Generic placeholder image

Coronaviruses

Editor-in-Chief

ISSN (Print): 2666-7967
ISSN (Online): 2666-7975

Review Article

Herbal Medicines Used for the Management of COVID-19

Author(s): Virender Kumar*, Yogesh Kumar, Rajat Huria, Suryadev Kumar, Tarun Kalson, Deepak Jangra, Davinder Kumar and Bharti Mangla

Volume 4, Issue 1, 2023

Published on: 04 May, 2023

Article ID: e030423215402 Pages: 19

DOI: 10.2174/2666796704666230403101610

Abstract

A worldwide outbreak of respiratory illnesses has been caused by coronavirus disease (COVID-19). Traditional healers have used herbs and dietary plants for centuries to treat various conditions. This review discusses the prevention of COVID-19, multiple herbs used in the treatment of COVID-19, and their future perspectives. Various databases, such as PubMed, Web of Science, Scopus, Medline, and Google Scholar, were searched for articles related to herbal products' antiviral effects using different keywords: herbal, SARS-CoV-2, plant-derived drugs, COVID-19, coronavirus, etc. Herbal treatment has been used as a contemporary alternative medicine for COVID-19. By inhibiting the replication and entry of SARS-CoV-2 into host cells, herbs can inhibit the pathogenesis of COVID-19. This article discusses COVID-19 infection, its salient features, spread, the life cycle of coronavirus, active response to coronavirus, proposed treatment, and herbal drugs used in the prevention and treatment of COVID-19.

Keywords: Herbal, COVID-19, SARS-CoV-2, plant-derived drugs, coronavirus, phototherapeutics, pandemic, global health emergency.

