بررسی آزادسازی پتاسیم و تغییرات کانی‌های میکا در نتیجه تلقیح میکروبی

نوع مقاله : مقالات پژوهشی

نویسندگان

1 تبریز

2 دانشگاه تبریز

چکیده

پتاسیم یکی از عناصر غذایی ضروری پرمصرف برای رشد و توسعه سیستم‌های زنده محسوب می‌شود. کاربرد و استفاده ریزجانداران خاک یکی از راه‌های افزایش تامین این عناصر و رشد محصول می‌باشند. برخی از باکتری‌ها در رهاسازی پتاسیم از منابع معدنی کارایی لازم را دارا می‌باشند و در سال‌های اخیر توجه به باکتری‌های آزادکننده پتاسیم با هدف تهیه کودهای زیستی بیشتر شده است. در این مطالعه توان چندین جدایه باکتری در آزادسازی پتاسیم از کانی‌های میکا در شرایط درون-شیشه‌ای بررسی شد. برای این منظور در یک آزمایش انکوباسیون میکروبی توانایی آزادسازی پتاسیم توسط پنج جدایه (S6-6، S10-3، S14-3، S19-1 و S21-1) متعلق به جنس سودوموناس ارزیابی شد. در این آزمایش به دلیل استفاده از کانی میکا و تری‌کلسیم فسفات در محیط کشت الکساندروف، آزادسازی پتاسیم و فسفر به صورت همزمان در فواصل زمانی پنج روز در طول آزمایش اندازه‌گیری شد. این آزمایش با در نظر گرفتن فاکتورهای باکتری (شامل 5 جدایه باکتری و یک نمونه شاهد بدون باکتری) و کانی میکا (شامل بیوتیت و موسکویت) به صورت فاکتوریل در قالب طرح کاملاً تصادفی با سه تکرار به اجرا درآمد. رهاسازی پتاسیم از منابع کانی‌های پتاسیم‌دار موسکویت و بیوتیت در حضور منبع فسفر نامحلول تری‌کلسیم فسفات بررسی شد. انحلال فسفر از منبع تری‌کلسیم‌فسفات توسط باکتریها به روش آمونیم-وانادات-مولیبدات از طریق اسپکتروفتومتری تعیین شد و پتاسیم آزادشده در محلول از طریق فلیم‌فتومتر اندازه‌گیری شد. نتایج نشان داد که پتاسیم و فسفر محلول در محیط کشت تلقیح شده با باکتری‌های فوق به طور معنی‌داری افزایش یافت و مقدار پتاسیم آزاد شده توسط جدایه‌ها از این محیط بین 17/2 تا 23/3 میلی‌گرم در گرم به دست آمد و بیشترین مقدار پتاسیم آزاد شده مربوط به سویه S14-3 بود که نسبت به شاهد بدون باکتری 85/48 درصد افزایش نشان داد و با سایر جدایه‌ها تفاوت معنی‌داری داشت. در آنالیز XRD کانی موسکویت (تیمار شده با منیزیم) در حضور تیمار S14-3، پیک 5/19 انگسترم به‌دست آمد که می‌تواند مربوط به تخلیه فضای بین لایه‌ای و پر شدن آن توسط یک‌سری از متابولیت‌های باکتریایی باشد. چنین به نظر می‌رسد که تخلیه پتاسیم از کانی‌ها رخ داده است و آزمایشات تکمیلی بیشتر برای تایید این موضوع لازم است. افزایش آزادسازی پتاسیم از کانی‌های پتاسیم و انحلال فسفر از تری‌کلسیم فسفات شاید در نتیجه تولید و آزادسازی اسیدهای آلی از باکتریها باشد.

