Interleukin gene delivery for cancer gene therapy: In vitro and in vivo studies

Document Type : Review Article

Authors

1 Department of Cell Molecular Biology, Bushehr Branch, Islamic Azad University, Iran

2 Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran

3 Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran

4 Biotechnology Research Center, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran

Abstract

Cytokine-mediated cancer therapy has the potential to enhance immunotherapeutic approaches and cancer elimination plans through the endowing of the immune system by providing improved anticancer immunity. Despite the encouraging pioneer studies on interleukins (ILs), the influence of ILs-originated therapeutics is still restricted by a class of potent immunoregulatory cytokines, systemic dose-limiting toxicities, ILs pleiotropy, and administration issues. During previous years, the area of transferring genes encoding immunostimulatory ILs was fundamentally widened to overcome these challenges and expedite ILs-based tumor regression. Numerous viral and non-viral delivery systems are currently available to act as crucial elements of the gene therapy toolbox. Moreover, cell-based cancer therapies are recruiting MSCs in the role of versatile gene delivery platforms to design one of the promising therapeutic approaches. These formulated gene carrier systems can provide possible alternatives to diminish dose-limiting adverse effects, promote administration, and enhance the therapeutic activity of ILs-derived treatment modalities in cancer treatment. This review provides a discussion on the advances of ILs gene delivery systems while focusing on the developing platforms in preclinical cancer immunogene therapy studies.  

Keywords


1. Bonati L, Tang L. Cytokine engineering for targeted cancer immunotherapy. Curr Opin Chem Biol 2021; 62:43-52.
2. Gonzalez-Aparicio M, Alfaro C. Implication of Interleukin Family in Cancer Pathogenesis and Treatment. Cancers (Basel) 2021; 13:1016.
3. Setrerrahmane S, Xu H. Tumor-related interleukins: old validated targets for new anti-cancer drug development. Mol Cancer 2017; 16:1-17.
4. Briukhovetska D, Dörr J, Endres S, Libby P, Dinarello CA, Kobold S. Interleukins in cancer: from biology to therapy. Nat Rev Cancer 2021; 21:481-499.
5. Boskabadi H, Maamouri G, Afshari JT, Mafinejad S, Hosseini G, Mostafavi-Toroghi H, et al. Evaluation of serum interleukins-6, 8 and 10 levels as diagnostic markers of neonatal infection and possibility of mortality. Iran J Basic Med Sci 2013; 16:1232-1237.
6. Yoshimoto T, Morishima N, Okumura M, Chiba Y, Xu M, Mizuguchi J. Interleukins and cancer immunotherapy. Immunotherapy 2009; 1:825-844.
7. Hallaj-Nezhadi S, Lotfipour F, Dass C. Nanoparticle-mediated interleukin-12 cancer gene therapy. J Pharm Pharm Sci 2010; 13:472-485.
8. Men K, Huang R, Zhang X, Zhang R, Zhang Y, He M, et al. Local and systemic delivery of interleukin-12 gene by cationic micelles for cancer immunogene therapy. Journal of Biomedical Nanotechnology 2018; 14:1719-1730.
9. Fewell JG, Matar M, Rice JS, Brunhoeber E, Slobodkin G, Pence C, et al. Treatment of disseminated ovarian cancer using nonviral interleukin-12 gene therapy delivered intraperitoneally. J Gene Med 2009; 11:718-728.
10. Kang HS, Jin SJ, Myung CS, Hwang SJ, Park JS. Delivery of interleukin-18 gene to lung cancer cells using cationic emulsion. J Drug Targeting 2009; 17:19-28.
11. Li CY, Huang Q, Kung HF. Cytokine and immuno-gene therapy for solid tumors. Cell Mol Immunol 2005; 2:81-91.
12. Hwang K-S, Cho W-K, Yoo J, Yun H-J, Kim S, Im D-S. Adenovirus-mediated interleukin-12 gene transfer combined with cytosine deaminase followed by 5-fluorocytosine treatment exerts potent antitumor activity in Renca tumor-bearing mice. BMC Cancer 2005; 5:51.
13. Xu X, Dai W, Li C. Interleukins in the treatment of melanoma. Chin Med J 2022; 135:393-399.
14. Atallah-Yunes SA, Robertson MJ. Cytokine Based Immunotherapy for Cancer and Lymphoma: Biology, Challenges and Future Perspectives. Front Immunol 2022; 13:872010.