Graphical Abstract
[1]
Jebril, N. World Health Organization Declared a Pandemic Public Health Menace: A Systematic Review of the Coronavirus Disease 2019 “COVID-19.” SSRN Electronic Journal, 2020 Apr 1 Available from: https://papers.ssrn.com/abstract=3566298
[2]
Agostini, M.L.; Andres, E.L.; Sims, A.C. Coronavirus susceptibility to the antiviral remdesivir (GS-5734) is mediated by the viral polymerase and the proofreading exoribonuclease. MBio, 2018, 9(2), e00221-e18.
[http://dx.doi.org/10.1128/mBio.00221-18] [PMID: 29511076]
[3]
Vellingiri, B.; Jayaramayya, K.; Iyer, M. COVID-19: A promising cure for the global panic. Sci. Total Environ., 2020, 725, 138277.
[http://dx.doi.org/10.1016/j.scitotenv.2020.138277] [PMID: 32278175]
[4]
Luo, L.; Jiang, J.; Wang, C. Analysis on herbal medicines utilized for treatment of COVID-19. Acta Pharm. Sin. B, 2020, 10(7), 1192.
[5]
Aucoin, M.; Cardozo, V.; McLaren, M.D. A systematic review on the effects of Echinacea supplementation on cytokine levels: Is there a role in COVID-19? Metabol Open, 2021, 11, 100115.
[6]
Ang, L.; Song, E.; Lee, H.W.; Lee, M.S. Herbal medicine for the treatment of coronavirus disease 2019 (COVID-19): A systematic review and meta-analysis of randomized controlled trials. J. Clin. Med., 2020, 9(5), 1583.
[http://dx.doi.org/10.3390/jcm9051583] [PMID: 32456123]
[7]
Duan, X.H.; Liu, L.S.; Lei, N.L.; Lin, Q.; Wang, W.L.; Yan, H.W. The effects and mechanism of yinqiao powder on upper respiratory tract infection. Int. J. Biotechnol. Wellness Ind., 2015, 4(2), 57-60.
[http://dx.doi.org/10.6000/1927-3037.2015.04.02.2]
[8]
Aldwihi, L.A.; Khan, S.I.; Alamri, F.F. Patients’ behavior regarding dietary or herbal supplements before and during COVID-19 in Saudi Arabia. Int. J. Environ. Res. Public Health, 2021, 18(10), 5086.
[http://dx.doi.org/10.3390/ijerph18105086] [PMID: 34064950]
[9]
Huang, Y.; Yang, C. Structural and functional properties of SARS-CoV-2 spike protein: Potential antivirus drug development for COVID-19. Acta Pharmacol. Sin., 2020, 41(9), 1141-1149.
[10]
Xu, J.; Zhang, Y. Traditional Chinese medicine treatment of COVID-19. Complement. Ther. Clin. Pract., 2020, 39, 101165.
[http://dx.doi.org/10.1016/j.ctcp.2020.101165] [PMID: 32379692]
[11]
Cinatl, J.; Morgenstern, B.; Bauer, G.; Chandra, P.; Rabenau, H.; Doerr, H.W. Glycyrrhizin, an active component of liquorice roots, and replication of SARS-associated coronavirus. Lancet, 2003, 361(9374), 2045-2046.
[http://dx.doi.org/10.1016/S0140-6736(03)13615-X] [PMID: 12814717]
[12]
Murck, H. Symptomatic protective action of glycyrrhizin (Licorice) in COVID-19 Infection? Front. Immunol., 2020, 11, 1239.
[http://dx.doi.org/10.3389/fimmu.2020.01239] [PMID: 32574273]
[13]
Hoever, G.; Baltina, L.; Michaelis, M. Antiviral activity of glycyrrhizic acid derivatives against SARS-coronavirus. J. Med. Chem., 2005, 48(4), 1256-1259.
[http://dx.doi.org/10.1021/jm0493008] [PMID: 15715493]
[14]
Sah, P.; Agarwal, D.; Garg, S.P. Isolation and identification of furocoumarins from the seeds of Psoralea corylifolia Linn. Indian J. Pharm. Sci., 2006, 68(6), 768.
[http://dx.doi.org/10.4103/0250-474X.31012]
[15]
Demeke, C.A.; Woldeyohanins, A.E.; Kifle, Z.D. Herbal medicine use for the management of COVID-19: A review article. Metabol Open, 2021, 12, 100141.
[16]
Kim, D.W.; Seo, K.H.; Curtis-Long, M.J. Phenolic phytochemical displaying SARS-CoV papain-like protease inhibition from the seeds of Psoralea corylifolia. J. Enzyme Inhib. Med. Chem., 2014, 29(1), 59-63.
[http://dx.doi.org/10.3109/14756366.2012.753591] [PMID: 23323951]
[17]