کلیدواژه‌ها


عنوان مقاله [English]

Study on Potassium Release from Mica Minerals and its Alteration as Influenced by Microbial Inoculation

نویسندگان [English]

  • Mohammad Reza Sarikhani 1
  • O. madani 2
  • Sh. Oustan 2
1 Tabriz
2 University of Tabriz
چکیده [English]

Introduction: Potassium (K) is one of the major essential macronutrients for biological growth and development. The ability of some bacteria to release potassium from unavailable forms is an important feature for increasing plant yields of high-K-demand crops. Application of soil microorganisms is one approach to enhance crop growth. Some bacteria are efficient in releasing K from mineral sources and in recent years in order to produce and make of potassium biofertilizers, attention to the potassium releasing bacteria has been increased. Production of organic acids and acidic polysaccharides by the microorganisms are the main mechanisms by which K is released. Microorganisms play a central role in the natural P and K cycles. Many microorganisms in the soil are able to solubilize ‘unavailable’ forms of K-bearing minerals, such as micas, illite and orthoclases, by excreting organic acids which either directly dissolves rock K or chelate silicon ions to bring the K into solution. Recently, attention to the release of potassium from bacteria has been increased because some of efficient bacteria can be used as potassium biofertilizers to meet plant K needs. Hence, the objectives of this study were to in-vitro assessment of potassium releasing of some isolates belonged to Pseudomonas genus.
Materials and Methods: A laboratory dissolution study was carried out using a completely randomized design with three replicates. The factorial experiment contained two factors; 1-bacteria (including five bacterial treatments and un-inoclated treatment) and 2- mica minerals (including biotite and muscovite). Micas flakes were powdered and passed through a 0.5 mm sieve. Available forms of K were removed by washing with 0.1 M HCl and then distilled water, before adding the minerals to Aleksandrov medium For this reason, a microbial incubation study in the Aleksandrov liquid medium containing mica and tricalcium phosphate was designed for a period of one month and 5 strains of potassium releasing bacteria belonged to the genus Pseudomonas (S6-6, S10-3, S14-3, S19-1 and S21-1) along with the un-inoculated treatment (control) were applied. In this experiment, the release of potassium and phosphorus in liquid Aleksandrov medium were measured at intervals of 5 days in incubation period of 30 days. Nutrient Broth was used to prepare an overnight culture of bacteria to inoculate Aleksandrov medium. It should be mentioned that Aleksandrov medium was used to determine the amount of released P from tricalcium phosphate (TCP) while muscovite was added to the medium as a sole source of potassium. Concentration of P was determined spectrophotometrically by ammonium-vanadate-molybdate method and K was determined by flame photometry.
Results: The results showed that dissolved potassium and phosphorus in the inoculated medium were significantly increased and the amount of potassium released by the isolates was between 2.17 and 3.23 mg g-1 and the highest potassium release was achieved with isolate S14-3 (3.23 mg g-1), which that compared to the non-bacterial control showed an increase of 48.85 %, and significant difference was found with other isolates. Bacterial incubation experiment indicated the ability of isolates to release potassium from K-containing minerals such as biotite and muscovite and the XRD analysis revealed an alter in chemical structure of clay minerals. Especially, presence of 19.5Å peak in muscovite (saturated with magnesium) treated with isolate S14-3 showed the released space of K from the interlayer is filled or associated with a number of bacterial metabolites. It seems that the same mechanisms could be effective in releasing K from micas and P from TCP, in other words there is a co-solubilizing mechanism for mica and TCP.
Discussion and conclusion: It appears tha depletion of potassium from minerals has occurred but further tests will confirm this topic. The enhanced releasing of mineral K might be attributed to the release of organic acids from the bacteria, a mechanism which plays a pivotal role in solubilizing phosphate from inorganic source of phosphate. The mechanism of potassium release from minerals is still not clear. Productions of acids or chelates are main mechanisms to release K from potassium containing minerals. Among the bacterial strains under study, Pseudomonas sp. S14-3 was the most efficient strain in K release from micas and phosphate solubilization from TCP. However, more experiments need to be done especially in pot and field experiments to study the role of these strains in K nutrition of crops.