15. Lee S, Margolin K. Cytokines in cancer immunotherapy. Cancers (Basel) 2011; 3:3856-3893.
16. Qiu Y, Su M, Liu L, Tang Y, Pan Y, Sun J. Clinical Application of Cytokines in Cancer Immunotherapy. Drug Des Devel Ther 2021; 15:2269.
17. Shahgordi S, Oroojalian F, Hashemi E, Hashemi M. Recent advances in development of nano-carriers for immunogene therapy in various complex disorders. Iran J Basic Med Sci 2022; 25:134-147.
18.Cevher E, Sezer AD, Çağlar E. Gene delivery systems: Recent progress in viral and non-viral therapy. In: Sezer AD, editor. Recent advances in novel drug carrier systems: IntechOpen; 2012. p. 437-470.
19. Ramamoorth M, Narvekar A. Non viral vectors in gene therapy-an overview. J Clin Diagn Res 2015; 9:GE01.
20. Gantenbein B, Tang S, Guerrero J, Higuita-Castro N, Salazar-Puerta AI, Croft AS, et al. Non-viral Gene Delivery Methods for Bone and Joints. Front. bioeng. biotechnol 2020; 8:598466.
21. Zu H, Gao D. Non-viral vectors in gene therapy: recent development, challenges, and prospects. AAPS J 2021; 23:1-12.
22. Sung YK, Kim S. Recent advances in the development of gene delivery systems. Biomater. Res 2019; 23:1-7.
23. Slos P, De Meyer M, Leroy P, Rousseau C, Acres B. Immunotherapy of established tumors in mice by intratumoral injection of an adenovirus vector harboring the human IL-2 cDNA: Induction of CD8+ T-cell immunity and NK activity. Cancer Gene Ther 2001; 8:321-332.
24. Gansbacher B, Zier K, Daniels B, Cronin K, Bannerji R, Gilboa E. Interleukin 2 gene transfer into tumor cells abrogates tumorigenicity and induces protective immunity. J. Exp. Med 1990; 172:1217-1224.
25. Okada H, Villa L, Attanucci J, Erff M, Fellows W, Lotze M, et al. Cytokine gene therapy of gliomas: effective induction of therapeutic immunity to intracranial tumors by peripheral immunization with interleukin-4 transduced glioma cells. Gene Ther 2001; 8:1157-1166.
26. Rodríguez MM, Fiore E, Bayo J, Atorrasagasti C, García M, Onorato A, et al. 4Mu Decreases CD47 Expression on Hepatic Cancer Stem Cells and Primes a Potent Antitumor T Cell Response Induced by Interleukin-12. Mol Ther 2018; 26:2738-2750.
27. Freytag SO, Zhang Y, Siddiqui F. Preclinical toxicology of oncolytic adenovirus-mediated cytotoxic and interleukin-12 gene therapy for prostate cancer. Mol. Ther. Oncolytics 2015; 2:15006.
28. Qiu N, Wang G, Wang J, Zhou Q, Guo M, Wang Y, et al. Tumor-Associated Macrophage and Tumor-Cell Dually Transfecting Polyplexes for Efficient Interleukin-12 Cancer Gene Therapy. Adv Mater 2021; 33:2006189.
29. Sun Y, Liu L, Zhou L, Yu S, Lan Y, Liang Q, et al. Tumor Microenvironment-Triggered Charge Reversal Polymetformin-Based Nanosystem Co-Delivered Doxorubicin and IL-12 Cytokine Gene for Chemo-Gene Combination Therapy on Metastatic Breast Cancer. ACS Appl. Mater. Interfaces 2020; 12:45873-45890.
30. Dehshahri A, Sadeghpour H, Keykhaee M, Khalvati B, Sheikhsaran F. Enhanced Delivery of Plasmid Encoding Interleukin-12 Gene by Diethylene Triamine Penta-Acetic Acid (DTPA)-Conjugated PEI Nanoparticles. Appl Biochem Biotechnol 2016; 179:251-269.
31. Khalvati B, Sheikhsaran F, Sharifzadeh S, Kalantari T, Behzad Behbahani A, Jamshidzadeh A, et al. Delivery of plasmid encoding interleukin-12 gene into hepatocytes by conjugated polyethylenimine-based nanoparticles. Artif Cells Nanomed Biotechnol 2017; 45:1036-1044.