Chen, Q.; Lan, H.Y.; Peng, W. Isatis indigotica: A review of phytochemistry, pharmacological activities and clinical applications. J. Pharm. Pharmacol., 2021, 73(9), 1137-1150.
[http://dx.doi.org/10.1093/jpp/rgab014] [PMID: 33779758]
[18]
Phytotherapy Form - Anvisa. Available from: http://antigo.anvisa. gov.br/en_US/formulario-fitoterapico
[19]
Silveira, D.; Prieto-Garcia, J.M.; Boylan, F. COVID-19: Is there evidence for the use of herbal medicines as adjuvant symptomatic therapy? Front. Pharmacol., 2020, 11, 581840.
[http://dx.doi.org/10.3389/fphar.2020.581840] [PMID: 33071794]
[20]
A review on biological activities of common mallow (Malva sylvestris L.). Available from: https://www.researchgate.net/publication/308779402_A_REVIEW_ON_BIOLOGICAL_ACTIVITIES_OF_ COMMON_MALLOW_MALVA_SYLVESTRIS_L
[21]
Cutillo, F.; Dabrosca, B.; Dellagreca, M.; Fiorentino, A.; Zarrelli, A. Terpenoids and phenol derivatives from Malva silvestris. Phytochemistry, 2006, 67(5), 481-485.
[http://dx.doi.org/10.1016/j.phytochem.2005.11.023] [PMID: 16403542]
[22]
Nosalova, G.; Sutovska, M.; Mokry, J.; Kardosova, A.; Capek, P.; Khan, M.T. Efficacy of herbal substances according to cough reflex. Minerva Biotecnol., 2005, 17(3), 141.
[23]
Dorsch, W.; Ring, J. Anti-inflammatory substances from onions could be an option for treatment of COVID-19 - a hypothesis. Allergo J., 2020, 29(8), 30-31.
[http://dx.doi.org/10.1007/s15007-020-2644-9] [PMID: 33343096]
[24]
Khubber, S.; Hashemifesharaki, R.; Mohammadi, M.; Gharibzahedi, S.M.T. Garlic (Allium sativum L.): A potential unique therapeutic food rich in organosulfur and flavonoid compounds to fight with COVID-19. Nutr. J., 2020, 19(1), 124.
[http://dx.doi.org/10.1186/s12937-020-00643-8] [PMID: 33208167]
[25]
Donma, M.M.; Donma, O. The effects of Allium sativum on immunity within the scope of COVID-19 infection. Med. Hypotheses, 2020, 144, 109934.
[http://dx.doi.org/10.1016/j.mehy.2020.109934] [PMID: 32512493]
[26]
Rehman, S.; Choe, K.; Yoo, H. Review on a traditional herbal medicine, Eurycoma longifolia jack (Tongkat Ali): Its traditional uses, chemistry, evidence-based pharmacology and toxicology. Molecules, 2016, 21(3), 331.
[http://dx.doi.org/10.3390/molecules21030331] [PMID: 26978330]
[27]
George, A.; Suzuki, N.; Abas, A.B. Immunomodulation in middle-aged humans via the ingestion of physta® standardized root water extract of Eurycoma longifolia jack-a randomized, double-blind, placebo-controlled, parallel study. Phytother. Res., 2016, 30(4), 627-635.
[http://dx.doi.org/10.1002/ptr.5571] [PMID: 26816234]
[28]
Tran, T.V.A.; Malainer, C.; Schwaiger, S. NF-κB Inhibitors from Eurycoma longifolia. J. Nat. Prod., 2014, 77(3), 483-488.
[http://dx.doi.org/10.1021/np400701k] [PMID: 24467387]
[29]
Ruan, J.; Li, Z.; Zhang, Y. Bioactive constituents from the roots of Eurycoma longifolia. Molecules, 2019, 24(17), 3157.
[http://dx.doi.org/10.3390/molecules24173157] [PMID: 31480226]
[30]
Acute, sub acute and subchronic 90-days toxicity of Eurycoma longifolia aqueous extract (physta) in wistar rats research article | semantic scholar. Available from: https://www.semanticscholar.org/paper/ACUTE%2C-SUB-ACUTE-AND-SUBCHRONIC-90-DAYS-TOXICITY-OF-Choudhary-Bommu/e384e2e0f6bf8b8db5266baa0d34bab924a0d5ad
[31]
Barakat, E.M.F.; El Wakeel, L.M.; Hagag, R.S. Effects of Nigella sativa on outcome of hepatitis C in Egypt. World J. Gastroenterol., 2013, 19(16), 2529-2536.
[http://dx.doi.org/10.3748/wjg.v19.i16.2529] [PMID: 23674855]
[32]
Salem, A.M.; Bamosa, A.O.; Qutub, H.O. Effect of Nigella sativa supplementation on lung function and inflammatory mediators in partly controlled asthma: A randomized controlled trial. Ann. Saudi Med., 2017, 37(1), 64-71.
