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Abstract 

Patent citations are a commonly used indicator of knowledge spillovers among 

inventors, while clusters of research and development labs are locations in which 

knowledge spillovers are particularly likely to occur. In this paper, we assign patents 

and citations to newly defined clusters of American R&D labs to capture the 

geographic extent of knowledge spillovers. Our tests show that the localization of 

knowledge spillovers, as measured via patent citations, is strongest at small spatial 

scales and diminishes rapidly with distance. On average, patents within a cluster are 

about three to six times more likely to cite an inventor in the same cluster than one in a 

control group. At the same time, the strength of knowledge spillovers varies widely 

between clusters. The results are robust to the specification of patent technological 

categories, the method of citation matching and alternate cluster definitions. 
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1. INTRODUCTION

The primary activity at R&D establishments is knowledge-based, making concentrations of R&D 

labs indicative of places in which localized knowledge spillovers would occur. A recent study by 

Buzard et al. (2017) shows that R&D labs are, indeed, highly spatially concentrated even within 

a given metropolitan area. Buzard et al. (2017) introduce the multiscale core cluster procedure in 

which the boundaries of the core clusters are determined by interrelationships among the sample 

R&D labs in two major R&D regions: the Northeast corridor and California. These clusters 

should therefore reflect the appropriate boundaries in which knowledge spillovers are most likely 

to be at work more accurately than administrative boundaries. In that sense, the geography of 

their clusters are better suited for studying knowledge spillovers than are states, metropolitan 

areas, or other political or administrative boundaries. In this paper, we extend Buzard et al. 

(2017) by assigning patents and citations to the R&D clusters they identify and test for evidence 

of localized knowledge spillovers in patent citations.
1

We provide evidence that the clustering of R&D labs is related to knowledge spillovers by 

studying the relative geographic concentration of citations to patents originating in the clusters 

we identify.
2
 To do this, we construct treatment versus control tests for the localization of patent

citations in the spirit of those found in Jaffe, Trajtenberg, and Henderson (1993), hereafter, JTH. 

For labs in the Northeast corridor, our baseline results indicate that citations are on average about 

four to six times more likely to come from the same cluster as earlier patents than one would 

predict using a (control) sample of otherwise similar patents. For California, the baseline results 

suggest that citations are on average roughly four to five times more likely to come from the 

same cluster as earlier patents than one would predict using the control sample. 

We also find that patents inside each cluster receive more citations on average than those outside 

the cluster in a suitably defined counterfactual area. This suggests that the geography and scale 

1
 Rather than using fixed geographic units, such as counties or metropolitan areas, Buzard et al. (2017) use 

continuous measures to identify the spatial structure of the concentrations of R&D labs. Specifically, they use point 

pattern methods to analyze locational patterns over a range of selected spatial scales (within 5 miles, 10 miles, 20 

miles, etc.). This approach allows them to consider the spatial extent of the agglomeration of R&D labs and to 

measure any attenuation of clustering with distance more accurately. 

2
 Earlier research — e.g., Jaffe, Trajtenberg, and Henderson (1993), Thompson and Fox-Kean (2005), Kerr and 

Kominers (2015), Murata et al. (2017, 2014) — document patterns of spatial concentration (often described as 

localization) in patent citations. 
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of the clusters identified by Buzard et al. (2017) is related to the extent of the localization of 

knowledge spillovers, at least as evidenced by patent citations. We can also speak to the question 

of whether the transmission of knowledge attenuates with distance. We add to the mounting 

evidence from studies using alternative data that knowledge spillovers begin to attenuate at 

distances ranging from just a few blocks to a few miles:
3
 The localization of knowledge 

spillovers in our data appears strongest at small spatial scales (5 miles or less) and diminishes 

rapidly with distance. Given this attenuation, the magnitude of the localized spillovers 

documented by studies that use state and metropolitan area data may be understated, and the 

exact geography that is driving the spillovers may not be well identified.  

It’s possible that technologically related activities may cluster to benefit from agglomeration 

forces other than knowledge spillovers, such as sharing and better matching of workers and 

firms. These other sources of agglomeration potentially explain some of the geographic 

concentration of technologically related research activity.
4
 To address this issue, our basic 

approach is to follow JTH in constructing a control sample of patents that have the same 

technological and temporal distribution as the citations to account for these other agglomeration 

forces. Our test for knowledge spillovers is whether the citation matching frequency is 

significantly greater than the control matching frequency. Put differently, our test is whether 

citations are more localized relative to what would be expected given the existing distribution of 

technologically related activity. To further control for sharing and matching externalities, we 

perform a robustness check using the alternative cluster definitions developed by Buzard et al. 

(2017) in which the backcloth is based on STEM workers and find that the baseline results are 

qualitatively unchanged.   

As an additional robustness check, we follow Thompson and Fox-Kean (2005) — hereafter TFK 

— and substitute six-digit technological categories for the three-digit patent class we use to 

identify controls in our main analysis. The results are found to be highly robust with respect to 

such controls, suggesting that they are not solely a consequence of technical aggregation. Our 

                                                 
3
 See, for example, Kerr and Kominers (2015); Elvery and Sveikauskas (2010), Arzaghi and Henderson (2008), 

Agrawal, Kapur, and McHale (2008), Keller (2002), Rosenthal and Strange (2001), Adams and Jaffe (1996), and 

Audretsch and Feldman (1996). 

4
 See Carlino and Kerr (2015) for more discussion on the theory of the agglomeration of innovative activity. 
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results are also robust to drawing the controls more narrowly from patents that share the same 

patent class and subclass as the citing patents. 

Finally, we show that our results persist when we use coarsened exact matching as an alternative 

method to select the controls. In this case, the tests for the localization of patent citations are at 

the lower end of our findings, particularly in California.  

 

2. SPATIAL CLUSTERS 

We use R&D cluster definitions from Buzard et al. (2017), which cover California and a 10-state 

area in the Northeast U.S.
5
 They use continuous methods (based on Ripley’s (1976) K-function) 

to assess the concentration of R&D labs relative to a baseline of manufacturing employment.
6
  

Roughly speaking, a lab is locally agglomerated at a scale of d miles, if it has more neighboring 

labs within distance d than would be expected (statistically) based only on the distribution of 

manufacturing employment. Of special relevance are core points at scale, d, defined as those labs 

exhibiting maximally significant
7
 local agglomeration at this scale, and also having at least four 

neighboring labs within distance d  (to avoid small clusters of little practical significance). 

To identify distinct clusters at scale d, Buzard et al. (2017) create buffers of radius d around each 

core point in ArcMap and designate the set of labs in each connected component of these buffer 

zones as a core cluster of points. Each distinct cluster thus contains a given set of “connected” 

core points along with all other points that contributed to their maximal statistical significance. 

Buzard et al. (2017) refer to this procedure as the multiscale core-cluster approach. Although 

this approach is meaningful for any set of scale choices, we focus primarily on 5- and 10-mile 

clusters that correspond closely to intuition about the size and location of research clusters. 

                                                 
5
 The ten states in the Northeast are Connecticut, Delaware, Maryland, Massachusetts, New Hampshire, New Jersey, 

New York, Pennsylvania, Rhode Island, and Virginia, plus the District of Columbia; they contain 1,035 R&D labs. 

There are 645 R&D labs in California.  
6
 Buzard et al. (2017) develop an alternative benchmark or backcloth for analyzing R&D clustering with respect to 

STEM workers to address the concern that R&D labs may follow knowledge workers. We will provide patent 

citation results using this alternative backcloth as well as for the manufacturing employment backcloth.  

7
 Using K-function permutation tests based on 1,000 permutations, Buzard et al. (2017) define maximal significance 

to be the smallest p-value obtainable under that test, namely p = 0.001. 
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An overall depiction of core clusters for both the Northeast corridor and California is shown in 

Figures 1a and 1b, respectively. Figure 1a shows the four major clusters identified for the 

Northeast corridor (one each in Boston, New York/Northern New Jersey, 

Philadelphia/Wilmington, and Washington, D.C.), while Figure 1b shows the three major 

clusters in California (one each in the Bay Area, Los Angeles, and San Diego).  

To see how the multiscale core clustering approach works, examine the San Francisco Bay Area 

in California shown in Figure 2. The approach identified one 10-mile cluster that covers almost 

all of the Bay Area. There is a dominant 5-mile core cluster that is completely nested in the 10-

mile cluster; this is the area most commonly referred to as Silicon Valley. Finally, as the figure 

shows, there are numerous one-mile clusters running from the Stanford Research Park area to 

San Jose at the center of Silicon Valley.
8
 Buzard et al. (2017) similarly identify other clusters of 

R&D labs such as the one centered around Cambridge, MA, and the Route 128 corridor that 

correspond closely to the most well-known R&D concentrations in the study area (Figure 3). 

