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Summary: Historical maps can serve as valuable resources for various kinds of researches such as ecology, land 

reclamation (Ngo et al, 2015), toponymy, history, etc. (Chiang, 2016). Specifically, extracting wetlands 

from historical maps facilitates researchers to investigate the spatio-temporal dynamics of the 

hydrological and ecological situation. Deep learning methods, especially Fully Convolutional Neural 

Networks (FCNN), provide an efficient and effective way to extract features from raster maps. To 

extract wetland areas from the Swiss Siegfried maps, we trained a U-Net based architecture and applied 

the learnt model to 573 map sheets across Switzerland. The pixel-wise prediction results were converted 

to polygons through a vectorization and generalization step. The vector wetland layers will be used for 

studies on land-cover change.  

 

Introduction  

The accessibility of the large numbers of historical maps indicates the high demand for 

successful feature extraction methods (Leyk & Boesch, 2009), because a wealth of cartographic 

information is still locked in the existing historical map series, such as building footprints, 

hydrography, map labels, etc. It is difficult to assess and compare wetland’s historical and the 

current coverage and condition. Thus, historical maps are valuable sources for wetland change 

analysis as they retain the most reliable spatial data. Wetland areas in historical maps are often 

shown as composite elements that consist of clustered small symbols whose spatial distribution 

and patterns can define higher-level spatial objects, such as forests, grasslands, etc. (Leyk & 

Boesch, 2009). In Figure 1, the wetlands are denoted with composite horizontal strokes.  

 Conventional extraction approaches such as color image segmentation (CIS) have 

demonstrated their effectiveness in extracting map features, like roads, buildings, text, etc. 

Nevertheless, the conventional approaches are not perfectly suitable for historical maps, 

because the maps often suffer from poor graphical quality due to bleaching of the original paper 

maps and archiving practices (Chiang, et al., 2014). Based on the color feature of image pixels, 

CIS assumes that homogeneous colors in the image correspond to the same classes. The 

homogeneous regions that can be classified by CIS must show spatial contiguity. Thus, CIS 

may fail in extracting a composite object as a whole because of the trivial symbols and their 

complicated cluster. As we can see from Figure 1, one single wetland area is clustered by some 

trivial strokes, but the symbols are not connected with each other, although they form a 

contiguous texture.  
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 Figure 1. Wetland areas shown as composite graphic elements consisting of clustered horizontal strokes.  

Geodata © Swisstopo  

 In recent years, a group of supervised machine learning algorithms, known as Fully 

Convolutional Neural Networks (FCNN), has been exerting their superiority in automated 

feature extraction from images, especially historical maps (Saeedimoghaddam and Stepinski, 

2019). An FCNN architecture, consisting of several convolutional, ReLU, and pooling layers, 

gradually extracts complex features from an input image, and then predicts the possibility of a 

feature correlating to a specific class. Yet, one of the challenges of FCNNs is that they in-

evitably require a large amount of training data to perform sufficiently well. However, produc-

ing training data manually might not be an option due to a lack of resources, which motivates 

the search for alternative sources of training data.  

 In this paper, we used the data from another study on wetlands in Switzerland as training 

data and trained an FCNN model to detect wetland pixels, which is followed by a vectorization 

and generalization step that generates wetland geometries.  

 

Data and Methods  

The Siegfried map is a comprehensive Swiss national map series that was published between 

1872 and 1949. In a recent real-world use case, wetlands for whole Switzerland for the year 

1880 are to be extracted for a Non-governmental Organization (NGO) from the Siegfried Map 

Series to carry out a study on land-cover change. For training an FCNN model, we need the 

input map sheet and the corresponding labeled wetland data. However, due to the unavailability 

of the labeled data for the year 1880, data of the year 1900 from the study on the historical 

development of wetlands in Switzerland has been used for training (Stuber & Bürgi, 2018). One 

Siegfried map sheet is shown in Figure 2(a), with its corresponding labeled training data 

presented in Figure 2(b), whose pixel holds a one if it belongs to a wetland, and zero otherwise. 