[http://dx.doi.org/10.5144/0256-4947.2017.64] [PMID: 28151459]
[33]
Zhai, Z.; Liu, Y.; Wu, L. Enhancement of innate and adaptive immune functions by multiple Echinacea species. J. Med. Food, 2007, 10(3), 423-434.
[http://dx.doi.org/10.1089/jmf.2006.257] [PMID: 17887935]
[34]
Vaidya, A.D.B.; Devasagayam, T.P.A. Current status of herbal drugs in India: An overview. J. Clin. Biochem. Nutr., 2007, 41(1), 1-11.
[http://dx.doi.org/10.3164/jcbn.2007001] [PMID: 18392106]
[35]
Ven Murthy, M.R. Scientific basis for the use of indian ayurvedic medicinal plants in the treatment of neurodegenerative disorders: 1. Ashwagandha. Cent. Nerv. Syst. Agents Med. Chem., 2010, 10(3), 238-246.
[http://dx.doi.org/10.2174/1871524911006030238] [PMID: 20528765]
[36]
Minhas, U.; Minz, R.; Bhatnagar, A. Prophylactic effect of Withania somnifera on inflammation in a non-autoimmune prone murine model of lupus. Drug Discov. Ther., 2011, 5(4), 195-201.
[http://dx.doi.org/10.5582/ddt.2011.v5.4.195] [PMID: 22466301]
[37]
Sheeja, K.; Kuttan, G. Modulation of natural killer cell activity, antibody-dependent cellular cytotoxicity, and antibody-dependent complement-mediated cytotoxicity by andrographolide in normal and Ehrlich ascites carcinoma-bearing mice. Integr. Cancer Ther., 2007, 6(1), 66-73.
[http://dx.doi.org/10.1177/1534735406298975] [PMID: 17351028]
[38]
Davis, L.; Kuttan, G. Effect of Withania somnifera on cytokine production in normal and cyclophosphamide treated mice. Immunopharmacol. Immunotoxicol., 1999, 21(4), 695-703.
[http://dx.doi.org/10.3109/08923979909007135] [PMID: 10584205]
[39]
Huber, V.C.; McKeon, R.M.; Brackin, M.N. Distinct contributions of vaccine-induced immunoglobulin G1 (IgG1) and IgG2a antibodies to protective immunity against influenza. Clin. Vaccine Immunol., 2006, 13(9), 981-990.
[http://dx.doi.org/10.1128/CVI.00156-06] [PMID: 16960108]
[40]
Chowdhury, P. in silico investigation of phytoconstituents from Indian medicinal herb ‘Tinospora cordifolia (giloy)’ against SARS-CoV-2 (COVID-19) by molecular dynamics approach. J. Biomol. Struct. Dyn., 2021, 39(17), 6792-6809.
[http://dx.doi.org/10.1080/07391102.2020.1803968] [PMID: 32762511]
[41]
Balkrishna, A.; Pokhrel, S.; Varshney, A. Tinocordiside from Tinospora cordifolia (Giloy) May curb SARS-CoV-2 contagion by disrupting the electrostatic interactions between Host ACE2 and viral S-protein receptor binding domain. Comb. Chem. High Throughput Screen., 2021, 24(10), 1795-1802.
[http://dx.doi.org/10.2174/18755402MTExEMzQt1] [PMID: 33172372]
[42]
Sagar, V.; Kumar, A.H.S. Efficacy of natural compounds from Tinospora cordifolia against SARS-CoV-2 protease, surface glycoprotein and RNA polymerase. Virology, 2020, 1-10.
[43]
Al Hroob, A.M.; Abukhalil, M.H.; Alghonmeen, R.D.; Mahmoud, A.M. Ginger alleviates hyperglycemia-induced oxidative stress, inflammation and apoptosis and protects rats against diabetic nephropathy. Biomed. Pharmacother., 2018, 106, 381-389.
[http://dx.doi.org/10.1016/j.biopha.2018.06.148] [PMID: 29966984]
[44]
Tanaka, K.; Arita, M.; Sakurai, H.; Ono, N.; Tezuka, Y. Analysis of chemical properties of edible and medicinal ginger by metabolomics approach. BioMed Res. Int., 2015, 2015, 671058.
[http://dx.doi.org/10.1155/2015/671058]
[45]
Goswami, D; Kumar, M; Ghosh, SK; Das, A Natural product compounds in Alpinia officinarum and ginger are potent SARS-CoV-2 papain-like protease inhibitors. 2020.
[http://dx.doi.org/10.26434/chemrxiv.12071997.v1]
[46]
Haridas, M.; Sasidhar, V.; Nath, P.; Abhithaj, J.; Sabu, A.; Rammanohar, P. Compounds of Citrus medica and Zingiber officinale for COVID-19 inhibition: in silico evidence for cues from Ayurveda. Futur J Pharm Sci, 2021, 7(1), 13.
