Generic placeholder image

Current Biotechnology

Editor-in-Chief

ISSN (Print): 2211-5501
ISSN (Online): 2211-551X

Mini-Review Article

Microbial Production of Lactic Acid – A Review

Author(s): Hira Arshad, Muhammad Irfan*, Hafiz Abdullah Shakir, Muhammad Khan, Shaukat Ali, Shagufta Saeed and Marcelo Franco

Volume 11, Issue 2, 2022

Published on: 02 August, 2022

Page: [107 - 116] Pages: 10

DOI: 10.2174/2211550111666220615110914

Price: $65

Abstract

Lactic acid is a generally existing natural acid, which is significant because of its wide use in food and food-related ventures, pharmaceutics, the cosmetics sector and its ability to create biopolymers. Lactic acid is eco-friendly, can be obtained from natural crude substances utilizing different varieties of microbes, and is chemically synthesized. Taking into account the value of lactic acid, this is a brief review of methods of processing, applications, microbes and substrates required for lactic acid production.

Keywords: Lactic acid, fermentation, microorganism, raw materials, pharmaceutics, biopolymers.

Next »
Graphical Abstract
[1]
Agblevor FA, Evans TG. Method for production of lactic acid. U.S. Patent No. 7,217,545, 2007.
[2]
Wee YJ, Kim JN, Ryu HW. Biotechnological production of lactic acid and its recent applications. Food Technol Biotechnol 2006; 44(2): 163-72.
[3]
Abdel-Rahman MA, Tashiro Y, Sonomoto K. Recent advanc-es in lactic acid production by microbial fermentation pro-cesses. Biotechnol Adv 2013; 31(6): 877-902.
[http://dx.doi.org/10.1016/j.biotechadv.2013.04.002] [PMID: 23624242]
[4]
Wehrenberg RH. Lactic acid polymers: Strong, degradable thermoplastics. Mater Eng 1981; 94(3)
[5]
Zhu Y, Romain C, Williams CK. Sustainable polymers from renewable resources. Nature 2016; 540(7633): 354-62.
[http://dx.doi.org/10.1038/nature21001] [PMID: 27974763]
[6]
Narayanan N, Roychoudhury PK, Srivastava A. L (+) lactic acid fermentation and its product polymerization. Electron J Biotechnol 2004; 7(2): 167-78.
[7]
Benninga H. A history of lactic acid making: A chapter in the history of biotechnology. Springer Science & Business Media 1990; Vol. 11.
[8]
Kompanje EJO, Jansen TC, van der Hoven B, Bakker J. The first demonstration of lactic acid in human blood in shock by Johann Joseph Scherer (1814-1869) in January 1843. Intensive Care Med 2007; 33(11): 1967-71.
[http://dx.doi.org/10.1007/s00134-007-0788-7] [PMID: 17661014]
[9]
Osmundsen CM, Egeblad K, Taarning E. Trends and challenges in catalytic biomass conversion. In: Suib SL, Ed. New and Future Developments in Catalysis: Catalytic Biomass Conversion. Amsterdam, Netherlands: Elsevier New and Future Developments in Catalysis: Catalytic Biomass Conversion 2013; pp. 73-89.
[http://dx.doi.org/10.1016/B978-0-444-53878-9.00004-7]
[10]
Abdel-Rahman MA, Sonomoto K. Opportunities to overcome the current limitations and challenges for efficient microbial production of optically pure lactic acid. J Biotechnol 2016; 236: 176-92.
[http://dx.doi.org/10.1016/j.jbiotec.2016.08.008] [PMID: 27527396]
[11]