کلیدواژه‌ها [English]

  • Potassium releasing bacteria
  • biotite
  • Biological weathering
  • XRD
1- Balogh-Brunstad Z., Keller C.K., Dickinson J.T., Stevens F., Li, C.Y., and Bormann B.T. 2008. Biotite weathering and nutrient uptake by ectomycorrhizal fungus, Suillus tomentosus, in liquid-culture experiments. Geochimica et Cosmochimica Acta, 72: 2601–2618.
2- Chiang Y.M., Rafael M.S., Monballiu A., Ghyselbrecht K., Johan A.M., MariaLaura T.M., Gerven T.V., and Boudewijn M. 2013. Effects of bioleaching on the chemical, mineralogical and morphological properties of natural and waste-derived alkaline materials. Minerals Engineering, 48:116–125.
3- Farshadirad A., Dordipour E., and Khormali F. 2013. Kinetic of non-exchangeable potassium release with CaCl2 from soils and its components. Journal of Soil Management and Sustainable Production, 3(1): 113-129.
4- Feigenbaum S.R., Edelston E., and shainberg I. 1981. Release rate of K and structural cations from micas to ion exchange in dilute solution. Soil Science Society of America Journal, 45: 501-506
5- Goldstein A.H., Rogers R.D., Mead G. 1993. Mining by microbe. Biology and Technology. 11: 1250–1254.
6- Halder A.K., Mishra A.K., Bhattacharya P., and Chakrabarty P.K. 1990. Solubilization of inorganic phosphate by Rhizobium. Indian Journal of Microbiology, 30: 311-314.
7- Hopf J., Langenhorst F., Pollok K., Merten D., and Kothe E. 2008. Influence of microorganisms on biotite dissolution: An experimental approach. Chemie der Erde, 69: 45–56.
8- Hosseinpur A. 1999. Study Potassium Fixation, The quantity of intensity and the rate of non-exchangeable Potassium In soils of Iran. PhD thesis soil. College of Agriculture, Isfahan University of Technology. 223 pages.
9- Huang P.M., and Song S.K. 1988. Dynamic of potassium release from potassium- bearing minerals as influenced by oxalic and citric acids Siol. Soil Science Society of America Journal, 52: 383 -390.
10- Jung I., Park D.H., and Park K. 2002. A study of the growth condition and solubilization of phosphate from hydroyapatite by pantoea agglomerans. Biotechnology Bioprecess Enginiering, 7: 201-2015.
11- Keshavarzzarjani J., Aliasgharzad N., and Oustan SH. 2013. Effects of Six Strains of Potassium Releasing Bacteria on Growth and Potassium Uptake of Tomato Plant. Journal of Soil and Water, 23(2): 245- 255.
12- Lian B., Fu P.Q., Mo D.M., Liu C.Q. 2002. A comprehensive review of the mechanism of potassium releasing by silicate bacteria. Acta Mineralogica Sinica, 22: 179–183.
13- Liu W., Xu X., Wu X., Yang Q., Luo Y., and Christie P. 2006. Decomposition of silicate minerals by Bacillus mucilaginosus in liquid culture. Environmental Geochemistry and Health, 28:133–140.
14- Lopes-Assad M.L., Avansini SH., Erler G., Marcia Maria Rosa. M.M., Carvalho J.R.P., and Ceccato-Antonini, S.R. 2010. Rock powder solubilization by Aspergillus niger as a source of potassium for agroecological systems. World Congress of Soil Science, Soil Solutions for a Changing World, 219-221.
15- Mahdizade shahri H., Mossavi M.H., and Ghorbani H. 2010. Mineralogical study of soils formed on Aghajari formation in Masjed Soleiman and Castle eunuch. Journal of Islamic Azad University, 20(77): 151-172.
16- Malboobi M.A., Owlia P., Behbahani M., Sarokhani E., Moradi S., Yakhchali B., Deljou A., and Morabbi Heravi K. 2009. Solubilization of organic and inorganic phosphates by three highly efficient soil bacterial isolates. World Journal of Microbiology and Biotechnology, 25: 1471–1477.