32. Razi Soofiyani S, Hallaj-Nezhadi S, Lotfipour F, Mohammad Hosseini A, Baradaran B. Gene therapy based on interleukin-12 loaded chitosan nanoparticles in a mouse model of fibrosarcoma. Iran J Basic Med Sci 2016; 19:1238-1244.
33. Soofiyani SR, Lotfipour F, Kazemi T, Hoseini AM, Shanehbandi D, Mohammadnejad L, et al. Combined interleukin 12 and granulocyte-macrophage colony-stimulating factor gene therapy synergistically suppresses tumor growth in the murine fibrosarcoma. Int. J. Cancer Manag 2017; 10:e8462.
34. Iwashita Y, Ogawa T, Goto S, Nakanishi M, Goto T, Kitano S. Effective transfer of interleukin-12 gene to solid tumors using a novel gene delivery system, poly [D,L-2,4-diaminobutyric acid]. Cancer Gene Ther 2004; 11:103-108.
35. Kim JS, Kim MW, Jeong HY, Kang SJ, Park SI, Lee YK, et al. Sendai viroplexes for epidermal growth factor receptor-directed delivery of interleukin-12 and salmosin genes to cancer cells. J Gene Med 2016; 18:112-123.
36. Luo M, Liang X, Luo ST, Wei XW, Liu T, Ren J, et al. Folate-modified lipoplexes delivering the interleukin-12 gene for targeting colon cancer immunogene therapy. J. Biomed. Nanotechnol 2015; 11:2011-2023.
37. Maheshwari A, Han S, Mahato RI, Kim SW. Biodegradable polymer-based interleukin-12 gene delivery: Role of induced cytokines, tumor infiltrating cells and nitric oxide in anti-tumor activity. Gene Ther 2002; 9:1075-1084.
38. Sabahi Z, Samani SM, Dehshahri A. Conjugation of poly(amidoamine) dendrimers with various acrylates for improved delivery of plasmid encoding interleukin-12 gene. J Biomater Appl 2015; 29:941-953.
39. Maheshwari A, Mahato RI, McGregor J, Han S-o, Samlowski WE, Park J-S, et al. Soluble biodegradable polymer-based cytokine gene delivery for cancer treatment. Mol Ther 2000; 2:121-130.
40. Dehshahri A, Khalvati B, Taheri Z, Safari F, Mohammadinejad R, Heydari A. Interleukin-12 Plasmid DNA Delivery by N-[(2-Hydroxy-3-trimethylammonium)propyl]chitosan-Based Nanoparticles. Polymers 2022; 14:2176.
41. Kim-Schulze S, Kim HS, Fan Q, Kim DW, Kaufman HLJMT. Local IL-21 promotes the therapeutic activity of effector T cells by decreasing regulatory T cells within the tumor microenvironment. Mol Ther 2009; 17:380-388.
42. Zhu J, Liu J-Q, Shi M, Cheng X, Ding M, Zhang JC, et al. IL-27 gene therapy induces depletion of Tregs and enhances the efficacy of cancer immunotherapy. JCI insight 2018; 3.
43. Salameh JW, Kumar S, Rivera-Cruz CM, Figueiredo ML. A Second-Generation Nanoluc-IL27 Fusion Cytokine for Targeted-Gene-Therapy Applications. Bioengineering 2022; 9:77.
44. Porada CD, Almeida-Porada G. Mesenchymal stem cells as therapeutics and vehicles for gene and drug delivery. Adv Drug Del Rev 2010; 62:1156-1166.
45. Manning E, Pham S, Li S, Vazquez-Padron RI, Mathew J, Ruiz P, et al. Interleukin-10 delivery via mesenchymal stem cells: A novel gene therapy approach to prevent lung ischemia-reperfusion injury. Human Gene Therapy 2010; 21:713-727.
46. Loebinger MR, Janes SM. Stem cells as vectors for antitumour therapy. Thorax 2010; 65:362-369.
47. Duan X, Guan H, Cao Y, Kleinerman ES. Murine bone marrow-derived mesenchymal stem cells as vehicles for interleukin-12 gene delivery into ewing sarcoma tumors. Cancer 2009; 115:13-22.
48. Ding Y, Wang C, Sun Z, Wu Y, You W, Mao Z, et al. Mesenchymal stem cells engineered by nonviral vectors: A powerful tool in cancer gene therapy. Pharmaceutics 2021; 13:913.