Newswire PR. Lactic acid market and derivatives 2016 forecasts (global, China) in new research report. 2016. Available from: http://www.prnewswire.com/news-releases/lactic-acid-market-and-derivatives-2016-forecasts-global-china-in-new-research-report-279286152.html (Accessed on 25 February January 2017).
[12]
John RP, Nampoothiri KM, Pandey A. Fermentative produc-tion of lactic acid from biomass: An overview on process de-velopments and future perspectives. Appl Microbiol Biotechnol 2007; 74(3): 524-34.
[http://dx.doi.org/10.1007/s00253-006-0779-6] [PMID: 17225102]
[13]
Hofvendahl K, Hahn-Hägerdal B. Factors affecting the fer-mentative lactic acid production from renewable resources(1). Enzyme Microb Technol 2000; 26(2-4): 87-107.
[http://dx.doi.org/10.1016/S0141-0229(99)00155-6] [PMID: 10689064]
[14]
Oh H, Wee YJ, Yun JS, Ho Han S, Jung S, Ryu HW. Lactic acid production from agricultural resources as cheap raw ma-terials. Bioresour Technol 2005; 96(13): 1492-8.
[http://dx.doi.org/10.1016/j.biortech.2004.11.020] [PMID: 15939277]
[15]
Wang Y, Meng H, Cai D, et al. Improvement of l-lactic acid productivity from sweet sorghum juice by repeated batch fermentation coupled with membrane separation. Bioresour Technol 2016; 211: 291-7.
[http://dx.doi.org/10.1016/j.biortech.2016.03.095] [PMID: 27023384]
[16]
Nakano S, Ugwu CU, Tokiwa Y. Efficient production of D-(-)-lactic acid from broken rice by Lactobacillus delbrueckii us-ing Ca(OH)2 as a neutralizing agent. Bioresour Technol 2012; 104: 791-4.
[http://dx.doi.org/10.1016/j.biortech.2011.10.017] [PMID: 22093977]
[17]
Juturu V, Wu JC. Microbial cellulases: Engineering, produc-tion and applications. Renew Sustain Energy Rev 2014; 33: 188-203.
[http://dx.doi.org/10.1016/j.rser.2014.01.077]
[18]
Abdel-Rahman MA, Tashiro Y, Sonomoto K. Lactic acid production from lignocellulose-derived sugars using lactic ac-id bacteria: Overview and limits. J Biotechnol 2011; 156(4): 286-301.
[http://dx.doi.org/10.1016/j.jbiotec.2011.06.017] [PMID: 21729724]
[19]
Lavanya DKPK, Kulkarni PK, Dixit M, Raavi PK, Krishna LNV. Sources of cellulose and their applications-A review. IJDFR 2011; 2(6): 19-38.
[20]
Azam MT, Ahmad A. Date palm waste: An efficient source for production of glucose and lactic acid. In: Naushad M, Lichtfouse E, Eds. Sustainable Agriculture Reviews. Cham: Springer 2019; pp. 155-78.
[http://dx.doi.org/10.1007/978-3-030-11345-2_8]
[21]
Mariam I, Manzoor K, Ali S, Ul-Haq I. Enhanced production of ethanol from free and immobilized Saccharomyces cere-visiae under stationary culture. Pak J Bot 2009; 41(2): 821-33.
[22]
Sun Y, Xu Z, Zheng Y, Zhou J, Xiu Z. Efficient production of lactic acid from sugarcane molasses by a newly microbial consortium CEE-DL15. Process Biochem 2019; 81: 132-8.
[http://dx.doi.org/10.1016/j.procbio.2019.03.022]
[23]
Eom IY, Oh YH, Park SJ, Lee SH, Yu JH. Fermentative l-lactic acid production from pretreated whole slurry of oil palm trunk treated by hydrothermolysis and subsequent en-zymatic hydrolysis. Bioresour Technol 2015; 185: 143-9.