17- Martin W.H., and Sparks D.L. 1985. On the behavior of nonexchangeable potassium in soils. Communications in Soil Science and Plant Analysis, 16: 133-162.
18- Mojallali H., and Weed, S.B. 1978. Weathering of micas by mycorrhizal soybean plants. Soil Science of American Journal, 42: 367-372.
19- Muller B., and Defago G.V. 2006. Interaction between the bacterium Pseudomonas fluorescens and vermiculite: Effects on chemical, mineralogical, and mechanical properties of vermiculite. Journal of geophysical research, vol. 111, G02017.
20- Muller B. 2009. Impact of the bacterium Pseudomonas fluorescens and its genetic derivatives on vermiculite: Effects on trace metals contents and clay mineralogical properties. Geoderma, 153:94-103.
21- Norouzi S., and Khademi H. 2009. Potassium release from muscovite and phlogopite as influenced by selected
22- organic acids. Journal of Water and Soil, 23(1): 263-273.
23- Prajapati K.B., and Modi H.A. 2012. Isolation and characterition of potassium solubilizing bacteria from ceramic Industry soil.CIBTech Journal of Microbiology, 1 (2-3): 8-14.
24- Rahimzadeh N., Olamaei M., Khormali F., Dordipour E., and Amini A. 2013. The effect of silicate dissolving bacteria on potassium release from glauconite in Canola (Brassica napus) rhizosphere. Journal of Soil Management and Sustainable Production, 3(2): 169-185.
25- Rodrıguez H., and Fraga R. 1999. Phosphate solubilizing bacteria and their role in plant growth promotion. Biotechnology Advances, 17: 319 –339.
26- Russel E.W. 1961. Soil Conditions and Plant Growth. Longman. London. 1014 pages
27- Ruzhen J., and Yuhong P. 2010. Preliminary Study on Phosphate Solubilization and K-releasing Abilities of Rhizobium tropici Martinez-Romero et al. Strains from Woody Legumes. World Congress of Soil Science, Soil Solutions for a Changing World. 104-107.
28- Sheldrick W.F. 1985. World potassium reserves. P: 3-29. In. R.D. Munson. (Ed.), Potassium in Agriculture. ASA, CSSA, SSSA, Madison, WI.
29- Salajegheh Tezerji F., Sarcheshmehpour M., and Mohammadi H. 2014. Investigation of mycorrhizal colonization of Pistachio (Pistacia vera) seedlings in Kerman province and evaluation of some isolates via greenhouse experiment. Journal of Soil Management and Sustainable Production, 4(3): 113-133.
30- Sarikhani M.R., Ebrahimi M., Oustan Sh. and Aliasgharzad N. 2013. Application of Potassium Solubilizing Bacteria a Promising Approach in Sustainable Agriculture - Increasing of potassium releasing from k-containing minerals in presence of insoluble phosphate. The 1st International Conference on Environmental Crises and its Solutions. 13-14 Ferruary 2013. Islamic azad university, Khozestan, Kish, Iran.
31- Sarikhani M.R., and Aliasgharzad N. 2005. Effect of inoculation of arbuscular mycorrhizal fungi on potassium uptake and yield of potatoes. Ninth Congress of Soil Science. September, Tehran, Iran.
32- Sparks D.L., and Huang P.M. 1985. Physical chemistry of soil potassium. In: Munson RD (Ed.), Potassium in Agriculture. Amatuer Softball Association (ASA), pp: 201–276.
33- Sugumaran P., and Janarthanam B. 2007. Solubilization of potassium containing minerals by bacteria and their effect on plant growth. World Journal of Agriculture Sciences, 3(3): 350-335.
34- Zarabi M., Jalali M., and Mahdavi hajiloii SH. 2006. Rapid release and absorption of the non-exchangeable Potassium investigated using Malic acid in some soils of Hamadan state. Journal of Agricultural Sciences, 37(6): 951-964.
CAPTCHA Image