These examples illustrate the attractive features of the multiscale core-cluster approach. First and 

foremost, this approach adds a scale dimension not present in other clustering methods. In 

essence, it extends the multiscale feature of local K-functions from individual points to clusters 

of points. See Buzard et al. (2017) for a discussion of the benefits of the multiscale core cluster 

approach relative to significance-maximizing methods.  

The ultimate value of such clusters for our purposes can be determined only by testing their 

economic significance — to which we now turn.  

 

3. CLUSTERING OF R&D LABS AND CLUSTERING OF PATENT CITATIONS 

In this section, we test for evidence of localized knowledge spillovers by assigning patents and 

citations to the core clusters identified by Buzard et al. (2017). More specifically, we study the 

                                                 
8
 Note that while the clusters in Figure 3 tend to be nested by scale, this is not always the case. For example, the 5-

mile “Livermore Lab” cluster in Figure 2 is seen to be mostly outside the major 10-mile cluster. Here, there is a 

concentration of six R&D labs within two miles of each other, although Livermore is relatively far from the Bay 

Area. So, while this concentration is picked up at the 5-mile scale, it is too small by itself to be picked up at the 10-

mile scale. 
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relative geographic concentration of citations to patents originating in the clusters. These 

citations are a concrete indication of the transmission of information from one inventor to 

another. 

We follow the general approach developed in JTH, but it is modified to reflect the geographic 

clustering of R&D labs we identify in this paper. JTH test for the “localization” of knowledge 

spillovers by constructing measures of geographic concentration of citations contained in two 

groups of patents — a treatment group and a control group. The treatment group represents a set 

of patents that cite a specific earlier patent obtained by an inventor living in a particular 

geographic area (in the JTH study either a state or a metropolitan area). For each treatment 

patent, JTH use a process to select a potential control patent that is similar to the treatment patent 

but does not cite the earlier patent. For patents in the treatment and control groups, JTH calculate 

the proportion of those patents obtained by an inventor living in the same geographic area as the 

inventor of the earlier patent. The difference of these two proportions is a test statistic for the 

localization of knowledge spillovers. In their study, JTH found that, relative to the pattern 

reflected in the sample of control patents, patent citations were two times more likely to come 

from the same state and about two to six times more likely to come from the same metropolitan 

area. 

We construct a comparable test statistic, with several refinements, and we substitute the R&D 

clusters identified in Buzard et al. (2017) for the state and metropolitan area geography used by 

JTH. This provides us with an alternative way to test for possible localized knowledge spillovers 

at much smaller spatial scales than are found in much of the preceding literature. Recall that the 

boundaries of the core clusters are determined by interrelationships among the R&D labs in our 

sample and, therefore, should more accurately reflect the appropriate boundaries in which 

knowledge spillovers are most likely to be at work. In that sense, the geography of our clusters 

should be better suited for studying localized knowledge spillovers than states, metropolitan 

areas, or other political or administrative boundaries.   
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3.1 Construction of the Citations Data Set 

For this analysis, we use data obtained from the NBER Patent Data Project.
9
 The data span the 

years 1996–2006. We identify the inventors on a patent using data on inventor codes found in the 

Patent Network Dataverse (Lai, D’Amour, and Fleming, 2009). Patents are assigned to locations 

based on the zip code associated with the residential address of the first inventor on the patent.
10

 

We do not use the address of the assignee (typically the company that first owned the patent) 

because this may not reflect the location where the research was conducted (e.g., it may be the 

address of the corporate headquarters and not the R&D facility). While it’s possible that an 

inventor’s home lies outside a cluster while his professional work takes place inside a cluster, 

this type of measurement error would bias our results against finding significant location 

differentials. As a robustness check, we repeated our main analysis using the zip code of the 

second inventor on the patent. While the sample size is smaller because not all patents list two or 

more inventors, the results were virtually the same as we report below.
11 

 

For our tests, we rely primarily on the boundaries identified by the 5-mile and 10-mile core 

clusters located in the Northeast corridor and in California.
12

 For each core cluster at a given 

scale, we assemble four sets of patents. The first set, which we call originating patents, represent 

those patents granted in the years 1996–1997 by an inventor living in the cluster.
13

 We call the 

second set of patents citing patents. These consist of all subsequent patents — including patents 

for which the residential address of the first inventor is located outside the U.S. — that cite one 

or more of the originating patents, after excluding patents with the same inventor or that were 

initially assigned to the same company as the originating patent. We exclude these self-citations 

because these are unlikely to represent the knowledge spillovers we seek to identify.
14

  

                                                 
9
 See https://sites.google.com/site/patentdataproject/. We use the files pat76_06_assg.dta and cite_7606.dta. 

10
 We used the location information contained in the file inventors5s_9608.tab downloaded from 

http://dvn.iq.harvard.edu/dvn/dv/patent. Note that this approach implies that our inventors are located at the centroid 

of the zip code where they live. We have zip code information for almost 99 percent of the patents with a first 

inventor residing in the United States. 

11
 Results are available from the authors upon request. 

12
 In Section 4.1 that follows, we report comparable tests for larger and smaller clusters. 

13
 1996-1997 is chosen because the labs data on which the clusters are based is from 1998. 

14
 We do this using the pdpass variable in the data set pat76_06_assg and the Invnum in the Consolidated Inventor 

Dataset. For details, see Lai, D’Amour, and Fleming (2009). 

https://sites.google.com/site/patentdataproject/
http://dvn.iq.harvard.edu/dvn/dv/patent
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For every citing patent, we attempt to match it to an appropriate control patent. When we are 

successful, we include the citing patent in a set we call treatment patents and the matched patent 

in a set we call control patents. We select control patents using the following approach. For a 

given citing patent, the set of potential control patents must have an application date after the 

grant date of the originating patent that is cited. Potential control patents also cannot cite the 

originating patent. The application date of potential control patents must be within one year (six 

months on either side) of the application date of the treatment patent. Finally, as was done by 

JTH, potential control patents must have the same three-digit primary patent class as the 

treatment patent.
15

 In this way, potential controls are drawn from patents in the same 

technological field. 

The set of potential control patents for a given treatment patent may overlap with the set of 

potential controls for other treatment patents. To rule out any possibility that this overlap may 

affect our tests, we randomized the order in which treatment patents were matched to control 

patents, and we randomized the selection of a specific control patent when there was more than 

one potential control patent from which to choose.
16

 The main results reported below allow for 

the selection of control patents with replacement. In other words, a given control patent may be 

matched to more than one citing patent. As a robustness check (not shown), we repeat the 

analysis by sampling potential controls without replacement.
17

 In this case, a potential control 

                                                 
15

 We match on the variable class in the data set pat76_06_assg. This is the original primary classification of the 

patent. We feel it is important to use a “real time” classification because these are what other researchers might rely 

upon around the time a patent was issued. 

16
 Two random numbers are assigned to each citing patent. The first is used to set the order in which citing patents 

are matched. The second is used, in conjunction with a random number assigned to every potential control patent, to 

select a patent associated with the minimum absolute difference between the two random numbers. In JTH, when 

multiple potential control patents exist, they select the one with a grant date that is nearest to the grant date of the 

treatment patent as the control the patent. 

17
 Randomization of the order of matching control patents to citing patents should rule out any bias resulting from an 

unknown systematic pattern in the timing of patents being issued for specific technology fields. One concern is that 

our sampling procedure could violate the independence of the control group and the treatment (citing) group. This is 

possible if a control patent also appears in the set of treatment patents — if the control patent for one treatment 

patent is a citing patent for a different originating patent. We find that these two groups are independent since there 

is absolutely no overlap between the citing patents and control patents either in the Northeast corridor or the 

California samples. 
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patent can be matched with at most one citing patent. While this reduces the rate at which we can 

match control patents to citing patents, it does not materially affect the test statistics.
18

 

3.2 The Test Statistics 

For any given cluster scale, d  ( 5,  10 ) , let 
o denote the number of originating patents indexed 

0{ : 1, , }io i   that were granted to inventors living in one of the core clusters at scale d in the 

years 1996–1997.
19

 Let 
i denote the number of subsequent citations { : 1, , }ij ic j   to io  

(after removing self-citations) over the years 1996–2006. For each of these citing patents, ijc , 

designated as treatment patents, we attempted to identify a unique control patent, ijc , with the 

same three-digit patent class and with an application date within one year of the treatment patent 

(see previous description). We are not always successful in doing so. Let ( )i i  denote the 

number of treatment patents, ijc , for which a control, ijc , was found.  

Among these i  treatment patents, we count the number of patents, im , for which the residential 

address of the first inventor on the citing patent is located in the same core cluster as the 

originating patent it cites. The fraction of all such patents at scale d, i.e., the treatment 

proportion, is given by
20
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18

 These results are available from the authors upon request. 