[47]
López-Lázaro, M. Anticancer and carcinogenic properties of curcumin: Considerations for its clinical development as a cancer chemopreventive and chemotherapeutic agent. Mol. Nutr. Food Res., 2008, 52(SUPPL. 1), S103-S127.
[http://dx.doi.org/10.1002/mnfr.200700238]
[48]
Mounce, B.C.; Cesaro, T.; Carrau, L.; Vallet, T.; Vignuzzi, M. Curcumin inhibits Zika and Chikungunya virus infection by inhibiting cell binding. Antiviral Res., 2017, 142, 148-157.
[http://dx.doi.org/10.1016/j.antiviral.2017.03.014] [PMID: 28343845]
[49]
Maurya, V.K.; Kumar, S.; Prasad, A.K.; Bhatt, M.L.B.; Saxena, S.K. Structure-based drug designing for potential antiviral activity of selected natural products from Ayurveda against SARS-CoV-2 spike glycoprotein and its cellular receptor. Virusdisease, 2020, 31(2), 179-193.
[http://dx.doi.org/10.1007/s13337-020-00598-8] [PMID: 32656311]
[50]
Hasanzadeh, S.; Read, M.I.; Bland, A.R.; Majeed, M.; Jamialahmadi, T.; Sahebkar, A. Curcumin: An inflammasome silencer. Pharmacol. Res., 2020, 159, 104921.
[http://dx.doi.org/10.1016/j.phrs.2020.104921] [PMID: 32464325]
[51]
Ibrahim, I.M.; Abdelmalek, D.H.; Elfiky, A.A. GRP78: A cell’s response to stress. Life Sci., 2019, 226, 156-163.
[http://dx.doi.org/10.1016/j.lfs.2019.04.022] [PMID: 30978349]
[52]
Ibrahim, I.M.; Abdelmalek, D.H.; Elshahat, M.E.; Elfiky, A.A. COVID-19 spike-host cell receptor GRP78 binding site prediction. J. Infect., 2020, 80(5), 554-562.
[http://dx.doi.org/10.1016/j.jinf.2020.02.026] [PMID: 32169481]
[53]
Kar, P.; Sharma, N.R.; Singh, B.; Sen, A.; Roy, A. Natural compounds from Clerodendrum spp. as possible therapeutic candidates against SARS-CoV-2: An in silico investigation. J. Biomol. Struct. Dyn., 2021, 39(13), 4774-4785.
[http://dx.doi.org/10.1080/07391102.2020.1780947] [PMID: 32552595]
[54]
Gautam, S.; Gautam, A.; Chhetri, S.; Bhattarai, U. Immunity against COVID-19: Potential role of Ayush Kwath. J. Ayurveda Integr. Med., 2022, 13(1), 100350.
[http://dx.doi.org/10.1016/j.jaim.2020.08.003] [PMID: 32837101]
[55]
Stohs, S.J.; Hartman, M.J. Review of the safety and efficacy of Moringa oleifera. Phytother. Res., 2015, 29(6), 796-804.
[http://dx.doi.org/10.1002/ptr.5325] [PMID: 25808883]
[56]
Vergara-Jimenez, M.; Almatrafi, M.; Fernandez, M. Bioactive components in Moringa oleifera leaves protect against chronic disease. Antioxidants, 2017, 6(4), 91.
[http://dx.doi.org/10.3390/antiox6040091] [PMID: 29144438]
[57]
Omodanisi, E.; Aboua, Y.; Oguntibeju, O. Assessment of the anti-hyperglycaemic, anti-inflammatory and antioxidant activities of the methanol extract of Moringa oleifera in diabetes-induced nephrotoxic male wistar rats. Molecules, 2017, 22(4), 439.
[http://dx.doi.org/10.3390/molecules22040439] [PMID: 28333074]
[58]
Computational Identification of Drug Lead Compounds for COVID-19 from Moringa oleifera. ChemRxiv Home, 2020.
[59]
Mathpal, S.; Sharma, P.; Joshi, T.; Joshi, T.; Pande, V.; Chandra, S. Screening of potential bio-molecules from Moringa olifera against SARS-CoV-2 main protease using computational approaches. J. Biomol. Struct. Dyn., 2021, 1-12.
[PMID: 34151733]
[60]
Cohen, M. Tulsi - Ocimum sanctum: A herb for all reasons. J. Ayurveda Integr. Med., 2014, 5(4), 251-259.
[http://dx.doi.org/10.4103/0975-9476.146554] [PMID: 25624701]
[61]
Mohapatra, PK; Chopdar, KS; Dash, GC; Raval, MK In silico screening of phytochemicals of Ocimum sanctum against main protease of SARS-CoV-2. 2020.
[http://dx.doi.org/10.26434/chemrxiv.12599915.v1]
[63]
Bezerra, D.P.; Pessoa, C.; de Moraes, M.O.; Saker-Neto, N.; Silveira, E.R.; Costa-Lotufo, L.V. Overview of the therapeutic potential of piplartine (piperlongumine). Eur. J. Pharm. Sci., 2013, 48(3), 453-463.
[http://dx.doi.org/10.1016/j.ejps.2012.12.003] [PMID: 23238172]
[64]
Gagat, M.; Hałas-Wiśniewska, M.; Zielińska, W.; Izdebska, M.; Grzanka, D.; Grzanka, A. The effect of piperlongumine on endothelial and lung adenocarcinoma cells with regulated expression of profilin-1. OncoTargets Ther., 2018, 11, 8275-8292.
[http://dx.doi.org/10.2147/OTT.S183191] [PMID: 30538497]
[65]
Avila-Carrasco, L.; Majano, P.; Sánchez-Toméro, J.A. Natural plants compounds as modulators of epithelial-to-mesenchymal transition. Front. Pharmacol., 2019, 10, 715.
[http://dx.doi.org/10.3389/fphar.2019.00715] [PMID: 31417401]
[66]
Hijikata, A.; Shionyu, C.; Nakae, S. Current status of structure-based drug repurposing against COVID-19 by targeting SARS-CoV-2 proteins. Biophys. Physicobiol., 2021, 18(0), 226-240.
[http://dx.doi.org/10.2142/biophysico.bppb-v18.025] [PMID: 34745807]
[67]
Govindarajan, R.; Singh, D.P.; Rawat, A.K.S. High-performance liquid chromatographic method for the quantification of phenolics in ‘Chyavanprash’ a potent Ayurvedic drug. J. Pharm. Biomed. Anal., 2007, 43(2), 527-532.
[http://dx.doi.org/10.1016/j.jpba.2006.08.005] [PMID: 16971083]
[68]
Poltanov, E.A.; Shikov, A.N.; Dorman, H.J.D. Chemical and antioxidant evaluation of Indian gooseberry (Emblica officinalis gaertn., syn. Phyllanthus emblica L.) supplements. Phytother. Res., 2009, 23(9), 1309-1315.
[http://dx.doi.org/10.1002/ptr.2775] [PMID: 19172666]
[69]
Wu, C.; Liu, Y.; Yang, Y. Analysis of therapeutic targets for SARS-CoV-2 and discovery of potential drugs by computational methods. Acta Pharm. Sin. B, 2020, 10(5), 766-788.
[http://dx.doi.org/10.1016/j.apsb.2020.02.008] [PMID: 32292689]
[70]
Tahir ul Qamar M, Alqahtani SM, Alamri MA, Chen LL. Structural basis of SARS-CoV-2 3CLpro and anti-COVID-19 drug discovery from medicinal plants. J. Pharm. Anal., 2020, 10(4), 313-319.
[http://dx.doi.org/10.1016/j.jpha.2020.03.009] [PMID: 32296570]
[71]
Saha, S.; Nosál’ová, G.; Ghosh, D.; Flešková, D.; Capek, P.; Ray, B. Structural features and in vivo antitussive activity of the water extracted polymer from Glycyrrhiza glabra. Int. J. Biol. Macromol., 2011, 48(4), 634-638.
[http://dx.doi.org/10.1016/j.ijbiomac.2011.02.003] [PMID: 21329720]
[72]
Sidor, A.; Gramza-Michałowska, A. Advanced research on the antioxidant and health benefit of elderberry (Sambucus nigra) in food – a review. J. Funct. Foods, 2015, 18, 941-958.
[http://dx.doi.org/10.1016/j.jff.2014.07.012]
[73]
Porter, R.S.; Bode, R.F. A review of the antiviral properties of black elder (Sambucus nigra L.) products. Phytother. Res., 2017, 31(4), 533-554.
[http://dx.doi.org/10.1002/ptr.5782] [PMID: 28198157]
[74]
Hawkins, J.; Baker, C.; Cherry, L.; Dunne, E. Black elderberry (Sambucus nigra) supplementation effectively treats upper respiratory symptoms: A meta-analysis of randomized, controlled clinical trials. Complement. Ther. Med., 2019, 42, 361-365.
[http://dx.doi.org/10.1016/j.ctim.2018.12.004] [PMID: 30670267]
[75]
Viapiana, A.; Wesolowski, M. The phenolic contents and antioxidant activities of infusions of Sambucus nigra L. Plant Foods Hum. Nutr., 2017, 72(1), 82-87.
[http://dx.doi.org/10.1007/s11130-016-0594-x] [PMID: 28084608]
[76]
Mahady, GB; Fong, HHS; Farnsworth, NR Botanical dietary supplements: Quality, safety and efficacy; Swets & Zeitlinger Publishers, 2001. Available from: https://www.routledge.com/Botanical-Dietary-Supplements/Mahady-Fong-Farnsworth/p/book/9789026518553
[77]
He, L.X.; Ren, J.W.; Liu, R. Ginseng (Panax ginseng Meyer) oligopeptides regulate innate and adaptive immune responses in mice via increased macrophage phagocytosis capacity, NK cell activity and Th cells secretion. Food Funct., 2017, 8(10), 3523-3532.
[http://dx.doi.org/10.1039/C7FO00957G] [PMID: 28875201]
[78]
Bai, L.; Gao, J.; Wei, F.; Zhao, J.; Wang, D.; Wei, J. Therapeutic potential of ginsenosides as an adjuvant treatment for diabetes. Front. Pharmacol., 2018, 9(MAY), 423.
[http://dx.doi.org/10.3389/fphar.2018.00423] [PMID: 29765322]
[79]
Zhang, J.; Li, Q.; Shao, Q.; Song, J.; Zhou, B.; Shu, P. Effects of panax notoginseng saponin on the pathological ultrastructure and serum IL‐6 and IL‐8 in pulmonary fibrosis in rabbits. J. Cell. Biochem., 2018, 119(10), 8410-8418.
[http://dx.doi.org/10.1002/jcb.27045] [PMID: 29932250]
[80]
Schwager, J.; Richard, N.; Fowler, A.; Seifert, N.; Raederstorff, D. Carnosol and related substances modulate chemokine and cytokine production in macrophages and chondrocytes. Molecules, 2016, 21(4), 465.
[http://dx.doi.org/10.3390/molecules21040465] [PMID: 27070563]
[81]
Keshavarzi, Z.; Shakeri, F.; Barreto, G.E.; Bibak, B.; Sathyapalan, T.; Sahebkar, A. Medicinal plants in traumatic brain injury: Neuroprotective mechanisms revisited. Biofactors, 2019, 45(4), 517-535.
[http://dx.doi.org/10.1002/biof.1516] [PMID: 31206893]
[82]
Gupta, S.C.; Prasad, S.; Tyagi, A.K.; Kunnumakkara, A.B.; Aggarwal, B.B. Neem (Azadirachta indica): An indian traditional panacea with modern molecular basis. Phytomedicine, 2017, 34, 14-20.
[http://dx.doi.org/10.1016/j.phymed.2017.07.001] [PMID: 28899496]
[83]
Habluetzel, A.; Pinto, B.; Tapanelli, S. Effects of Azadirachta indica seed kernel extracts on early erythrocytic schizogony of Plasmodium berghei and pro-inflammatory response in inbred mice. Malar. J., 2019, 18(1), 35.
[http://dx.doi.org/10.1186/s12936-019-2671-8] [PMID: 30736813]
[84]
Borkotoky, S.; Banerjee, M. A computational prediction of SARS-CoV-2 structural protein inhibitors from Azadirachta indica (Neem). J. Biomol. Struct. Dyn., 2021, 39(11), 4111-4121.
[http://dx.doi.org/10.1080/07391102.2020.1774419] [PMID: 32462988]
[85]
Mengist, H.M.; Dilnessa, T.; Jin, T. Structural basis of potential inhibitors targeting SARS-CoV-2 main protease. Front Chem., 2021, 9, 622898.
[http://dx.doi.org/10.3389/fchem.2021.622898] [PMID: 33889562]
[86]
Baildya, N.; Khan, A.A.; Ghosh, N.N.; Dutta, T.; Chattopadhyay, A.P. Screening of potential drug from Azadirachta Indica (Neem) extracts for SARS-CoV-2: An insight from molecular docking and MD-simulation studies. J. Mol. Struct., 2021, 1227, 129390.
[http://dx.doi.org/10.1016/j.molstruc.2020.129390] [PMID: 33041371]
[87]
Kunnumakkara, A.B.; Banik, K.; Bordoloi, D. Googling the guggul (Commiphora and Boswellia) for prevention of chronic diseases. Front. Pharmacol., 2018, 9AUG, 686.
[http://dx.doi.org/10.3389/fphar.2018.00686] [PMID: 30127736]
[88]
Yang, I.J.; Lee, D.U.; Shin, H.M. Anti-inflammatory and antioxidant effects of coumarins isolated from Foeniculum vulgare in lipopolysaccharide-stimulated macrophages and 12-O-tetradecanoylphorbol-13-acetate-stimulated mice. Immunopharmacol. Immunotoxicol., 2015, 37(3), 308-317.
[http://dx.doi.org/10.3109/08923973.2015.1038751] [PMID: 25990850]
[89]
Zhang, S.; Chen, X.; Devshilt, I. Fennel main constituent, trans anethole treatment against LPS induced acute lung injury by regulation of Th17/Treg function. Mol. Med. Rep., 2018, 18(2), 1369-1376.
[http://dx.doi.org/10.3892/mmr.2018.9149] [PMID: 29901094]
[90]
Momoh, M.A.; Muhamed, U.; Agboke, A.A.; Akpabio, E.I.; Osonwa, U.E. Immunological effect of aqueous extract of Vernonia amygdalina and a known immune booster called immunace® and their admixtures on HIV/AIDS clients: A comparative study. Asian Pac. J. Trop. Biomed., 2012, 2(3), 181-184.
[http://dx.doi.org/10.1016/S2221-1691(12)60038-0] [PMID: 23569894]
[91]
Onasanwo, S.A.; Oyebanjo, O.T.; Ajayi, A.M.; Olubori, M.A. Anti-nociceptive and anti-inflammatory potentials of Vernoniaamygdalina leaf extract via reductions of leucocyte migration and lipid peroxidation. J. Intercult. Ethnopharmacol., 2017, 6(2), 192-198.
[PMID: 28512601]
[92]
Asante, D.B.; Henneh, I.T.; Acheampong, D.O. Anti-inflammatory, anti-nociceptive and antipyretic activity of young and old leaves of Vernonia amygdalina. Biomed. Pharmacother., 2019, 111, 1187-1203.
[http://dx.doi.org/10.1016/j.biopha.2018.12.147] [PMID: 30841432]
[93]
Beigoli, S.; Behrouz, S.; Memar Zia, A. Effects of Allium cepa and its constituents on respiratory and allergic disorders: A comprehensive review of experimental and clinical evidence. Evid. Based Complement. Alternat. Med., 2021, 2021, 5554259.
[http://dx.doi.org/10.1155/2021/5554259]
[94]
Ghosal, S.; Vishwakarma, R.A. Tinocordiside, a new rearranged cadinane sesquiterpene glycoside from Tinospora cordifolia. J. Nat. Prod., 1997, 60(8), 839-841.
[http://dx.doi.org/10.1021/np970169z]
[95]
Mao, Q.Q.; Xu, X.Y.; Cao, S.Y. Bioactive compounds and bioactivities of ginger (Zingiber officinale Roscoe). Foods, 2019, 8(6), 185.
[http://dx.doi.org/10.3390/foods8060185] [PMID: 31151279]
[96]
Wen, C.C.; Kuo, Y.H.; Jan, J.T. Specific plant terpenoids and lignoids possess potent antiviral activities against severe acute respiratory syndrome coronavirus. J. Med. Chem., 2007, 50(17), 4087-4095.
[http://dx.doi.org/10.1021/jm070295s] [PMID: 17663539]
[97]
Prasanth, D.S.N.B.K.; Murahari, M.; Chandramohan, V.; Panda, S.P.; Atmakuri, L.R.; Guntupalli, C. In silico identification of potential inhibitors from Cinnamon against main protease and spike glycoprotein of SARS-CoV-2. J. Biomol. Struct. Dyn., 2021, 39(13), 4618-4632.
[http://dx.doi.org/10.1080/07391102.2020.1779129] [PMID: 32567989]
[98]
Anwar, F.; Latif, S.; Ashraf, M.; Gilani, A.H. Moringa oleifera: A food plant with multiple medicinal uses. Phytother. Res., 2007, 21(1), 17-25.
[http://dx.doi.org/10.1002/ptr.2023] [PMID: 17089328]
[99]
Manjudevi, M; Thirugnanasampandan, R; Vishnupsiya, B; Rammath, MG In vitro propagation of Ocimum sanctum Linn., Ocimum canum Sims., and Ocimum tenuiflorum Linn., and evaluation of antioxidant, MMP-9 down regulation of eugenol and camphor. S Afr J Bot, 2022, 151(Part B), 208-17.
[100]
Damanhouri, Z.A.; Ahmad, A. A review on therapeutic potential of piper nigrum L. (Black Pepper): The king of spices. Med. Aromat. Plants, 2014, 3(3), 161. https://www.longdom.org/open-access/a-review-on-therapeutic-potential-of-piper-nigrum-l-black-pepper-the-king-of-spices-2167-0412.1000161.pdf
[101]
Natesh, J.; Mondal, P.; Penta, D.; Abdul Salam, A.A.; Meeran, S.M. Culinary spice bioactives as potential therapeutics against SARS-CoV-2: Computational investigation. Comput. Biol. Med., 2021, 128, 104102.
[http://dx.doi.org/10.1016/j.compbiomed.2020.104102] [PMID: 33190011]
[102]
Kim, N.; Do, J.; Bae, J. Piperlongumine inhibits neuroinflammation via regulating NF-κB signaling pathways in lipopolysaccharide-stimulated BV2 microglia cells. J. Pharmacol. Sci., 2018, 137(2), 195-201.
[http://dx.doi.org/10.1016/j.jphs.2018.06.004] [PMID: 29970291]
[103]
Anton, A.M.; Pintea, A.; Rugina, D.; Diaconeasa, Z. Preliminary studies on the chemical characterization and antioxidant capacity of polyphenols from Sambucus sp. Dig. J. Nanomater. Biostruct., 2013, 8(3), 973-980.

© 2024 Bentham Science Publishers | Privacy Policy