49. Razeghian E, Margiana R, Chupradit S, Bokov DO, Abdelbasset WK, Marofi F, et al. Mesenchymal Stem/Stromal Cells as a Vehicle for Cytokine Delivery: An Emerging Approach for Tumor Immunotherapy. Front. Med 2021; 8:721174.
50. Attia N, Mashal M, Puras G, Pedraz JL. Mesenchymal stem cells as a gene delivery tool: Promise, problems, and prospects. Pharmaceutics 2021; 13:843.
51. Attia N, Mashal M, Puras G, Pedraz JL. Mesenchymal stem cells as a gene delivery tool: Promise, problems, and prospects. Pharmaceutics 2021; 13:843.
52. Studeny M, Marini FC, Champlin RE, Zompetta C, Fidler IJ, Andreeff M. Bone marrow-derived mesenchymal stem cells as vehicles for interferon-β delivery into tumors. Cancer Res 2002; 62:3603-3608.
53. Nakamura K, Ito Y, Kawano Y, Kurozumi K, Kobune M, Tsuda H, et al. Antitumor effect of genetically engineered mesenchymal stem cells in a rat glioma model. Gene Ther 2004; 11:1155-1164.
54. Stagg J, Lejeune L, Paquin A, Galipeau J. Marrow stromal cells for interleukin-2 delivery in cancer immunotherapy. Human gene therapy 2004; 15:597-608.
55. Chulpanova DS, Solovyeva VV, James V, Arkhipova SS, Gomzikova MO, Garanina EE, et al. Human mesenchymal stem cells overexpressing interleukin 2 can suppress proliferation of neuroblastoma cells in co-culture and activate mononuclear cells in vitro. Bioengineering 2020; 7:59.
56. You Q, Yao Y, Zhang Y, Fu S, Du M, Zhang G. Effect of targeted ovarian cancer therapy using amniotic fluid mesenchymal stem cells transfected with enhanced green fluorescent protein-human interleukin-2 in vivo. Mol Med Report 2015; 12:4859-4866.
57. Wang H, Wang J, Shi X, Ding Y. Genetically engineered bone marrow-derived mesenchymal stem cells co-expressing IFN-γ and IL-10 inhibit hepatocellular carcinoma by modulating MAPK pathway. J BUON 2017; 22:1517-1524.
58. Zhao C, Pu Y, Zhang H, Hu X, Zhang R, He S, et al. IL10-modified human mesenchymal stem cells inhibit pancreatic cancer growth through angiogenesis inhibition. J Cancer 2020; 11:5345-5352.
59. Han J, Zhao J, Xu J, Wen YJE, medicine t. Mesenchymal stem cells genetically modified by lentivirus‑mediated interleukin‑12 inhibit malignant ascites in mice. Exp Ther Med 2014; 8:1330-1334.
60. Seo S, Kim K, Park S, Suh Y, Kim S, Jeun S, et al. The effects of mesenchymal stem cells injected via different routes on modified IL-12-mediated antitumor activity. Gene Ther 2011; 18:488-495.
61. Hong X, Miller C, Savant-Bhonsale S, Kalkanis SN. Antitumor treatment using interleukin‐12‐secreting marrow stromal cells in an invasive glioma model. Neurosurgery 2009; 64:1139-1147.
62. Kułach N, Pilny E, Cichoń T, Czapla J, Jarosz-Biej M, Rusin M, et al. Mesenchymal stromal cells as carriers of IL-12 reduce primary and metastatic tumors of murine melanoma. Sci Rep 2021; 11:1-18.
63. Mohme M, Maire CL, Geumann U, Schliffke S, Dührsen L, Fita K, et al. Local Intracerebral Immunomodulation Using Interleukin-Expressing Mesenchymal Stem Cells in GlioblastomaImmunomodulatory MSCs for Glioma Therapy. Clin Cancer Res 2020; 26:2626-2639.
64. Elzaouk L, Moelling K, Pavlovic J. Anti‐tumor activity of mesenchymal stem cells producing IL‐12 in a mouse melanoma model. Exp Dermatol 2006; 15:865-874.
65. Ryu CH, Park S-H, Park SA, Kim SM, Lim JY, Jeong CH, et al. Gene therapy of intracranial glioma using interleukin 12–secreting human umbilical cord blood–derived mesenchymal stem cells. Hum Gene Ther 2011; 22:733-743.
66. Azimifar MA, Salmasi Z, Doosti A, Babaei N, Hashemi MJBP. Evaluation of the efficiency of modified PAMAM dendrimer with low molecular weight protamine peptide to deliver IL‐12 plasmid into stem cells as cancer therapy vehicles. Biotechnol Prog 2021; 37:e3175.
67. Jing W, Chen Y, Lu L, Hu X, Shao C, Zhang Y, et al. Human Umbilical Cord Blood–Derived Mesenchymal Stem Cells Producing IL15 Eradicate Established Pancreatic Tumor in Syngeneic MiceIL15-Secreting MSCs Exert Antitumor Potential. Mol Cancer Ther 2014; 13:2127-2137.
68. Liu X, Hu J, Sun S, Li F, Cao W, Wang Y, et al. Mesenchymal stem cells expressing interleukin-18 suppress breast cancer cells in vitro. Exp Ther Med 2015; 9:1192-1200.
69. Liu X, Hu J, Li Y, Cao W, Wang Y, Ma Z, et al. Mesenchymal stem cells expressing interleukin-18 inhibit breast cancer in a mouse model. Oncol Lett 2018; 15:6265-6274.
70. Xu G, Jiang X-D, Xu Y, Zhang J, Huang F-H, Chen Z-Z, et al. Adenoviral-mediated interleukin-18 expression in mesenchymal stem cells effectively suppresses the growth of glioma in rats. Cell Biol. Int. 2009; 33:466-474.
71. Hu W, Wang J, He X, Zhang H, Yu F, Jiang L, et al. Human umbilical blood mononuclear cell-derived mesenchymal stem cells serve as interleukin-21 gene delivery vehicles for epithelial ovarian cancer therapy in nude mice. Biotechnol Appl Biochem 2011; 58:397-404.
72. Zhang X, Zhang L, Xu W, Qian H, Ye S, Zhu W, et al. Experimental therapy for lung cancer: Umbilical cord-derived mesenchymal stem cell-mediated interleukin-24 delivery. Curr Cancer Drug Targets 2013; 13:92-102.
73. Fan S, Gao H, Ji W, Zhu F, Sun L, Liu Y, et al. Umbilical cord‐derived mesenchymal stromal/stem cells expressing IL‐24 induce apoptosis in gliomas. J Cell Physiol 2020; 235:1769-1779.
74. Wu Z, Liu W, Wang Z, Zeng B, Peng G, Niu H, et al. Mesenchymal stem cells derived from iPSCs expressing interleukin-24 inhibit the growth of melanoma in the tumor-bearing mouse model. Cancer Cell Int 2020; 20:1-10.
75. Waldmann TA. The biology of interleukin-2 and interleukin-15: implications for cancer therapy and vaccine design. Nat. Rev. Immunol 2006; 6:595-601.
76. Jiang T, Zhou C, Ren S. Role of IL-2 in cancer immunotherapy. Oncoimmunology 2016; 5:e1163462-e1163462.
77. Berraondo P, Sanmamed MF, Ochoa MC, Etxeberria I, Aznar MA, Pérez-Gracia JL, et al. Cytokines in clinical cancer immunotherapy. Br J Cancer 2019; 120:6-15.
78. Liao W, Lin J-X, Leonard WJJCoii. IL-2 family cytokines: new insights into the complex roles of IL-2 as a broad regulator of T helper cell differentiation. Curr Opin Immunol 2011; 23:598-604.
79. Arenas-Ramirez N, Woytschak J, Boyman OJTiI. Interleukin-2: biology, design and application. Trends Immunol 2015; 36:763-777.
80. Li Z, Chen L, Qin Z. Paradoxical roles of IL-4 in tumor immunity. Cell Mol Immunol 2009; 6:415-422.
81. Ito SE, Shirota H, Kasahara Y, Saijo K, Ishioka C. IL-4 blockade alters the tumor microenvironment and augments the response to cancer immunotherapy in a mouse model. Cancer Immunol Immunother 2017; 66:1485-1496.
82. Rallis KS, Corrigan AE, Dadah H, George AM, Keshwara SM, Sideris M, et al. Cytokine-based Cancer Immunotherapy: Challenges and Opportunities for IL-10. Anticancer Res 2021; 41:3247-3252.
83. Qiao J, Liu Z, Dong C, Luan Y, Zhang A, Moore C, et al. Targeting tumors with IL-10 prevents dendritic cell-mediated CD8+ T cell apoptosis. Cancer Cell 2019; 35:901-915. e904.