[http://dx.doi.org/10.1016/j.biortech.2015.02.060] [PMID: 25768416]
[24]
Hu J, Zhang Z, Lin Y, et al. High-titer lactic acid production from NaOH-pretreated corn stover by Bacillus coagulans LA204 using fed-batch simultaneous saccharification and fermentation under non-sterile condition. Bioresour Technol 2015; 182: 251-7.
[http://dx.doi.org/10.1016/j.biortech.2015.02.008] [PMID: 25704098]
[25]
Hama S, Mizuno S, Kihara M, et al. Production of d-lactic acid from hardwood pulp by mechanical milling followed by simultaneous saccharification and fermentation using meta-bolically engineered Lactobacillus plantarum. Bioresour Technol 2015; 187: 167-72.
[http://dx.doi.org/10.1016/j.biortech.2015.03.106] [PMID: 25846187]
[26]
Idler C, Venus J, Kamm B. Microorganisms for the production of lactic acid and organic lactates. In: Kamm B, Ed. Microorganisms in Biorefineries. Berlin, Heidelberg: Springer 2015; pp. 225-73.
[http://dx.doi.org/10.1007/978-3-662-45209-7_9]
[27]
Nguyen CM, Kim JS, Hwang HJ, et al. Production of l-lactic acid from a green microalga, Hydrodictyon reticulum, by Lac-tobacillus paracasei LA104 isolated from the traditional Ko-rean food, makgeolli. Bioresour Technol 2012; 110: 552-9.
[http://dx.doi.org/10.1016/j.biortech.2012.01.079] [PMID: 22336740]
[28]
Auneau F, Arani LS, Besson M, et al. Heterogeneous trans-formation of glycerol to lactic acid. Top Catal 2012; 55(7-10): 474-9.
[http://dx.doi.org/10.1007/s11244-012-9823-1]
[29]
Yin H, Zhang C, Yin H, Gao D, Shen L, Wang A. Hydrother-mal conversion of glycerol to lactic acid catalyzed by Cu/hydroxyapatite, Cu/MgO, and Cu/ZrO2 and reaction kinet-ics. Chem Eng J 2016; 288: 332-43.
[http://dx.doi.org/10.1016/j.cej.2015.12.010]
[30]
Ramírez-López CA, Ochoa-Gómez JR, Fernández-Santos M, Gómez-Jiménez-Aberasturi O, Alonso-Vicario A, Torrecilla-Soria J. Synthesis of lactic acid by alkaline hydrothermal con-version of glycerol at high glycerol concentration. Ind Eng Chem Res 2010; 49(14): 6270-8.
[http://dx.doi.org/10.1021/ie1001586]
[31]
Yuwa-Amornpitak T, Chookietwatana K. Bioconversion of waste cooking oil glycerol from cabbage extract to lactic acid by Rhizopus microsporus. Braz J Microbiol 2018; 49: 178-84.
[32]
Jiang LL, Liu FY, Yang W, Li CL, Zhu BW, Zhu XH. Produc-tion of 1,3-propanediol and lactic acid from crude glycerol by a microbial consortium from intertidal sludge. Biotechnol Lett 2021; 43(3): 711-7.
[http://dx.doi.org/10.1007/s10529-020-03063-0] [PMID: 33386498]
[33]
Lunelli BH, Andrade RR, Atala DI, Wolf Maciel MR, Maugeri Filho F, Maciel Filho R. Production of lactic acid from sucrose: Strain selection, fermentation, and kinetic modeling. Appl Biochem Biotechnol 2010; 161(1-8): 227-37.
[http://dx.doi.org/10.1007/s12010-009-8828-0] [PMID: 19943122]
[34]
Nancib A, Nancib N, Boudrant J. Production of lactic acid from date juice extract with free cells of single and mixed cul-tures of Lactobacillus casei and Lactococcus lactis. World J Microbiol Biotechnol 2009; 25(8): 1423-9.
[http://dx.doi.org/10.1007/s11274-009-0029-z]
[35]