Naturally, these two datasets for 1880 and 1900 come from somewhat different distributions. 

The symbolization may have changed slightly between the two periods, and the map sheets of 

the training dataset have been georeferenced in a different way from the sheets of 1880.  
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(a)  

  
(b)  

Figure 2. Data example: (a) One map sheet; (b) the labeled wetland data corresponding to (a). 

Geodata © Swisstopo  

 We developed a segmentation model that is based on the U-Net architecture (Ronneberger 

& Brox, 2015), which was adapted to the problem at hand. According to Heitzler and Hurni 

(2020), the U-Net is comprised of two diametrical network paths, the contracting path and the 

upsampling path, which is presented in Figure 3. The contracting path consisting of convolution 

layers and max-pooling layers generates increasingly higher abstract representations of the 

input image. The max-pooling layers used in conjunction with the convolution layers allow for 

reducing the extent of the input matrix. The up-sampling path infers the class of a pixel based 

on its position and its surroundings by gradually combining these features on different 

granularities. Deconvolution layers are used in the up-sampling path to quadruple the extents 

of input layers. Each layer is followed by a corresponding elu activation layer except for the 

max-pooling layers and the final convolution layer, which has a sigmoid activation layer. These 

activation layers delimit the output probabilities to the range [0, 1]. In the used implementation, 

the convolution layers have 32 filter kernels.  
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Figure 3. The FCNN architecture that is adapted based on the U-Net by Ronneberger et al. (2015) 

 Geodata © Swisstopo  

 Each map sheet sized 7,000×4,800 pixels is subdivided into a grid of tiles with the size of 

200x200 pixels to be processable by the U-Net model. Furthermore, to avoid misclassifying the 

border pixels, the extent of the input tile is expanded by 60 pixels on each side. A well-learnt 

model is obtained after training with 36 map sheets, namely 36×35×24 tiles. When a map sheet 

is fed into the trained model, it generates a pixel wise prediction result, holding the probability 

of each pixel belonging to a wetland. The pixels with a possibility greater than 0.5 are 

segmented as wetland areas.  

 Once the wetland segmentation results are generated, vectorization is performed using 

functions from the Geospatial Data Abstraction Library (GDAL) to convert the raster binary 

results into vector geometries. Next, generalization is implemented using the Douglas–Peucker 

algorithm, which iteratively traces the line segments of the original polyline and only keeps the 

start point, end point, and the farthest point of the current line segment (Douglas & Peucker, 

1973). If required, the vectorized and generalized geometries can still be manually corrected to 

yield high-quality wetland vector layers.  

 

Result  

An example for a wetland reconstruction result is shown in Figure 4, where Figure 4(a) presents 

the map sheet. Fig 4(b) illustrates the pixel-wise prediction result of a subsection of the area, in 

which the luminance of the red color corresponds to the possibility that the pixel belongs to a 

wetland. In other words, the brighter red pixels indicate a higher probability of them belonging 

to a wetland. The final result of this subsection is presented in Figure 4(c), which overlays the 

wetland geometries on the map sheet. We can see that the wetland boundaries are accurately 

extracted. Besides, a wetland area denoted with composite elements can be extracted as a whole, 

even though it is intersected with contour lines or other composite elements. The results verify 

the effectiveness as well as the robustness of the reconstruction approach. Wetland areas have 

been extracted and vectorized from 573 Siegfried map sheets across Switzerland with this 

method.  
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   (b)  (c)  

Figure 4. The wetland extraction result: (a) the map sheet; (b) the pixel-wise prediction result of a fractional 

area; (c) the vector geometry after vectorization and generalization. Geodata © Swisstopo  

 

Conclusion  

This paper addresses the wetland reconstruction issue by developing and training a U-Net based 

architecture, and applying the well-learnt model to the target map sheets. It is followed by a 

vectorization and generalization step, which outputs vector wetland layers that can be analyzed 

by Geographic Information Systems (GIS). The wetland reconstruction method performs well 

for recognizing and extracting the composite wetland elements. Future work will not only focus 

on the wetland extraction, but also on other hydrological features on the historical maps.  
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