84. Nguyen KG, Vrabel MR, Mantooth SM, Hopkins JJ, Wagner ES, Gabaldon TA, et al. Localized Interleukin-12 for Cancer Immunotherapy. Front Immunol 2020; 11:575597.
85. Punnonen J, Rosen D, Zuniga L, Sprogøe K, Tabrizi M. Cytokine Therapeutics in Cancer Immunotherapy: Design and Development. Curr. Pharmacol. Rep 2019; 5:377-390.
86. Cha H-R, Lee JH, Ponnazhagan S. Revisiting Immunotherapy: A Focus on Prostate Cancer. Cancer Res 2020; 8:1615-1623.
87. Hernandez-Alcoceba R, Poutou J, Ballesteros-Briones MC, Smerdou C. Gene therapy approaches against cancer using in vivo and ex vivo gene transfer of interleukin-12. Immunotherapy 2016; 8:179-198.
88. Holder PG, Lim SA, Huang CS, Sharma P, Dagdas YS, Bulutoglu B, et al. Engineering interferons and interleukins for cancer immunotherapy. Adv Drug Del Rev 2022; 182:114112.
89. Waldmann TA. Cytokines in Cancer Immunotherapy. Cold Spring Harb Perspect Biol 2018; 10:a028472.
90. Kuppala MB, Syed SB, Bandaru S, Varre S, Akka J, Mundulru HPJAPJoCP. Immunotherapeutic approach for better management of cancer-role of IL-18. Asian Pac J Cancer Prev 2012; 13:5353-5361.
91. Crende O, Sabatino M, Valcárcel M, Carrascal T, Riestra P, López-Guerrero JA, et al. Metastatic Lesions with and without Interleukin-18–Dependent Genes in Advanced-Stage Melanoma Patients. Am. J. Pathol. 2013; 183:69-82.
92. Yao L, Zhang Y, Chen K, Hu X, Xu LXJPO. Discovery of IL-18 as a novel secreted protein contributing to doxorubicin resistance by comparative secretome analysis of MCF-7 and MCF-7/Dox. PLoS One 2011; 6:e24684.
93. Kuchen S, Robbins R, Sims GP, Sheng C, Phillips TM, Lipsky PE, et al. Essential role of IL-21 in B cell activation, expansion, and plasma cell generation during CD4+ T cell-B cell collaboration. J Immunol 2007; 179:5886-5896.
94. Parrish‐Novak J, Foster DC, Holly RD, Clegg CHJJolb. Interleukin‐21 and the IL‐21 receptor: novel effectors of NK and T cell responses. J Leukoc Biol 2002; 72:856-863.
95. Hu W, Wang J, He X, Zhang H, Yu F, Jiang L, et al. Human umbilical blood mononuclear cell–derived mesenchymal stem cells serve as interleukin‐21 gene delivery vehicles for epithelial ovarian cancer therapy in nude mice. Biotechnol Appl Biochem 2011; 58:397-404.
96. Zhuo B, Wang X, Shen Y, Li J, Li S, Li Y, et al. Interleukin-24 inhibits the phenotype and tumorigenicity of cancer stem cell in osteosarcoma via downregulation Notch and Wnt/β-catenin signaling. J. Bone Oncol 2021; 31.
97. Murugaiyan G, Saha B. IL-27 in tumor immunity and immunotherapy. Trends Mol Med 2013; 19:108-116.
98. Fabbi M, Carbotti G, Ferrini S. Dual Roles of IL-27 in Cancer Biology and Immunotherapy. Mediators Inflamm 2017; 2017:3958069.
99. Figueiredo ML, Neto MF, Salameh JW, Decker RE, Letteri R, Chan-Seng D, et al. Ligand-mediated targeting of cytokine Interleukin-27 enhances its bioactivity in vivo. Mol. Ther. - Methods Clin. Dev 2020; 17:739-751.
100. Beizavi Z, Zohouri M, Asadipour M, Ghaderi A. IL-27, a pleiotropic cytokine for fine-tuning the immune response in cancer. Int Rev Immunol 2021; 40:319-329.
101. Kourko O, Seaver K, Odoardi N, Basta S, Gee K. IL-27, IL-30, and IL-35: A cytokine triumvirate in cancer. Front Oncol 2019; 9:969.