مروری بر کاربرد روش کاویتاسیون هیدرودینامیک در ترکیب با سایر فرایندهای اکسایش پیشرفته برای حذف رنگ

نوع مقاله : مقاله مروری

نویسندگان

1 دانشجوی دکتری رشتۀ مهندسی شیمی، دانشگاه صنعتی امیرکبیر (پلی‌تکنیک تهران)

2 دانشیار مهندسی شیمی، دانشگاه صنعتی امیرکبیر (پلی‌تکنیک تهران)

چکیده

تاکنون روش ­های مختلف شیمیایی (اکسایش و تخریب الکتروشیمیایی)، بیولوژیکی (حذف با زیستتودۀ میکروبی و سامانه ­های بی­ هوازی) و فیزیکی (مانند جذب سطحی و مبادلۀ یونی) برای حذف رنگها بهعنوان یکی از مهم­ترین آلاینده ­های آب پیشنهاد شده که در این مطالعه روش کاویتاسیون هیدرودینامیک (ایجاد حباب در یک مایع) بهعنوان روشی نوین انتخاب شدهاست. از ویژگی‌های بارز این روش می­توان به بی‌نیازی از استفادۀ مواد شیمیایی، مصرف انرژی کم و قابلیت ترکیب آسان با سایر روش­های حذف رنگ اشاره کرد. بررسی پیشینۀ مطالعات پژوهشی درزمینۀ حذف رنگ با استفادهاز ترکیب فرایند کاویتاسیون هیدرودینامیک با سایر فرایندهای اکسایش پیشرفته نشان داد که اغلب از اوریفیس و ونتوری برای تولید حباب در سامانه استفاده و در مدت زمان کمتر از حباب­ ساز، فشار ورودی، دمای عملیاتی، pH و خواص مایع مانند فشار بخار، گران‌روی و  2h و در شرایط بهینۀ عملیاتی بیش از 80% از رنگ حذف شده‌است. عواملی مانند شکل هندسی کشش سطحی بر فرایند تصفیه مؤثر هستند. نتایج کارهای پیشین بیانگر بازدهی بسیار مناسب این روش در ترکیب با سایر فرایندها و روش­ها مانند فنتون، فتوکاتالیستی، ازن­دهی، هوادهی و حضور انواع یون­های فلزی و غیرفلزی در محیط واکنش است. هم‌چنین انعطاف­پذیری در طراحی و ترکیب با سایر فرایندهای اکسایش پیشرفته بستهبه هدف و نیاز محل کاربرد از دیگر برتری‌های اصلی و مهم برای جای‌گزینی این روش با روش­های مرسوم امروزی در آیندۀ نزدیک است.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

A Review on the Application of Hydrodynamic Cavitation Method in Combination with Other Advanced Oxidation Processes for Dye Removal

نویسندگان [English]

  • M. Poorbaba 1
  • M. Soleimani 2
1 Ph. D. Student of Chemical Engineering, Amirkabir University of Technology (Tehran Polytechnic)
2 Associate Professor of Chemical Engineering, Amirkabir University of Technology (Tehran Polytechnic)
چکیده [English]

Until now, various chemical treatments (oxidation and electrochemical destruction), biological treatments (microbial cultures and anaerobic bioremediation systems) and physical treatments (such as adsorption and ion exchange) have been proposed to remove dyes as one of the most important water pollutants. In this study, hydrodynamic cavitation (bubble formation in a liquid) was considered as a new method for dye removal. The important advantages of this method are no need to use chemicals, low energy consumption and the ability to combine with other advanced oxidation processes. A literature review on dye removal focusing on combination with other advanced oxidation processes indicated that orifice plates and venturi tubes are often used and less than 2 h (in optimum operating conditions) more than 80% of dye was removed. Also, factors such as device geometry, inlet pressure, operating temperature, pH and liquid properties (like vapor pressure, viscosity and surface tension) are effective parameters in this process. The results of previous works imply excellent efficiency of this method in combination with other processes and methods such as Fenton, photocatalytic, ozonation, aeration and presence of various metal and non-metallic ions in the reaction medium. Also, flexibility in designing and combining with advanced oxidation processes, depend on the purpose, are another major and important advantages for replacing this method with conventional methods in the near future.

