Generic placeholder image

Current Organocatalysis

Editor-in-Chief

ISSN (Print): 2213-3372
ISSN (Online): 2213-3380

Research Article

The Effect of Dicarboxylic Acid Catalyst Structure on Hydrolysis of Cellulose Model Compound D-Cellobiose in Water

Author(s): Harshica Fernando and Ananda S. Amarasekara *

Volume 9, Issue 2, 2022

Published on: 12 January, 2022

Page: [163 - 171] Pages: 9

DOI: 10.2174/2213337208666211129090444

Price: $65

Abstract

Background: Polycarboxylic acids are of interest as simple mimics for cellulase enzyme- catalyzed depolymerization of cellulose. In this study, DFT calculations were used to investigate the effect of structure on dicarboxylic acid organo-catalyzed hydrolysis of cellulose model compound D-cellobiose to D-glucose.

Methods: Binding energy of the complex formed between D-cellobiose and acid (Ebind), as well as glycosidic oxygen to dicarboxylic acid closest acidic H distance, were studied as key parameters affecting the turn over frequency of hydrolysis in water.

Results: α-D-cellobiose - dicarboxylic acid catalyst down face approach showed high Ebind values for five of the six acids studied, indicating the favorability of the down face approach. Maleic, cis-1,2-cyclohexane dicarboxylic, and phthalic acids with the highest catalytic activities showed glycosidic oxygen to dicarboxylic acid acidic H distances 3.5-3.6 Å in the preferred configuration.

Conclusion: The high catalytic activities of these acids may be due to the rigid structure, where acid groups are held in a fixed geometry.

Keywords: Cellobiose, polycarboxylic acids, glucose, hydrolysis, hydrogen-bonding, DFT calculations.