19
 The following formulation of the proportions used for testing purposes is based largely on Murata et al. (2014). 

20
 The dependency of fraction, p (and all other quantities in (1)) is taken to be implicit.  
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The resulting test statistic is simply the difference between these proportions, i.e., p p . Under 

the null hypothesis of “no localization of knowledge spillovers,” this difference of independent 

proportions is well known to be asymptotically normal with mean zero and thus provides a well-

defined test statistic.
21

 

3.3 Main Results 

Table 1a presents the results of our localization or matching rate tests for the nine 5-mile clusters 

identified in by Buzard, et al. (2017) for the Northeast corridor, while Table 1b shows the results 

for the four 10-mile clusters they identify. As the last row of Table 1a shows, inventors living in 

the 5-mile clusters obtained 8,526 patents in 1996–1997 (column A). Those patents subsequently 

received 76,730 citations from other patents during the sample period (column B). Our matching 

algorithm, with replacement, was able to match 85 percent of the citing patents with an 

appropriate control patent (column H). Among the treatment patents, 3.69 percent (column G) 

had a first inventor living in the same cluster as the patent it cited; this is the treatment 

proportion. Among the control patents, only 0.62 percent (column J) had a first inventor living in 

the same cluster as the patent cited by the treatment patent; this is the control proportion. As 

shown in the next to the last column of the table, on average, a given patent citing an earlier 

patent in a 5-mile cluster is six times as likely to have a first inventor living in that cluster than 

would be expected by chance alone. This value is on the higher side of the range reported by 

JTH for their test of localization at the metropolitan-area level. As the last row of the Table 1a 

shows, the difference between the treatment and control proportions is highly statistically 

significant (column L). In addition, the location differential — defined as the ratio of treatment 

and control proportions — is at least around 3.0 for every 5-mile cluster.  

Table 1b presents the results of our localization tests among 10-mile clusters in the Northeast 

corridor. At a somewhat larger spatial scale, we find there are more originating patents, more 

citing patents, and, thus, more treatment and control patents. Both the treatment and control 

proportions (columns G and J) are higher than was found among the 5-mile clusters. The t 

                                                 
21

 In JTH, the standardized test statistic, ( ) / [ (1 ) (1 )] /p p p p p p n    , is asserted to be t distributed. In fact, 

the t distribution is not strictly accurate. However, for the present large sample size, 50,000,n  this is of little 

consequence, since the t and standard normal distributions are virtually identical. 
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statistic associated with the difference in these proportions is even higher than was found for the 

smaller clusters. At the same time, the location differential is somewhat smaller. On average, a 

given patent citing an earlier patent in a 10-mile cluster is 3.6 times as likely to have a first 

inventor living in that cluster than would be expected by chance alone. This value is on the lower 

side of the range reported by JTH for their test of localization at the metropolitan-area level. 

There are a number of specific clusters where this differential is substantially higher. For 

example, the location differential is more than twice the four-cluster average in the Washington 

D.C. and Philadelphia clusters, and a little more than one-third higher in the Boston cluster.  

Tables 2a and 2b present the results of our localization tests among 5- and 10-mile clusters, 

respectively, in California identified by Buzard, et al. (2017). Compared with the Northeast 

corridor, we find many more originating patents, citing patents, and, therefore, treatment and 

control patents. The treatment proportions (column G) among the California clusters are much 

higher than those found in the Northeast corridor. However, this is driven almost entirely by the 

cluster association with Silicon Valley. The control proportions (column J) are also larger than 

we found in the Northeast corridor. The t-statistic for the difference in treatment and control 

proportions (column L) is highly significant for all the 5-mile and 10-mile clusters. On average, a 

given patent citing an earlier patent in a 5- or 10-mile cluster in California is four to four-and-a-

half times as likely to have a first inventor living in that cluster than would be expected by 

chance alone.  

It is worth noting that there is significant cross-cluster variation. For 5-mile clusters in the 

Northeast, the location differentials for Philadelphia and Washington D.C. are more than twice 

the average. The largest location differential among our baseline results is 45.5 for the 5-mile 

Los Angeles cluster; this is ten times the average for 5-mile clusters in California. 

To summarize, the clusters of R&D labs identified by the multicore approach appear to coincide 

with the geographic clustering of patent citations, an often-cited indicator of knowledge 

spillovers. The following section develops these results further and discusses a number of 

robustness checks. 
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4. ADDITIONAL RESULTS AND ROBUSTNESS CHECKS 

4.1 The Relationship Between Citation Location Differentials and Spatial Scale 

The statistics in the preceding tables suggest that there may be a systematic relationship between 

the size of the clusters we study and the magnitude of the location differentials we find. To 

explore this further, we extended our analysis to consider clusters at spatial scales of 20 miles. 

We summarize the results in Table 3a and Table 3b.  

A number of patterns are evident from the table. First, the rate of increase in the number of 

originating patents associated with larger core clusters falls off because a number of clusters that 

are significant at smaller spatial scales are not significant at the larger spatial scales. The 

treatment and control proportions tend to increase as we consider larger core clusters. The 

difference between these proportions becomes more and more statistically significant as the 

sample size rises. At the same time, the location differential falls monotonically as the 

geographic size of the clusters increases. These results suggest that the core clusters are picking 

up knowledge spillovers over a variety of spatial scales. Nevertheless, the localization effects 

appear to be largest at spatial scales of 5 miles and perhaps less. The attenuation in the 

localization differential as cluster size increases is a typical finding in studies examining 

localized knowledge spillovers.
22

 

4.2 Are Patents Obtained in the Core Clusters More Influential?  

In this section, we investigate whether patents obtained by inventors living within a core cluster 

are somehow more important, or at least better known, than patents obtained outside of these 

clusters. We rely on a common metric of patent quality: the number of citations received.
23

 We 

develop a “counterfactual” region for each of the 10-mile core clusters identified in Section 2. 

For example, the New York cluster is compared with the region outside of that cluster contained 

in the states of New York, Connecticut, and northern New Jersey. The Boston cluster is 

compared with the region outside the cluster in the states of Massachusetts, New Hampshire, and 

                                                 
22

 See Carlino and Kerr (2015) for a review of studies documenting attenuation in knowledge spillovers as cluster 

size increases. 

23
 Hall, Jaffe, and Trajtenberg (2005) show that a one-citation increase in the number of patents in a firm’s portfolio 

increases its market value by 3 percent. For additional evidence, see Trajtenberg (1990). 
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Rhode Island. In Table 4, we report a simple difference in means test for the number of citations 

per patents received by patents located inside or outside our clusters. For all our clusters, the 

average number of citations received by patents is greater inside the cluster compared with the 

average citations received outside the respective cluster; this difference in citations is statistically 

significant in all clusters except one (Philadelphia).  

These results, combined with the results for the localization of citations, suggest there is prima 

facie evidence that the inventions developed within a core cluster are more influential than 

inventions developed outside a cluster but within the same region of the country. An alternative 

explanation, which we cannot entirely rule out, is that patents within a cluster receive more 

citations because they are often cited by inventors living nearby. According to this reasoning, the 

inventions may not necessarily be better, but they are better known by researchers in the area. 

This interpretation only reinforces the evidence of localized knowledge spillovers in our clusters. 

4.3 Alternative Approaches to Identifying Cluster Boundaries 

In addition to clustering to take advantage of knowledge spillovers, it is also possible that R&D 

activity is geographically concentrated to take advantage of labor market pooling. As we have 

shown, one important concentration of R&D labs is found in around Cambridge, MA, and 

another important clustering is found in Silicon Valley. These labs are close to large pools of 

STEM graduates and workers, the very workers that R&D activity requires. Manufacturing 

activity tends to employ a more general workforce than does innovative activity and may 

therefore be more geographically dispersed compared with innovative activity.   

To address the concern that we may be intermingling knowledge spillovers with labor market 

pooling, we use an alternative set of clusters developed by Buzard et al. (2017) based on a 

measure of STEM workers by location.
24

 For the backcloth of these clusters, they replace the 

number of manufacturing employees in each zip code area with an estimate of the number of 

STEM workers. This is constructed using the proportion of STEM jobs in each four-digit NAICs 

industry multiplied by the number of jobs in each industry reported in the Zip Code Business 

                                                 
24

 They use the taxonomy of STEM occupations found at http://www.bls.gov/oes/stem_list.xlsx. For details, see 

Watson (2014). This taxonomy is mapped to the 2010 vintage of the Standard Occupational Classifications (SOCs). 