کلیدواژه‌ها [English]

  • Treatment
  • Dye removal
  • Water
  • Wastewater
  • Hydrodynamic Cavitation
 
[1]        Abbas-Shiroodi, Z., Sadeghi, M. -T., & Baradaran, S. (2021). Design and optimization of a cavitating device for Congo red decolorization: Experimental investigation and CFD simulation. Ultrasonics Sonochemistry, 71, 105386. https://doi.org/10.1016/ j.ultsonch.2020.105386
[2]        Arbab, P., Ayati, B., & Ansari, M. (2020). Optimization and Comparison of Single and Combined Processes Using Hydrodynamic Cavitation for Dye Removal. Journal of Water and Wastewater, 31(2), 24-42. https://doi.org/10.22093/wwj.2019.147624.2741
[3]        Arbab, P., Ayati, B., & Ansari, M. R. (2019). Reducing the use of nanotitanium dioxide by switching from single photocatalysis to combined photocatalysis-cavitation in dye elimination. Process Safety and Environmental Protection, 121, 87-93. https://doi.org/10.1016/j.psep.2018.10.012
[4]        Askarniya, Z., Sadeghi, M.-T., & Baradaran, S. (2020). Decolorization of Congo red via hydrodynamic cavitation in combination with Fenton’s reagent. Chemical Engineering and Processing-Process Intensification, 150, 107874. https://doi.org/10.1016/j.cep.2020.107874
[5]        Badmus, K. O., Tijani, J. O., Massima, E., & Petrik, L. (2018). Treatment of persistent organic pollutants in wastewater using hydrodynamic cavitation in synergy with advanced oxidation process. Environmental Science and Pollution Research, 25(8), 7299-7314. https://doi.org/10.1007/s11356-017-1171-z
[6]        Basiri Parsa, J., & Ebrahimzadeh Zonouzian, S. A. (2013). Optimization of a Multiple Impinging Jets Cavitation Reactor Using Zero-Valent Iron Powder as Catalyst. Chemical Engineering & Technology, 36(9), 1585-1592. https://doi.org/10.1002/ceat.201300100
[7]        Bethi, B., Sonawane, S. H., Bhanvase, B. A., & Sonawane, S. S. (2021). Textile industry wastewater treatment by cavitation combined with fenton and ceramic nanofiltration membrane. Chemical Engineering and Processing-Process Intensification, 168, 108540. https://doi.org/10.1016/j.cep.2021.108540
[8]        Bethi, B., Sonawane, S. H., Potoroko, I., Bhanvase, B. A., & Sonawane, S. S. (2017). Novel hybrid system based on hydrodynamic cavitation for treatment of dye waste water: A first report on bench scale study. Journal of Environmental Chemical Engineering, 5(2), 1874-1884. https://doi.org/10.1016/j.jece.2017.03.026
[9]        Cako, E., Gunasekaran, K. D., Soltani, R. D. C., & Boczkaj, G. (2020). Ultrafast degradation of brilliant cresyl blue under hydrodynamic cavitation based advanced oxidation processes (AOPs). Water Resources and Industry, 24, 100134. https://doi.org/10.1016/j.wri.2020.100134
[10]      Çalışkan, Y., Yatmaz, H. C., & Bektaş, N. (2017). Photocatalytic oxidation of high concentrated dye solutions enhanced by hydrodynamic cavitation in a pilot reactor. Process Safety and Environmental Protection, 111, 428-438. https://doi.org/10.1016/j.psep.2017.08.003
[11]      Crini, G. (2006). Non-conventional low-cost adsorbents for dye removal: A review. Bioresource Technology, 97(9), 1061-1085. https://doi.org/10.1016/j.biortech.2005.05.001
[12]      Gogate, P. R., & Bhosale, G. S. (2013). Comparison of effectiveness of acoustic and hydrodynamic cavitation in combined treatment schemes for degradation of dye wastewaters. Chemical Engineering and Processing: Process Intensification, 71, 59-69. https://doi.org/10.1016/j.cep.2013.03.001