Graphical Abstract
[1]
Kumar, R.; Strezov, V.; Weldekidan, H.; He, J.; Singh, S.; Kan, T. Lignocellulose biomass pyrolysis for bio-oil production: a review of biomass pre-treatment methods for production of drop-in fuels. Renew. Sustain. Energy Rev., 2020, 123, 109763.
[http://dx.doi.org/10.1016/j.rser.2020.109763]
[2]
dos Santos, R.G.; Alencar, A.C. Biomass-derived syngas production via gasification process and its catalytic conversion into fuels by Fischer Tropsch synthesis: a review. Int. J. Hydrogen Energy, 2020, 45(36), 18114-18132.
[http://dx.doi.org/10.1016/j.ijhydene.2019.07.133]
[3]
Pino, M.S.; Rodríguez-Jasso, R.M.; Michelin, M.; Flores-Gallegos, A.C.; Morales-Rodriguez, R.; Teixeira, J.A. Bioreactor design for enzymatic hydrolysis of biomass under the biorefinery concept. Chem. Eng. J., 2018, 347, 119-136.
[http://dx.doi.org/10.1016/j.cej.2018.04.057]
[4]
Amarasekara, A.S. Handbook of cellulosic ethanol. NewYork, 2013.
[5]
Amarasekara, A.S.; Gutierrez Reyes, C.D. Bronsted acidic ionic liquid catalyzed one-pot conversion of cellulose to furanic biocrude and identification of the products using LC-MS. Renew. Energy, 2019, 136, 352-357.
[http://dx.doi.org/10.1016/j.renene.2018.12.108]
[6]
Kong, Q-S.; Li, X-L.; Xu, H-J.; Fu, Y. Conversion of 5-hydroxymethylfurfural to chemicals: a review of catalytic routes and product applications. Fuel Process. Technol., 2020, 209, 106528.
[http://dx.doi.org/10.1016/j.fuproc.2020.106528]
[7]
Deng, F.; Amarasekara, A.S. Catalytic upgrading of biomass derived furans. Ind. Crops Prod., 2021, 159, 113055.
[http://dx.doi.org/10.1016/j.indcrop.2020.113055]
[8]
Wilson, D.B. Processive and nonprocessive cellulases for biofuel production-lessons from bacterial genomes and structural analysis. Appl. Microbiol. Biotechnol., 2012, 93(2), 497-502.
[http://dx.doi.org/10.1007/s00253-011-3701-9] [PMID: 22113558]
[9]
Fan, L-T.; Gharpuray, M.M.; Lee, Y-H. Cellulose hydrolysis. Springer Science & Business Media, 2012.
[10]
Camacho, F.; González-Tello, P.; Jurado, E.; Robles, A. Microcrystalline-cellulose hydrolysis with concentrated sulphuric acid. J. Chem. Technol. Biotechnol: Int. Res. Process. Environ. Clean Technol., 1996, 67(4), 350-356.
[11]
Hu, L.; Lin, L.; Wu, Z.; Zhou, S.; Liu, S. Chemocatalytic hydrolysis of cellulose into glucose over solid acid catalysts. Appl. Catal. B, 2015, 174–175, 225-243.
[http://dx.doi.org/10.1016/j.apcatb.2015.03.003]
[12]
Huang, Y.B.; Fu, Y. Hydrolysis of cellulose to glucose by solid acid catalysts. Green Chem., 2013, 15(5), 1095-1111.
[http://dx.doi.org/10.1039/c3gc40136g]
[13]
Liu, W.Y.; Qi, W.; Zhou, J.S.; Yuan, Z.H.; Zhuang, X.S. Research progress in cellulose hydrolysis by carbonaceous solid acid. Linchan Huaxue Yu Gongye, 2015, 35(1), 138-144.
[14]
Li, C.; Wang, Q.; Zhao, Z.K. Acid in ionic liquid: an efficient system for hydrolysis of lignocellulose. Green Chem., 2008, 10(2), 177-182.
[http://dx.doi.org/10.1039/B711512A]
[15]
Amarasekara, A.S.; Owereh, O.S. Hydrolysis and decomposition of cellulose in bron̈sted acidic ionic liquids under mild conditions. Ind. Eng. Chem. Res., 2009, 48(22), 10152-10155.
[http://dx.doi.org/10.1021/ie901047u]
[16]
Amarasekara, A.S.; Shanbhag, P. Degradation of untreated switchgrass biomass into reducing sugars in 1-(alkylsulfonic)-3-methylimidazolium broensted acidic ionic liquid medium under mild conditions. BioEnergy Res., 2013, 6, 719-724.
[http://dx.doi.org/10.1007/s12155-012-9291-2]
[17]
Wiredu, B.; Amarasekara, A.S. The effect of metal ions as co-catalysts on acidic ionic liquid catalyzed single-step saccharification of corn stover in water. Bioresour. Technol., 2015, 189, 405-408.
[http://dx.doi.org/10.1016/j.biortech.2015.04.030] [PMID: 25911191]
[18]
Amarasekara, A.S.; Wiredu, B. Chemocatalytic hydrolysis of cellulose at 37 °C, 1 atm. Catal. Sci. Technol., 2016, 6, 426-429.
[http://dx.doi.org/10.1039/C5CY01677K]
[19]
Sun, Y.; Cheng, J. Hydrolysis of lignocellulosic materials for ethanol production: a review. Bioresour. Technol., 2002, 83(1), 1-11.
[http://dx.doi.org/10.1016/S0960-8524(01)00212-7] [PMID: 12058826]
[20]
Mosier, N.S.; Ladisch, C.M.; Ladisch, M.R. Characterization of acid catalytic domains for cellulose hydrolysis and glucose degradation. Biotechnol. Bioeng., 2002, 79(6), 610-618.