We map back to the 2000 vintage of the SOCs so we can use the 2002 job counts from the Occupational 

Employment Statistics to calculate STEM employment “intensity” by industry. 

http://www.bls.gov/oes/stem_list.xlsx
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Patterns. We report the results of this alternative test for 5- and 10-mile clusters in the Northeast 

corridor (Tables 5a and 5b) and in California (Tables 6a and 6b). Note that the cluster definitions 

change when the backcloth changes, so the list of clusters in these tables differs from those in 

Tables 1 and 2. With the exception of the 5-mile clusters in the Northeast corridor, the average 

location differentials using the STEM worker backcloth are virtually the same as for the baseline 

findings. The location differential falls from 6.0 for the 5-mile clusters in the Northeast corridor 

when considering the baseline results to 4.2 for the results when the clusters are based on STEM 

workers. For the most part, the findings reported for the location differentials in the baseline (and 

subsequent analysis) suggest little, if any, upward bias as a result of labor market pooling. 

4.4 Alternative Approaches to Identifying Control Patents 

4.4.1 Disaggregated Subclasses 

As previously discussed, there has been some debate in the literature as to the best way of 

implementing a technological similarity requirement based on patent classifications. JTH 

identify potential control patents within the same three-digit primary patent class as the treatment 

patent. TFK suggest that the potential controls should be drawn more narrowly from patents that 

share the same patent class and subclass as the citing patent. They find that tests using this 

alternative approach reduce the size and significance of the localization ratios, especially at 

smaller geographies. 

The results presented thus far are based on the JTH approach of limiting potential control patents 

to ones that share the same three-digit primary class as the citing patent. As a robustness check, 

we implement one version of the matching requirements tested in TFK. We restrict potential 

control patents to ones that share the same primary class and subclass as the citing patent.
25

 Our 

methodology is otherwise the same as we describe in Section 3.2. We report the results of this 

alternative test for 5- and 10-mile clusters in the Northeast corridor (Tables 7a and 7b) and in 

California (Tables 8a and 8b). Comparing these results with our baseline results (Tables 1a and 

1b) and (2a and 2b), there are very small differences in the treatment and control proportions. 

The t-statistics using the TFK approach are only slightly smaller than they are when using the 

                                                 
25

 This is analogous to the test reported in Table 3, column (6) in TFK. 
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JTH approach, but they are nevertheless very large. We conclude that our results do not appear to 

be sensitive to the choice of technology controls. 

4.4.2 Coarsened Exact Matching 

More recently, methods for constructing a matched sample of treatment and control groups have 

evolved. Specifically, coarsened exact matching (CEM) (Iacus, King, and Porro, 2011) can be 

used to improve the balance between the treated group (citing patents) and the control group. In 

addition to matching on the application year of the patent and the patent’s three-digit technology 

classification, we also matched discrete bins on two additional variables: 1) the year the patent 

was granted, and 2) the number of citations a patent received (all cites). We relied upon the CEM 

algorithm in STATA to coarsen the matched bins based on the optimization of an objective 

function rather than arbitrarily assigning cut points to the bins.  

We use the CEM matched controls in several ways. First, we follow the JTH location differential 

approach used in producing Tables 1 and 2, our baseline findings, but use the CEM controls. For 

this approach, we exclude patents with the same inventor or that were initially assigned to the 

same company as the originating patent.
26

 The results are reported in Table 9 (for the Northeast 

corridor) and Table 10 (for California). The location differentials are uniformly smaller than we 

previously reported for the broad cluster in the Northeast corridor and in California. On average, 

a given patent citing an earlier patent in a 5-mile cluster in the Northeast corridor is 4.5 times as 

likely to have a first inventor living in that cluster than would be expected by chance alone, 

compared with a differential of 6.0 reported in our baseline results. The location differential in 

California’s 5-mile cluster falls to 2.5 when using the CEM matched controls from 4.5 reported 

for the baseline. The location differential in the Northeast corridor 10-mile cluster falls to 2.8 

when using the CEM-matched controls from 3.6 reported for the baseline. In the California 10-

mile cluster, the location differential falls to 2.5 from 4.2 reported for the baseline.   

                                                 
26

 For this approach, the set of potential control patents for a given treatment patent may overlap with the set of 

potential controls for other treatment patents. To rule out any possibility that this overlap may affect our tests we 

randomized the order in which treatment patents were matched to control patents, and we randomized the selection 

of a specific control patent when there was more than one potential control patent from which to choose. The results 

reported below allow for the selection of control patents with replacement. 
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In our second approach, we estimate a logistic model of the likelihood that a patent in cluster h  

cites an originating patent in that cluster. More formally, if for any given patent, we let hT  denote 

the indicator variable that this patent cites at least one originating patent in cluster h, and 

similarly, let hD  indicate whether this patent itself originates in cluster h, then the conditional 

likelihood, Pr( 1| )h hT D , of citing patents in cluster h given hD  is postulated to be of the logit 

form:  

 
exp( )

Pr( 1| )
1 exp( )

h h h
h h

h h h

D
T D

D

 

 


 

 
  

In this setting, it should be clear that citations of patents in cluster h are more likely for 

(treatment) patents in cluster h than for (control) patents not in cluster h, i.e., 

Pr( 1| 1) Pr( 1| 0)h h h hT D T D     , if and only if 0h  . The estimated coefficients, ˆ( )h , 

are reported in Table 11 (along with robust standard errors for these estimates).
27

  As seen from 

the table, the estimated coefficients for all clusters are significantly positive (at the 1% level), 

and thus provide strong support for the findings in Tables 9 and 10.  

Finally, to facilitate comparison, the main results found for location differentials are summarized 

in Table 12. The table shows the results when R&D clustering is analyzed with respect to (i) 

manufacturing employment (baseline), (ii) STEM workers,  (iii) when the controls are 

alternatively selected to share the same patent class and subclass as the citing patents 

(disaggregated), and (iv) when the controls are selected using more stringently matched samples 

(CEM). Regardless of the specification chosen to construct the location differentials, we find that 

citations are at least about 2.5 times more likely to come from the same cluster as earlier patents 

than one would predict using a control sample of otherwise similar patents. 

 

                                                 
27

 For this approach, we do not exclude patents with the same inventor or that were initially assigned to the same 

company as the originating patent. The observations are weighted based on the number of CEM-matched controls 

found for each treated observation. 
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5. CONCLUDING REMARKS  

In this paper, we verify that the local clusters identified in Buzard et al. (2017) are economically 

meaningful by applying tests developed by JTH to measure the degree to which patent citations 

are localized in these clusters — tangible evidence that knowledge spillovers are geographically 

mediated. For labs in the Northeast corridor, we find, on average, that citations are about three to 

six times more likely to come from the same cluster as earlier patents than one would predict 

using a (control) sample of otherwise similar patents. In California, citations are around three to 

five times more likely to come from the same cluster as earlier patents than one would predict 

using the control sample.  

These localization ratios are at least as large as those reported by JTH, a conclusion that was in 

no way foregone, since the spread of the Internet and patent databases had drastically reduced the 

cost of searching patent applications by the early to mid-1990s. We also show that patents inside 

each cluster receive more citations on average than those outside the cluster in a suitably defined 

counterfactual area. In their study, JTH provide estimates of localization of knowledge spillovers 

that are averaged over metro areas or states. But much information is lost regarding differences 

in the localization of knowledge spillovers in specific geographic areas. In this article, we show 

that such differences can be substantial. The results are robust to a number of alternative 

specifications for selecting control patents.  
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Table 1a: Five-Mile Clusters in the Northeast corridor, Baseline Results 

            Treatment Group   Control Group       

Column A B C D 

 

E F G 

 

H I J 

 

K L 

Cluster 

Originating 

Patents 

Citing 

Patents 

From Same 

Cluster 

Percent 

(C/B) 

 

Matched 

Citing 

Patents* 

From 

Same 

Cluster* 

Percent 

(F/E) 

 

Control 

Patents† 

From Same 

Cluster 

Percent 

(I/H) 

 

Location 

Differential 

(G/J) t Statistic 

Framingham–Marlborough–Westborough, MA 323 3,498 104 2.97% 

 

2,941 87 2.96% 

 

2,941 0 0.00% 

 

N/A 9.5 

Boston–Cambridge–Waltham–Woburn, MA 2,634 27,664 1,717 6.21% 

 

23,614 1,468 6.22% 

 

23,614 256 1.08% 

 

5.7 30.0 

Silver Spring–Bethesda, MD–McLean, VA 367 3,424 89 2.60% 

 

2,843 70 2.46% 

 

2,843 3 0.11% 

 

23.3 7.9 

Trenton–Princeton, NJ 889 9,022 260 2.88% 

 

7,547 224 2.97% 

 

7,547 23 0.30% 

 

9.7 13.0 

Parsippany–Morristown–Union, NJ 1,710 14,567 358 2.46% 

 

12,337 314 2.55% 

 

12,337 69 0.56% 

 

4.6 12.7 

Greenwich–Stamford, CT–Scarsdale, NY 1,205 11,218 141 1.26% 

 

9,477 115 1.21% 

 

9,477 36 0.38% 

 

3.2 6.5 

Stratford–Milford, CT 235 1,484 12 0.81% 

 

1,280 10 0.78% 

 

1,280 0 0.00% 

 

N/A 3.2 

Conshohocken–King of Prussia–West Chester, PA 539 2,352 68 2.89% 

 

2,111 59 2.79% 

 

2,111 4 0.19% 

 

14.8 7.0 

Wilmington–New Castle, DE 624 3,501 72 2.06% 

 

3,055 61 2.00% 

 

3,055 11 0.36% 

 

5.5 5.9 

  

   

  

 

  

 

  

 

  

 

  

 

    

All Five-Mile Clusters 8,526 76,730 2,821 3.68%   65,205 2,408 3.69%   65,205 402 0.62%   6.0 38.5 

        

 

                      

                

                                

Table 1b: 10-Mile Clusters in the Northeast corridor, Baseline Results 

            Treatment Group   Control Group       

Column A B C D 

 

E F G 

 

H I J 

 

K L 

Cluster 

Originating 

Patents 

Citing 

Patents 

From Same 

Cluster 

Percent 

(C/B) 

 

Matched 

Citing 

Patents* 

From 

Same 

Cluster* 

Percent 

(F/E) 

 

Control 

Patents† 

From Same 

Cluster 

Percent 

(I/H) 

 

Location 

Differential 

(G/J) t Statistic 

Boston, MA 4,719 48,315 4,263 8.82% 

 

41,082 3,679 8.96% 

 

41,082 747 1.82% 

 

4.9 45.9 

Washington, DC 926 9,741 327 3.36% 

 

8,089 270 3.34% 

 

8,089 31 0.38% 

 

8.7 14.0 

New York, NY 7,768 67,982 4,738 6.97% 

 

57,626 3,997 6.94% 

 

57,626 1,493 2.59% 

 

2.7 34.8 

Philadelphia, PA 1,594 9,028 409 4.53% 

 

7,851 343 4.37% 

 

7,851 35 0.45% 

 

9.8 16.2 

  

   

  

 

  

 

  

 

  

 

  

 

    

All 10-Mile Clusters 15,007 135,066 9,737 7.21%   114,648 8,289 7.23%   114,648 2,306 

2.0

1%   3.6 60.0 

Sources: NBER Patent Data Project and authors’ calculations.   

*The subset of citing patents for which we obtained a similar control patent. See text for details. 
†Control Patents are chosen to have the same three-digit technology classification as the citing patent, and their application date must be within a one-year window of the citing patent’s application date. These control patents are chosen 

with replacement sampling. We eliminate self-citations and do not allow controls to be drawn from patents assigned to the same firm to which the originating patent is assigned.    
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Table 2a: Five-Mile Clusters in California, Baseline Results 

            Treatment Group   Control Group       

Column A B C D 

 

E F G 

 

H I J 

 

K L 

Cluster 

Originating 

Patents 

Citing 

Patents 

From Same 

Cluster 

Percent 

(C/B) 

 

Matched 

Citing 

Patents* 

From 

Same 

Cluster* 

Percent 

(F/E) 

 

Control 

Patents† 

From Same 

Cluster 

Percent 

(I/H) 

 

Location 

Differential 

(G/J) t Statistic 

San Diego 444 3,434 77 2.24%  2,914 67 2.30%  2,914 9 0.31%  7.4 6.7 

Los Angeles 454 3,646 104 2.85%  3,143 91 2.90%  3,143 2 0.06%  45.5 9.4 

Palo Alto–San Jose 11,318 145,471 26,684 18.34%  121,455 22,407 18.45%  121,455 4,986 4.11%  4.5 114.7 

Dublin–Pleasanton 283 3,899 127 3.26%  3,257 110 3.38%  3,257 5 0.15%  22.0 10.0 

                

All Five-Mile Clusters 12,499 156,450 26,992 17.25%  130,769 22,675 17.34%  130,769 5,002 3.83%  4.5 115.2 

        

 

                      

                

                                

Table 2b: 10-Mile Clusters in California, Baseline Results 

            Treatment Group   Control Group       

Column A B C D 

 

E F G 

 

H I J 

 

K L 

Cluster 

Originating 

Patents 

Citing 

Patents 

From Same 

Cluster 

Percent 

(C/B) 

 

Matched 

Citing 

Patents* 

From 

Same 

Cluster* 

Percent 

(F/E) 

 

Control 

Patents† 

From Same 

Cluster 

Percent 

(I/H) 

 

Location 

Differential 

(G/J) t Statistic 

San Diego 2,099 20,079 970 4.83%  16,951 844 4.98%  16,951 176 1.04%  4.8 21.4 

Los Angeles 1,266 10,685 609 5.70%  9,264 537 5.80%  9,264 62 0.67%  8.7 19.9 

San Francisco 14,963 188,943 44,215 23.40%  157,997 37,184 23.53%  157,997 8,907 5.64%  4.2 147.3 

                

All 10-Mile Clusters 18,328 219,707 45,794 20.84%  184,212 38,565 20.94%  184,212 9,145 4.96%  4.2 148.6 

Sources: NBER Patent Data Project and authors’ calculations.      

*The subset of citing patents for which we obtained a similar control patent. See text for details. 
†Control Patents are chosen to have the same three-digit technology classification as the citing patent, and their application date must be within a one-year window of the citing patent’s application date. These control patents are chosen 

with replacement sampling.  We eliminate self-citations and do not allow controls to be drawn from patents assigned to the same firm to which the originating patent is assigned.    
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Cluster Size # of Clusters 

Originating  

Patents Citing Patents 

Treatment  

Proportion  

(%) 

Control  

Proportion  

(%) 

Localization  

Differential 
t -statistic 

5-Mile 9 8,526 76,737 3.69 0.60 6.2 41.8 

10-Mile 4 15,007 135,075 7.23 2.44 3.0 58.0 

20-Mile 3 21,941 191,685 9.82 4.82 2.0 59.4 

Source: NBER Patent Data Project 

Cluster Size # of Clusters 

Originating  

Patents Citing Patents 

Treatment  

Proportion  

(%) 

Control  

Proportion  

(%) 

Localization  

Differential 
t -statistic 

5-Mile 4 12,499 156,450 17.30 1.48 11.7 156.7 

10-Mile 3 18,328 219,705 20.89 2.12 9.8 202.7 

20-Mile 2 18,523 223,285 22.55 2.52 9.0 210.9 

Sources: NBER Patent Data Project and authors’ calculations. 

Control Patents are chosen to have the same three-digit technology classification as the citing patent, and their application date must be within a one-year window 

of the citing patent’s application date. These control patents are chosen with replacement sampling. We eliminate self-citations and do not allow controls to be 

drawn from patents assigned to the same firm to which the originating patent is assigned.    

 

Table 3a: Citation Location Differentials and Spatial Scale (Northeast corridor) 

Table 3b: Citation Location Differentials and Spatial Scale (California) 
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Area Mean Std. Dev. n Mean Std. Dev. n t- statistic 

Boston 12.888 18.148 4,704 9.949 14.895 2,644 7.491 

New York 11.065 16.338 8,279 9.491 14.410 10,600 6.912 

Philadelphia 8.030 9.657 1,598 7.654 10.515 3,655 1.262 

Washington, D.C. 11.707 17.457 1,273 7.825 10.371 1,741 7.073 

Southern California 11.464 15.734 3,668 9.087 12.074 6,716 7.956 

Northern California 15.532 19.845 15,106 10.811 15.110 2,680 14.155 

Sources: NBER Patent Data Project and authors’ calculations 

†: Citations per Patent Granted, 1996–1997 

1: Inside Cluster refers to all patents in one or more 10-mile clusters in the region. 

2: Outside Cluster refers to all patents outside of the 10-mile clusters in the regions defined as follows: 

Boston (Massachusetts/New Hampshire/Rhode Island), New York (New York/Connecticut/Northern NJ), 

Philadelphia (Delaware/Eastern Pennsylvania/Southern NJ), Washington, D.C. (Maryland/D.C./Virginia), 

Southern California (10 southern counties), and Northern California (remaining counties). 

Table 4: Citation Differentia Between Labs Inside Clusters vs. Labs Outside Clusters (Difference in Means Test) † 

Inside Cluster 
1 

Outside Cluster 
2 
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Table 5a: Five-Mile Clusters in the Northeast corridor, STEM Worker Clusters 

            Treatment Group   Control Group       

Column A B C D 

 

E F G 

 

H I J 

 

K L 

Cluster 

Originating 

Patents 

Citing 

Patents 

From Same 

Cluster 

Percent 

(C/B) 

 

Matched 

Citing 

Patents* 

From 

Same 

Cluster* 

Percent 

(F/E) 

 

Control 

Patents† 

From Same 

Cluster 

Percent 

(I/H) 

 

Location 

Differential 

(G/J) t Statistic 

Bethesda–Rockville, MD–Vienna, VA 414 4,291 100 2.33%  3,499 75 2.14%  3,499 9 0.26%  8.3 7.3 

Columbia–Laurel, MD 53 497 3 0.60%  453 3 0.66%  453 0 0.00%  N/A 1.7 

Phoenix–Cockeysville, MD 72 419 0 0.00%  363 0 0.00%  363 0 0.00%  N/A N/A 

Wilmington, DE 539 2,352 68 2.89%  2,093 57 2.72%  2,093 5 0.24%  11.4 6.7 

King of Prussia, PA 974 5,535 242 4.37%  4,848 207 4.27%  4,848 15 0.31%  13.8 13.2 

Philadelphia, PA 81 617 6 0.97%  544 5 0.92%  544 0 0.00%  N/A 2.2 

Princeton, NJ–New York, NY 5,124 46,014 2,323 5.05%  38,804 1,960 5.05%  38,804 684 1.76%  2.9 25.4 

Long Island, NY 270 1,913 18 0.94%  1,692 17 1.00%  1,692 1 0.06%  17.0 3.8 

Danbury, CT 347 4,410 162 3.67%  3,772 126 3.34%  3,772 2 0.05%  63.0 11.1 

Stratford, CT 240 1,501 12 0.80%  1,309 12 0.92%  1,309 1 0.08%  12.0 3.1 

North Haven, CT 105 457 13 2.84%  411 13 3.16%  411 0 0.00%  N/A 3.7 

Hartford, CT 87 503 8 1.59%  452 7 1.55%  452 0 0.00%  N/A 2.7 

Hudson–Westborough, MA 255 2,841 84 2.96%  2,368 77 3.25%  2,368 3 0.13%  25.7 8.4 

Boston–Cambridge, MA 2,958 30,920 2,059 6.66%  26,437 1,780 6.73%  26,437 326 1.23%  5.5 32.7 

Nashua, NH 295 2,966 54 1.82%  2,521 44 1.75%  2,521 1 0.04%  44.0 6.5 

Binghamton, NY 23 332 0 0.00%  300 0 0.00%  300 0 0.00%  N/A N/A 

Syracuse, NY 40 238 15 6.30%  212 12 5.66%  212 0 0.00%  N/A 3.6 

Buffalo, NY 91 410 1 0.24%  377 1 0.27%  377 0 0.00%  N/A 1.0 

Pittsburgh, PA 42 165 2 1.21%  148 2 1.35%  148 0 0.00%  N/A 1.4 

Pittsburgh–Verona, PA 70 426 4 0.94%  381 4 1.05%  381 0 0.00%  N/A 2.0 

                
All Five-Mile Clusters 12,080 106,807 5,174 4.84%  90,984 4,402 4.84%  90,984 1,047 1.15%  4.2 46.4 

                

Table 5b: 10-Mile Clusters in the Northeast corridor, STEM Worker Clusters 

            Treatment Group   Control Group       

Column A B C D 

 

E F G 

 

H I J 

 

K L 

Cluster 

Originating 

Patents 

Citing 

Patents 

From Same 

Cluster 

Percent 

(C/B) 

 

Matched 

Citing 

Patents* 

From 

Same 

Cluster* 

Percent 

(F/E) 

 

Control 

Patents† 

From Same 

Cluster 

Percent 

(I/H) 

 

Location 

Differential 

(G/J) t Statistic 

Richmond, VA 154 668 71 10.63%  604 68 11.26%  604 0 0.00%  N/A 8.8 

Washington, DC–Baltimore, MD 1,376 12,724 538 4.23%  10,655 462 4.34%  10,655 71 0.67%  6.5 17.3 

Hagerstown, MD 17 40 1 2.50%  39 1 2.56%  39 0 0.00%  N/A 1.0 

Lancaster, PA 104 566 8 1.41%  514 7 1.36%  514 0 0.00%  N/A 2.7 

Philadelphia, PA–Wilmington, DE–Cherry Hill, NJ 2,601 14,166 992 7.00%  12,424 870 7.00%  12,424 109 0.88%  8.0 25.1 

Pittsburgh, PA 921 5,804 400 6.89%  5,101 351 6.88%  5,101 17 0.33%  20.6 18.0 

Binghamton, NY 329 3,128 31 0.99%  2,640 29 1.10%  2,640 2 0.08%  14.5 4.9 

Syracuse, NY 130 678 44 6.49%  615 41 6.67%  615 0 0.00%  N/A 6.6 

Rochester, NY 1,571 7,983 391 4.90%  6,853 345 5.03%  6,853 23 0.34%  15.0 17.2 

Buffalo, NY 122 632 3 0.47%  578 3 0.52%  578 0 0.00%  N/A 1.7 

Boston, MA 4,682 47,968 3,901 8.13%  40,735 3,356 8.24%  40,735 737 1.81%  4.6 42.5 

New York, NY–Northern NJ–CT 9,514 80,971 6,239 7.71%  68,831 5,313 7.72%  68,831 2,286 3.32%  2.3 35.9 

                
All 10-Mile Clusters 21,521 175,328 12,619 7.20%  149,589 10,846 7.25%  149,589 3,245 2.17%  3.3 66.1 

Sources: NBER Patent Data Project and authors’ calculations.          

*The subset of citing patents for which we obtained a similar control patent. See text for details. 
†Control Patents are chosen to have the same three-digit technology classification as the citing patent, and their application date must be within a one-year window of the citing patent’s application date. These control patents are chosen 

with replacement sampling. We eliminate self-citations and do not allow controls to be drawn from patents assigned to the same firm to which the originating patent is assigned. 

The clusters identified in the above table are based on STEM workers as the backcloth. Note that the cluster definitions change because the backcloth changed to STEM workers instead of manufacturing workers as used in Tables 3 and 4.  
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Table 6a: Five-Mile Clusters in California, STEM Worker Clusters 

            Treatment Group   Control Group       

Column A B C D 

 

E F G 

 

H I J 

 

K L 

Cluster 

Originating 

Patents 

Citing 

Patents 

From Same 

Cluster 

Percent 

(C/B) 

 

Matched 

Citing 

Patents* 

From 

Same 

Cluster* 

Percent 

(F/E) 

 

Control 

Patents† 

From Same 

Cluster 

Percent 

(I/H) 

 

Location 

Differential 

(G/J) t Statistic 

San Diego–La Jolla 563 4,134 119 2.88%  3,518 111 3.16%  3,518 9 0.26%  12.3 9.5 

Carlsbad 261 1,628 43 2.64%  1,443 36 2.49%  1,443 0 0.00%  N/A 6.1 

Irvine 946 7,466 375 5.02%  6,589 325 4.93%  6,589 33 0.50%  9.8 15.8 

Camarillo 199 1,943 39 2.01%  1,704 30 1.76%  1,704 1 0.06%  30.0 5.3 

Santa Barbara 82 1,401 55 3.93%  1,222 52 4.26%  1,222 1 0.08%  52.0 7.2 

San Jose–Santa Clara 14,220 182,445 42,563 23.33%  152,229 35,803 23.52%  152,229 7,956 5.23%  4.5 149.0 

Pleasanton 283 3,899 127 3.26%  3,284 111 3.38%  3,284 8 0.24%  13.9 9.6 

Santa Rosa 127 1,013 29 2.86%  903 27 2.99%  903 0 0.00%  N/A 5.3 

                

All Five-Mile Clusters 16,681 203,929 43,350 21.26%  170,892 36,495 21.36%  170,892 8,008 4.69%  4.6 149.4 

        

 

                      

                

                                

Table 6b: Ten-Mile Clusters in California, STEM Worker Clusters 

            Treatment Group   Control Group       

Column A B C D 

 

E F G 

 

H I J 

 

K L 

Cluster 

Originating 

Patents 

Citing 

Patents 

From Same 

Cluster 

Percent 

(C/B) 

 

Matched 

Citing 

Patents* 

From 

Same 

Cluster* 

Percent 

(F/E) 

 

Control 

Patents† 

From Same 

Cluster 

Percent 

(I/H) 

 

Location 

Differential 

(G/J) t Statistic 

San Diego 2,146 20,504 1,056 5.15%  17,232 926 5.37%  17,232 171 0.99%  5.4 23.3 

Anaheim–Irvine 1,911 15,353 1,063 6.92%  13,410 929 6.93%  13,410 115 0.86%  8.1 26.0 

Oxnard–Camarillo 76 475 15 3.16%  432 13 3.01%  432 0 0.00%  N/A 3.7 

Santa Barbara 288 3,299 129 3.91%  2,871 118 4.11%  2,871 4 0.14%  29.5 10.5 

San Francisco–Palo Alto–San Jose 14,564 185,644 44,114 23.76%  154,996 37,127 23.95%  154,996 8,314 5.36%  4.5 151.6 

Santa Rosa 144 1,197 54 4.51%  1,061 48 4.52%  1,061 0 0.00%  N/A 7.1 

                

All 10-Mile Clusters 19,129 226,472 46,431 20.50%  190,002 39,161 20.61%  190,002 8,604 4.53%  4.6 154.1 

Sources: NBER Patent Data Project and authors’ calculations.              

*The subset of citing patents for which we obtained a similar control patent. See text for details. 
†Control Patents are chosen to have the same three-digit technology classification as the citing patent, and their application date must be within a one-year window of the citing patent’s application date. These control patents are chosen 

with replacement sampling. We eliminate self-citations and do not allow controls to be drawn from patents assigned to the same firm to which the originating patent is assigned. 

The clusters identified in the above table are based on STEM workers as the backcloth. Note that the cluster definitions change because the backcloth changed to STEM workers instead of manufacturing workers as used in Tables 3 and 4.  
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Table 7a: Five-Mile Clusters in the Northeast corridor, Disaggregated Subclasses 

            Treatment Group   Control Group       

Column A B C D 

 

E F G 

 

H I J 

 

K L 

Cluster 

Originating 

Patents 

Citing 

Patents 

From Same 

Cluster 

Percent 

(C/B) 

 

Matched 

Citing 

Patents* 

From 

Same 

Cluster* 

Percent 

(F/E) 

 

Control 

Patents† 

From Same 

Cluster 

Percent 

(I/H) 

 

Location 

Differential 

(G/J) t Statistic 

Framingham–Marlborough–Westborough, MA 323 3,498 104 2.97%  2,915 90 3.09%  2,915 2 0.07%  45.0 9.3 

Boston–Cambridge–Waltham–Woburn, MA 2,634 27,664 1,717 6.21%  23,126 1,470 6.36%  23,126 235 1.02%  6.3 30.8 

Silver Spring–Bethesda, MD–McLean, VA 367 3,424 89 2.60%  2,765 74 2.68%  2,765 10 0.36%  7.4 7.1 

Trenton–Princeton, NJ 889 9,022 260 2.88%  7,420 226 3.05%  7,420 15 0.20%  15.1 13.8 

Parsippany–Morristown–Union, NJ 1,710 14,567 358 2.46%  11,889 303 2.55%  11,889 78 0.66%  3.9 11.7 

Greenwich-Stamford, CT–Scarsdale, NY 1,205 11,218 141 1.26%  9,222 104 1.13%  9,222 31 0.34%  3.4 6.3 

Stratford–Milford-CT 235 1,484 12 0.81%  1,262 8 0.63%  1,262 1 0.08%  8.0 2.3 

Conshohocken–King of Prussia-West Chester, PA 539 2,352 68 2.89%  1,929 54 2.80%  1,929 7 0.36%  7.7 6.1 

Wilmington–New Castle, DE 624 3,501 72 2.06%  2,940 61 2.07%  2,940 6 0.20%  10.2 6.8 

                

All Five-Mile Clusters 8,526 76,730 2,821 3.68%  63,468 2,390 3.77%  63,468 385 0.61%  6.2 38.7 

        

 

                      

                
                                

Table 7b: 10-Mile Clusters in the Northeast corridor, Disaggregated Subclasses 

            Treatment Group   Control Group       

Column A B C D 

 

E F G 

 

H I J 

 

K L 

Cluster 

Originating 

Patents 

Citing 

Patents 

From Same 

Cluster 

Percent 

(C/B) 

 

Matched 

Citing 

Patents* 

From 

Same 

Cluster* 

Percent 

(F/E) 

 

Control 

Patents† 

From Same 

Cluster 

Percent 

(I/H) 

 

Location 

Differential 

(G/J) t Statistic 

Boston, MA 4,719 48,315 4,263 8.82%  40,317 3,612 8.96%  40,317 722 1.79%  5.0 45.7 

Washington, DC 926 9,741 327 3.36%  7,849 266 3.39%  7,849 42 0.54%  6.3 13.0 

New York, NY 7,768 67,982 4,738 6.97%  55,955 3,751 6.70%  55,955 1,426 2.55%  2.6 33.3 

Philadelphia, PA 1,594 9,028 409 4.53%  7,497 344 4.59%  7,497 41 0.55%  8.4 15.8 

                

All 10-Mile Clusters 15,007 135,066 9,737 7.21%  111,618 7,973 7.14%  111,618 2,231 2.00%  3.6 58.6 

Sources: NBER Patent Data Project and authors’ calculations.    

*The subset of citing patents for which we obtained a similar control patent. See text for details. 
†Control Patents are chosen to have the same six-digit technology classification as the citing patent, and their application date must be within a one-year window of the citing patent’s application date. These control patents are chosen with 

replacement sampling. We eliminate self-citations and do not allow controls to be drawn from patents assigned to the same firm to which the originating patent is assigned. 
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Table 8a: Five-Mile Clusters in California, Disaggregated Subclasses 

            Treatment Group   Control Group       

Column A B C D 

 

E F G 

 

H I J 

 

K L 

Cluster 

Originating 

Patents 

Citing 

Patents 

From Same 

Cluster 

Percent 

(C/B) 

 

Matched 

Citing 

Patents* 

From 

Same 

Cluster* 

Percent 

(F/E) 

 

Control 

Patents† 

From Same 

Cluster 

Percent 

(I/H) 

 

Location 

Differential 

(G/J) t Statistic 

San Diego 444 3,434 77 2.24%  2,887 54 1.87%  2,887 5 0.17%  10.8 6.4 

Los Angeles 454 3,646 104 2.85%  3,005 86 2.86%  3,005 2 0.07%  43.0 9.1 

Palo Alto–San Jose 11,318 145,471 26,684 18.34%  119,907 22,116 18.44%  119,907 4,974 4.15%  4.4 113.5 

Dublin–Pleasanton 283 3,899 127 3.26%  3,269 108 3.30%  3,269 4 0.12%  27.0 10.0 

                

All 5-Mile Clusters 12,499 156,450 26,992 17.25%  129,068 22,364 17.33%  129,068 4,985 3.86%  4.5 113.9 

        

 

                      

                

                                

Table 8b: 8-Mile Clusters in California, Disaggregated Subclasses 

            Treatment Group   Control Group       

Column A B C D 

 

E F G 

 

H I J 

 

K L 

Cluster 

Originating 

Patents 

Citing 

Patents 

From Same 

Cluster 

Percent 

(C/B) 

 

Matched 

Citing 

Patents* 

From 

Same 

Cluster* 

Percent 

(F/E) 

 

Control 

Patents† 

From Same 

Cluster 

Percent 

(I/H) 

 

Location 

Differential 

(G/J) t Statistic 

San Diego 2,099 20,079 970 4.83%  16,629 819 4.93%  16,629 159 0.96%  5.2 21.6 

Los Angeles 1,266 10,685 609 5.70%  8,897 484 5.44%  8,897 43 0.48%  11.3 19.7 

San Francisco 14,963 188,943 44,215 23.40%  155,861 36,534 23.44%  155,861 8,803 5.65%  4.2 145.6 

                

All 10-Mile Clusters 18,328 219,707 45,794 20.84%  181,387 37,837 20.86%  181,387 9,005 4.96%  4.2 146.9 

Sources: NBER Patent Data Project and authors’ calculations.   