[13]      Gogate, P. R., & Pandit, A. B. (2005). A review and assessment of hydrodynamic cavitation as a technology for the future. Ultrasonics Sonochemistry, 12(1-2), 21-27. https://doi.org/10.1016/j.ultsonch.2004.03.007
[14]      Gore, M. M., Saharan, V. K., Pinjari, D. V., Chavan, P. V., & Pandit, A. B. (2014). Degradation of reactive orange 4 dye using hydrodynamic cavitation based hybrid techniques. Ultrasonics Sonochemistry, 21(3), 1075-1082. https://doi.org/10.1016/j.ultsonch.2013.11.015
[15]      Gupta, V. K., & Suhas. (2009). Application of low-cost adsorbents for dye removal – A review. Journal of Environmental Management, 90(8), 2313-2342. https://doi.org/10.1016/j.jenvman.2008.11.017
[16]      Innocenzi, V., Prisciandaro, M., Tortora, F., & Vegliò, F. (2018). Optimization of hydrodynamic cavitation process of azo dye reduction in the presence of metal ions. Journal of Environmental Chemical Engineering, 6(6), 6787-6796. https://doi.org/10.1016/j.jece.2018.10.046
[17]      Khajeh, M., Amin, M. M., Taheri, E., Fatehizadeh, A., & McKay, G. (2020). Influence of co-existing cations and anions on removal of direct red 89 dye from synthetic wastewater by hydrodynamic cavitation process: An empirical modeling. Ultrasonics Sonochemistry, 67, 105133. https://doi.org/10.1016/j.ultsonch.2020.105133
[18]      Kharub, M. (2012). Use of Various Technologies, Methods and Adsorbents for The Removal of Dye. Journal of Environmental Research and Development, 6(3A), 879-883.
[19]      Kumar, M. S., Sonawane, S., Bhanvase, B., & Bethi, B. (2018). Treatment of ternary dye wastewater by hydrodynamic cavitation combined with other advanced oxidation processes (AOP’s). Journal of Water Process Engineering, 23, 250-256. https://doi.org/10.1016/j.jwpe.2018.04.004
[2]        Lakshmi, N., Gogate, P. R., & Pandit, A. B. (2021). Treatment of acid violet 7 dye containing effluent using the hybrid approach based on hydrodynamic cavitation. Process Safety and Environmental Protection, 153, 178-191. https://doi.org/10.1016/j.psep.2021.07.023
[21]      Li, P., Song, Y., Wang, S., Tao, Z., Yu, S., & Liu, Y. (2015). Enhanced decolorization of methyl orange using zero-valent copper nanoparticles under assistance of hydrodynamic cavitation. Ultrasonics Sonochemistry, 22, 132-138. https://doi.org/10.1016/j.ultsonch.2014.05.025
[22]      Rajoriya, S., Bargole, S., & Saharan, V. K. (2017). Degradation of a cationic dye (Rhodamine 6G) using hydrodynamic cavitation coupled with other oxidative agents: Reaction mechanism and pathway. Ultrasonics Sonochemistry, 34, 183-194. https://doi.org/10.1016/j.ultsonch.2016.05.028
[23]      Rajoriya, S., Carpenter, J., Saharan, V. K., & Pandit, A. B. (2016). Hydrodynamic cavitation: an advanced oxidation process for the degradation of bio-refractory pollutants. Reviews in Chemical Engineering, 32(4), 1-33. https://doi.org/10.1515/revce-2015-0075
[24]      Saharan, V. K., Pandit, A. B., Satish Kumar, P. S., & Anandan, S. (2011). Hydrodynamic Cavitation as an Advanced Oxidation Technique for the Degradation of Acid Red 88 Dye. Industrial & Engineering Chemistry Research, 51(4), 1981-1989. https://doi.org/10.1021/ie200249k
[25]      Saharan, V. K., Rizwani, M. A., Malani, A. A., & Pandit, A. B. (2013). Effect of geometry of hydrodynamically cavitating device on degradation of orange-G. Ultrasonics Sonochemistry, 20(1), 345-353. https://doi.org/10.1016/j.ultsonch.2012.08.011
[26]      Sivakumar, M., & Pandit, A. B. (2002). Wastewater treatment: a novel energy efficient hydrodynamic cavitational technique. Ultrasonics Sonochemistry, 9(3), 123-131. https://doi.org/10.1016/s1350-4177(01)00122-5
[27]      Tao, Y., Cai, J., Huai, X., & Liu, B. (2017). A novel device for hazardous substances degradation based on double-cavitating-jets impingement: Parameters optimization and efficiency assessment. Journal of Hazardous Materials, 335, 188-196. https://doi.org/10.1016/j.jhazmat.2017.04.046
[28]      Tao, Y., Cai, J., Huai, X., Liu, B., & Guo, Z. (2016). Application of Hydrodynamic Cavitation to Wastewater Treatment. Chemical Engineering & Technology, 39(8), 1363-1376. https://doi.org/10.1002/ceat.201500362
[29]      Wang, J., Guo, Y., Guo, P., Yu, J., Guo, W., & Wang, X. (2014). Degradation of reactive brilliant red K-2BP in water using a combination of swirling jet-induced cavitation and Fenton process. Separation and Purification Technology, 130, 1-6. https://doi.org/10.1016/j.seppur.2014.04.020
[30]      Wang, J., Wang, X., Guo, P., & Yu, J. (2011). Degradation of reactive brilliant red K-2BP in aqueous solution using swirling jet-induced cavitation combined with H2O2. Ultrasonics Sonochemistry, 18(2), 494-500. https://doi.org/10.1016/j.ultsonch.2010.08.006
[31]      Wang, X., Jia, J., & Wang, Y. (2010). Electrochemical degradation of reactive dye in the presence of water jet cavitation. Ultrasonics Sonochemistry, 17(3), 515-520. https://doi.org/
10.1016/j.ultsonch.2009.10.023
[32]      Wang, X., Jia, J., & Wang, Y. (2011). Degradation of C.I. Reactive Red 2 through photocatalysis coupled with water jet cavitation. Journal of Hazardous Materials, 185(1), 315-321. https://doi.org/10.1016/j.jhazmat.2010.09.036
[33]      Wang, X., Wang, J., Guo, P., Guo, W., & Li, G. (2008). Chemical effect of swirling jet-induced cavitation: Degradation of rhodamine B in aqueous solution. Ultrasonics Sonochemistry, 15(4), 357-363. https://doi.org/10.1016/j.ultsonch.2007.09.008
[34]      Yagub, M. T., Sen, T. K., Afroze, S., & Ang, H. M. (2014). Dye and its removal from aqueous solution by adsorption: A review. Advances in Colloid and Interface Science, 209, 172-184. https://doi.org/10.
1016/j.cis.2014.04.002
[35]      Yi, C., Lu, Q., Wang, Y., Wang, Y., & Yang, B. (2018). Degradation of organic wastewater by hydrodynamic cavitation combined with acoustic cavitation. Ultrasonics Sonochemistry, 43, 156-165. https://doi.org/10.1016/j.ultsonch.2018.01.013
[36]      Zampeta, C., Bertaki, K., Triantaphyllidou, I.-E., Frontistis, Z., Koutsoukos, P., & Vayenas, D. V. (2022). Pilot-scale hybrid system combining hydrodynamic cavitation and sedimentation for the decolorization of industrial inks and printing ink wastewater. Journal of Environmental Management, 302, 114108. https://doi.org/10.1016/j.jenvman.2021.114108
[37]      Zampeta, C., Bertaki, K., Triantaphyllidou, I.-E., Frontistis, Z., & Vayenas, D. V. (2021). Treatment of real industrial-grade dye solutions and printing ink wastewater using a novel pilot-scale hydrodynamic cavitation reactor. Journal of Environmental Management, 297, 113301. https://doi.org/10.1016/j.jenvman.2021.113301