[http://dx.doi.org/10.1002/bit.10316] [PMID: 12209808]
[21]
Mosier, N.S.; Sarikaya, A.; Ladisch, C.M.; Ladisch, M.R. Characterization of dicarboxylic acids for cellulose hydrolysis. Biotechnol. Prog., 2001, 17(3), 474-480.
[http://dx.doi.org/10.1021/bp010028u] [PMID: 11386868]
[22]
Su, J.; Qiu, M.; Shen, F.; Qi, X. Efficient hydrolysis of cellulose to glucose in water by agricultural residue-derived solid acid catalyst. Cellulose, 2018, 25(1), 17-22.
[http://dx.doi.org/10.1007/s10570-017-1603-4]
[23]
Kobayashi, H.; Fukuoka, A. Development of solid catalyst-solid substrate reactions for efficient utilization of biomass. Bull. Chem. Soc. Jpn., 2018, 91, 29-43.
[http://dx.doi.org/10.1246/bcsj.20170263]
[24]
To, A.T.; Chung, P-W.; Katz, A. Weak-acid sites catalyze the hydrolysis of crystalline cellulose to glucose in water: importance of post-synthetic functionalization of the carbon surface. Angew. Chem. Int. Ed. Engl., 2015, 54(38), 11050-11053.
[http://dx.doi.org/10.1002/anie.201504865] [PMID: 26276901]
[25]
Vilcocq, L.; Castilho, P.C.; Carvalheiro, F.; Duarte, L.C. Hydrolysis of oligosaccharides over solid acid catalysts: a review. ChemSusChem, 2014, 7(4), 1010-1019.
[http://dx.doi.org/10.1002/cssc.201300720] [PMID: 24616436]
[26]
Shrotri, A.; Kobayashi, H.; Fukuoka, A. Cellulose depolymerization over heterogeneous catalysts. Acc. Chem. Res., 2018, 51(3), 761-768.
[http://dx.doi.org/10.1021/acs.accounts.7b00614] [PMID: 29443505]
[27]
Spinella, S.; Maiorana, A.; Qian, Q.; Dawson, N.J.; Hepworth, V.; McCallum, S.A. Concurrent cellulose hydrolysis and esterification to prepare a surface-modified cellulose nanocrystal decorated with carboxylic acid moieties. ACS Sustain. Chem. Eng., 2016, 4, 1538-1550.
[http://dx.doi.org/10.1021/acssuschemeng.5b01489]
[28]
Kobayashi, H.; Yabushita, M.; Hasegawa, J-Y.; Fukuoka, A. Synergy of vicinal oxygenated groups of catalysts for hydrolysis of cellulosic molecules. J. Phys. Chem. C, 2015, 119(36), 20993-20999.
[http://dx.doi.org/10.1021/acs.jpcc.5b06476]
[29]
De Chavez, D.P.; Gao, M.; Kobayashi, H.; Fukuoka, A.; Hasegawa, J-Y. Adsorption mediated tandem acid catalyzed cellulose hydrolysis by ortho-substituted benzoic acids. Molecul. Catal., 2019, 475, 110459.
[http://dx.doi.org/10.1016/j.mcat.2019.110459]
[30]
Amarasekara, A.S.; Wiredu, B.; Lawrence, Y.M. Hydrolysis and interactions of d-cellobiose with polycarboxylic acids. Carbohyd. Res., 2019, 475, 34-38.
[http://dx.doi.org/10.1016/j.carres.2019.02.002]
[31]
Beck, A.D. Density-functional thermochemistry. III. The role of exact exchange. J. Chem. Phys., 1993, 98(7), 5648-6.
[http://dx.doi.org/10.1063/1.464913]
[32]
Pople, J.A.; Gill, P.M.; Johnson, B.G. Kohn-Sham density-functional theory within a finite basis set. Chem. Phys. Lett., 1992, 199(6), 557-560.
[http://dx.doi.org/10.1016/0009-2614(92)85009-Y]
[33]
Stephens, P.J.; Devlin, F.J.; Chabalowski, C.F.; Frisch, M.J. Ab initio calculation of vibrational absorption and circular dichroism spectra using density functional force fields. J. Phys. Chem., 1994, 98(45), 11623-11627.
[http://dx.doi.org/10.1021/j100096a001]
[34]
Montgomery, J.A., Jr; Frisch, M.J.; Ochterski, J.W.; Petersson, G.A. A complete basis set model chemistry. VI. Use of density functional geometries and frequencies. J. Chem. Phys., 1999, 110(6), 2822-2827.
[http://dx.doi.org/10.1063/1.477924]
[35]
Montgomery, J.A., Jr; Frisch, M.J.; Ochterski, J.W.; Petersson, G.A. A complete basis set model chemistry. VII. Use of the minimum population localization method. J. Chem. Phys., 2000, 112(15), 6532-6542.
[http://dx.doi.org/10.1063/1.481224]
[36]
Tomasi, J.; Mennucci, B.; Cammi, R. Quantum mechanical continuum solvation models. Chem. Rev., 2005, 105(8), 2999-3093.
[http://dx.doi.org/10.1021/cr9904009] [PMID: 16092826]
[37]
Miertuš, S.; Scrocco, E.; Tomasi, J. Electrostatic interaction of a solute with a continuum. A direct utilizaion of AB initio molecular potentials for the prevision of solvent effects. Chem. Phys., 1981, 55(1), 117-129.
[http://dx.doi.org/10.1016/0301-0104(81)85090-2]
[38]
Mennucci, B.; Tomasi, J. Continuum solvation models: a new approach to the problem of solute’s charge distribution and cavity boundaries. J. Chem. Phys., 1997, 106(12), 5151-5158.
[http://dx.doi.org/10.1063/1.473558]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy