

 

 

 

 
Figure. 11 Patient monitoring results in three dimensions 

 

 
Table 7. Secondary statistical characteristic correlation coefficients 

Feature 𝑥 𝑦 𝑧 𝑥𝑡1 𝑦𝑡1 𝑧𝑡1 𝑥𝑡2 𝑦𝑡2 𝑧𝑡2 

𝐴𝑆𝑀; 𝐶𝑂𝑁 -0.329 -0.57 -0.214 -0.329 -0.57 0 -0.329 -0.57 0 

𝐴𝑆𝑀; 𝐶𝑂𝑅 -0.014 0.322 0.1379 -0.014 0.322 0 -0.014 0.322 0 

𝐴𝑆𝑀;𝐸𝑁𝑇 -0.854 -0.9 -0.873 -0.854 -0.9 0 -0.854 -0.9 0 

𝐶𝑂𝑁; 𝐶𝑂𝑅 -0.337 -0.81 -0.570 -0.337 -0.81 0 -0.337 -0.81 0 

𝐶𝑂𝑁; 𝐸𝑁𝑇 0.500 0.82 0.463 0.500 0.82 0 0.500 0.82 0 

𝐶𝑂𝑅; 𝐸𝑁𝑇 0.160 -0.63 -0.078 0.160 -0.63 0 0.160 -0.63 0 
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Figure. 12 Thermogram monitoring plot in two 

dimensions 

 

 
Figure. 13 A plot of thermogram monitoring results for 

normal and early cancer thermograms 

 

namely the average, and entropy. A three-

dimensional plot of the monitoring results of breast 

cancer patients with a normal thermogram is 

displayed in Fig. 11. The results of the three-

dimensional reduction into two dimensions are the 

main components of the results of monitoring the 

cancer thermogram to the normal thermogram 

describe in Fig. 12. 

Using the two most significant features, the 

results of the normal thermogram plot, the early 

cancer thermogram against the patient monitoring 

thermogram are illustrated in Fig. 13. It displays the 

classification of thermogram types into normal 

thermogram types, early cancer thermograms, and 

thermograms of patients undergoing examination 

(monitored). 

The patient thermogram monitoring results for 

three weeks have not been able to show a difference 

that is strong enough to separate monitoring1, 

monitoring2, monitoring3. The PCA technique in this 

study can be used to separate the normal thermogram 

 

 
Figure. 14 ROC curve 

 

and the cancer thermogram because it can provide 

classification results that are far apart from each other 

[11]. The next step in the analysis results is to 

calculate the value of sensitivity, specificity, and 

ROC curve. The sensitivity and specificity 

parameters in (5) and (6), respectively, can be 

calculated by:  

a.  Sensitivity ( 𝑆𝑒𝑛𝑠 ) as a comparison of cancer 

detected patients with the total number of cancer 

patients. In this study, the sensitivity value is 92%. 

b. Specificity (𝑆𝑝𝑒𝑐) as a comparison of patients not 

detected with cancer with the total number of 

patients not detected with cancer. The specificity 

value of this study is 95%. 
The estimation results of 𝑠𝑒𝑛𝑠  and 𝑠𝑝𝑒𝑐  can be 

interpreted as follows:  

a.  If the test is used for women who do not have 

breast cancer, then the test will almost certainly be 

negative. It means that the specificity of 95% is 

large enough.  

b. If the test is used for women suffering from breast 

cancer, then the chance of being detected is large. 

It means that the sensitivity of 92% is big enough.  

The plot between the sensitivity and 1-specificity 

values is the ROC curve describes in Fig. 14. It shows 

that the area under a large ROC curve means that the 

diagnostic procedure is performed quite well.  

For further evaluation, the proposed method of 

this study is compared to the most related works 

based on the similar or same platform using PCA that 

are presented in Table 8. The term of sensitivity and 

specificity are used for performance evaluation 

among methods. Based on the average performance 

in Table 8, it shows that the use of second-order 

statistical on PCA could yield a promising 

performance compared to the recent methods. The 

performance differences between these methods are 
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Table 8. Comparison of average performance  

No. 
PCA-based 

Method 

Sensitivity 

(%)  

Specificity 

(%) 

1. PCA+LDA [3]  83 80 

2. PCA+QDA [3]  83 80 

3. PCA+SVM [15]  99.06 96.56 

4. PCA+SVM [16]  95.97 96.23 

5. 
PCA+parallel 

SVM [18]  
100 100 

6. PCA+ANN [19]  95 98 

7. PCA+RF [19]  92 97 

8. 
Fuzzy PCA+SVM 

[20]  
96 98.67 

9. PCA+SVM [20]  85.19 100 

10. PCA+LDA [17]  81 95 

11. 

PCA+second-

order statistics 

(this study) 

92 95 

 

usually influenced by many factors, such as datasets 

and parameters. Although all of those methods are 

not re-experimented in this study, however, the 

proposed method can be used to enrich breast cancer 

detection with comparable results to the other 

methods. 

6. Conclusions and future works 

The PCA with a second-order statistical method 

through covariance matrix, eigenvalue, and 

eigenvector has been able to provide a high level of 

sensitivity and specificity, which are 92% to 95%, in 

sorting out normal thermograms, early cancers, 

advanced cancers, and for monitoring the 

development of therapeutic results in breast cancer 

patients. Thermogram parameters are extracted from 

second-order statistical features to represent normal, 

early and advanced cancers are available. Hence, any 

other digital thermogram samples will be identified 

directly using these parameters as the initial 

composition of the process to shorten computing time. 

The proposed method that is implemented in the 

breast thermogram processing also has sufficiently 

high computing. The computation time of the 

proposed algorithm is only 2.205 seconds on average.  

Several follow-ups that can be taken from this 

study as future works include:  

1.  realize the proposed method for real-time and 

standalone software that can be directly applied to 

detect breast cancer early and to improve the 

results of cancer monitoring;  

2.  using a standard thermal camera specifically for 

medical applications that have a temperature 

range of 35º to 40ºC with an accuracy of 0.01ºC. 
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