*The subset of citing patents for which we obtained a similar control patent. See text for details. 
†Control Patents are chosen to have the same six-digit technology classification as the citing patent, and their application date must be within a one-year window of the citing patent’s application date. These control patents are chosen with 

replacement sampling. We eliminate self-citations and do not allow controls to be drawn from patents assigned to the same firm to which the originating patent is assigned. 
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Table 9a: Five-Mile Clusters in the Northeast corridor, Coarsened Exact Matching 

            Treatment Group   Control Group       

Column A B C D 

 

E F G 

 

H I J 

 

K L 

Cluster 

Originating 

Patents 

Citing 

Patents 

From Same 

Cluster 

Percent 

(C/B) 

 

Matched 

Citing 

Patents* 

From 

Same 

Cluster* 

Percent 

(F/E) 

 

Control 

Patents† 

From Same 

Cluster 

Percent 

(I/H) 

 

Location 

Differential 

(G/J) t Statistic 

Framingham–Marlborough–Westborough, MA 323 3,498 104 2.97%  2,845 80 2.81%  2,845 9 0.32%  8.9 7.6 

Boston–Cambridge–Waltham–Woburn, MA 2,634 27,664 1,717 6.21%  22,937 1,400 6.10%  22,937 284 1.24%  4.9 27.9 

Silver Spring–Bethesda, MD–McLean, VA 367 3,424 89 2.60%  2,779 69 2.48%  2,779 15 0.54%  4.6 6.0 

Trenton–Princeton, NJ 889 9,022 260 2.88%  7,453 207 2.78%  7,453 25 0.34%  8.3 12.1 

Parsippany–Morristown–Union, NJ 1,710 14,567 358 2.46%  11,912 282 2.37%  11,912 91 0.76%  3.1 10.0 

Greenwich–Stamford, CT–Scarsdale, NY 1,205 11,218 141 1.26%  9,277 109 1.17%  9,277 49 0.53%  2.2 4.8 

Stratford–Milford, CT 235 1,484 12 0.81%  1,228 11 0.90%  1,228 2 0.16%  5.5 2.5 

Conshohocken–King of Prussia–West Chester, PA 539 2,352 68 2.89%  1,964 53 2.70%  1,964 13 0.66%  4.1 5.0 

Wilmington–New Castle, DE 624 3,501 72 2.06%  2,940 53 1.80%  2,940 11 0.37%  4.8 5.3 

                

All 5-Mile Clusters 8,526 76,730 2,821 3.68%  63,335 2,264 3.57%  63,335 499 0.79%  4.5 34.1 

        

 

                      

                
                                

Table 9b: 10-Mile Clusters in the Northeast corridor, Coarsened Exact Matching 

            Treatment Group   Control Group       

Column A B C D 

 

E F G 

 

H I J 

 

K L 

Cluster 

Originating 

Patents 

Citing 

Patents 

From Same 

Cluster 

Percent 

(C/B) 

 

Matched 

Citing 

Patents* 

From 

Same 

Cluster* 

Percent 

(F/E) 

 

Control 

Patents† 

From Same 

Cluster 

Percent 

(I/H) 

 

Location 

Differential 

(G/J) t Statistic 

Boston, MA 4,719 48,315 4,263 8.82%  39,760 3,493 8.79%  39,760 896 2.25%  3.9 40.7 

Washington, DC 926 9,741 327 3.36%  7,851 250 3.18%  7,851 58 0.74%  4.3 11.1 

New York, NY 7,768 67,982 4,738 6.97%  55,989 3,706 6.62%  55,989 1,710 3.05%  2.2 27.9 

Philadelphia, PA 1,594 9,028 409 4.53%  7,603 327 4.30%  7,603 68 0.89%  4.8 13.3 

                

All 10-Mile Clusters 15,007 135,066 9,737 7.21%  111,203 7,776 6.99%  111,203 2,732 2.46%  2.8 50.7 

Sources: NBER Patent Data Project and authors’ calculations. 

*The subset of citing patents for which we obtained a similar control patent. See text for details. 
†Control patents are selected using the coarsened exact matching procedure Control patents must  have the same three-digit technology classification as the citing patent, and their application date must be within a one-year window of the 

citing patent’s application date. These control patents are chosen with replacement sampling. We eliminate self-citations and do not allow controls to be drawn from patents assigned to the same firm to which the originating patent is 

assigned. Control patents must have the same application year and three-digit technology classification as the treatment patents, in addition to having the same grant year and the number of citations that the treatment patent receives. 
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Table 10a: Five-Mile Clusters in California, Coarsened Exact Matching 

            Treatment Group   Control Group       

Column A B C D 

 

E F G 

 

H I J 

 

K L 

Cluster 

Originating 

Patents 

Citing 

Patents 

From Same 

Cluster 

Percent 

(C/B) 

 

Matched 

Citing 

Patents* 

From 

Same 

Cluster* 

Percent 

(F/E) 

 

Control 

Patents† 

From Same 

Cluster 

Percent 

(I/H) 

 

Location 

Differential 

(G/J) t Statistic 

San Diego 444 3,434 77 2.24%  2,811 58 2.06%  2,811 14 0.50%  4.1 5.2 

Los Angeles 454 3,646 104 2.85%  3,019 79 2.62%  3,019 5 0.17%  15.8 8.2 

Palo Alto–San Jose 11,318 145,471 26,684 18.34%  118,537 21,223 17.90%  118,537 8,962 7.56%  2.4 76.5 

Dublin–Pleasanton 283 3,899 127 3.26%  3,199 87 2.72%  3,199 9 0.28%  9.7 8.1 

                

All 5-Mile Clusters 12,499 156,450 26,992 17.25%  127,566 21,447 16.81%  127,566 8,990 7.05%  2.4 77.0 

        

 

                      

                

                                

Table 10b: 10-Mile Clusters in California, Coarsened Exact Matching 

            Treatment Group   Control Group       

Column A B C D 

 

E F G 

 

H I J 

 

K L 

Cluster 

Originating 

Patents 

Citing 

Patents 

From Same 

Cluster 

Percent 

(C/B) 

 

Matched 

Citing 

Patents* 

From 

Same 

Cluster* 

Percent 

(F/E) 

 

Control 

Patents† 

From Same 

Cluster 

Percent 

(I/H) 

 

Location 

Differential 

(G/J) t Statistic 

San Diego 2,099 20,079 970 4.83%  16,392 801 4.89%  16,392 335 2.04%  2.4 14.1 

Los Angeles 1,266 10,685 609 5.70%  8,915 457 5.13%  8,915 90 1.01%  5.1 16.1 

San Francisco 14,963 188,943 44,215 23.40%  154,195 35,457 22.99%  154,195 14,455 9.37%  2.5 104.5 

                

All 10-Mile Clusters 18,328 219,707 45,794 20.84%  179,502 36,715 20.45%  179,502 14,880 8.29%  2.5 105.5 

Source: NBER Patent Data Project and authors’ calculations. 

*The subset of citing patents for which we obtained a similar control patent. See text for details. 
†Control patents are selected using the coarsened exact matching procedure Control patents must  have the same three-digit technology classification as the citing patent, and their application date must be within a one-year window of the 

citing patent’s application date. These control patents are chosen with replacement sampling. We eliminate self-citations and do not allow controls to be drawn from patents assigned to the same firm to which the originating patent is 

assigned. Control patents must have the same application year and three-digit technology classification as the treatment patents, in addition to having the same grant year and the number of citations that the treatment patent receives. 
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Table 11
†
 

Northeast 

Cluster 

Name 

Coefficient on 

Originating Patent  
ˆ( )h   

Standard 

Errors 

Boston5A 2.82 0.1062*
 

Boston5B 1.5 0.0300* 

NY5A 2.17 0.0737* 

NY5B 1.26 0.0603* 

NY5C 0.8 0.0967* 

NY5D 2.26 0.3235* 

Philly5A 3.13 0.1321* 

Philly5B 2.28 0.1335* 

Boston10 1.37 0.0199* 

DC10 1.65 0.0652* 

NY10 0.79 0.0192* 

Philly10 2.13 0.0574* 

 Broad Regions  

NE5 0.77 0.0167* 

NE10 0.68 0.0113* 

 
California 

Cluster 

Name 

Coefficient on 

Originating Patent 

  ˆ( )h   

Standard 

Errors 

SD5 2.34 0.1251
*
 

LA5 2.52 0.1137
*
 

SF5A 1.06 0.0107
*
 

SF5B 2.81 0.1098
*
 

SD10 1.56 0.0381
*
 

LA10 2.06 0.0493
*
 

SF10 1.09 0.0093
*
 

Broad Regions 

CA5 1.01 0.0103
*
 

CA10 0.99 0.0086
*
 

†
The California regressions included 1,390,727 observations. 

   The Northeast corridor regressions included 1,444,272  

observations. Robust standard errors are reported.   

*Indicates significance at the 1 percent level. 
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Table 12: Summary of Location Differentials 

 Northeast  Corridor  California 

 
Five-Mile 

Cluster 

10-Mile 

Cluster 
 Five-Mile Cluster 

10-Mile 

Cluster 

      

Baseline 6.0 3.6  4.5 4.2 

      

STEM 4.2 3.3  4.6 4.6 

      

Disaggregated 6.2 3.6  4.5 4.2 

      

CEM 4.5 2.8  2.4 2.5 
†
Baseline results from column K in Tables 1 and 2; STEM results from column K in Tables 5 and 6; 

Disaggregated results from column K in Tables 7 and 8; CEM results from column K in Tables 9 and 10.
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Figure 1a: Northeast Corridor Core Clusters  

d = 5, 10 

Figure 1b: California Core Clusters 

d = 5, 10 

= 5-mile cluster 

= 10-mile cluster 
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Figure 3: Multiscale Core Clusters in Boston 

Figure 2: Multiscale Core Clusters in the San 

Francisco Bay Area 