Cui F, Li Y, Wan C. Lactic acid production from corn stover using mixed cultures of Lactobacillus rhamnosus and Lacto-bacillus brevis. Bioresour Technol 2011; 102(2): 1831-6.
[http://dx.doi.org/10.1016/j.biortech.2010.09.063] [PMID: 20943382]
[36]
Konings WN, Kok J, Kuipers OP, Poolman B. Lactic acid bacteria: The bugs of the new millennium. Curr Opin Microbiol 2000; 3(3): 276-82.
[http://dx.doi.org/10.1016/S1369-5274(00)00089-8] [PMID: 10851157]
[37]
Stieglmeier M, Wirth R, Kminek G, Moissl-Eichinger C. Culti-vation of anaerobic and facultatively anaerobic bacteria from spacecraft-associated clean rooms. Appl Environ Microbiol 2009; 75(11): 3484-91.
[http://dx.doi.org/10.1128/AEM.02565-08] [PMID: 19363082]
[38]
Budhavaram NK, Fan Z. Production of lactic acid from paper sludge using acid-tolerant, thermophilic Bacillus coagulan strains. Bioresour Technol 2009; 100(23): 5966-72.
[http://dx.doi.org/10.1016/j.biortech.2009.01.080] [PMID: 19577925]
[39]
Litchfield JH. Lactic acid, microbially produced: In: Schaechter M, Ed. Encyclopedia of Microbiology. San Diego, CA, USA: Academic Press, 2009; pp. 362-72.
[40]
Yun JS, Wee YJ, Ryu HW. Production of optically pure L (+)-lactic acid from various carbohydrates by batch fermentation of Enterococcus faecalis RKY1. Enzyme Microb Technol 2003; 33(4): 416-23.
[http://dx.doi.org/10.1016/S0141-0229(03)00139-X]
[41]
Rodríguez-Gómez F, Romero-Gil V, Arroyo-López FN, et al. Assessing the challenges in the application of potential probi-otic lactic acid bacteria in the large-scale fermentation of Spanish-style table olives. Front Microbiol 2017; 8: 915.
[http://dx.doi.org/10.3389/fmicb.2017.00915] [PMID: 28567038]
[42]
Zhong W, Yang M, Hao X, Sharshar MM, Wang Q, Xing J. Improvement of D‐lactic acid production at low pH through expressing acid‐resistant gene IoGAS1 in engineered Sac-charomyces cerevisiae. J Chem Technol Biotechnol 2021; 96(3): 732-42.
[http://dx.doi.org/10.1002/jctb.6587]
[43]
Bianchi MM, Brambilla L, Protani F, Liu CL, Lievense J, Porro D. Efficient homolactic fermentation by Kluyveromyces lactis strains defective in pyruvate utilization and transformed with the heterologous LDH gene. Appl Environ Microbiol 2001; 67(12): 5621-5.
[http://dx.doi.org/10.1128/AEM.67.12.5621-5625.2001] [PMID: 11722915]
[44]
Kuanyshev N, Rao CV, Dien B, Jin YS. Domesticating a food spoilage yeast into an organic acid-tolerant metabolic engi-neering host: Lactic acid production by engineered Zygosac-charomyces bailii. Biotechnol Bioeng 2021; 118(1): 372-82.
[http://dx.doi.org/10.1002/bit.27576] [PMID: 33030791]
[45]
Meussen BJ, de Graaff LH, Sanders JP, Weusthuis RA. Meta-bolic engineering of Rhizopus oryzae for the production of platform chemicals. Appl Microbiol Biotechnol 2012; 94(4): 875-86.
[http://dx.doi.org/10.1007/s00253-012-4033-0] [PMID: 22526790]
[46]
Zhou Y, Domínguez JM, Cao N, Du J, Tsao GT. Optimization of L-lactic acid production from glucose by Rhizopus oryzae ATCC 52311. Appl Biochem Biotechnol 1999; 77-79: 401-7.
[http://dx.doi.org/10.1007/978-1-4612-1604-9_37]
[47]
Zhang ZY, Jin B, Kelly JM. Production of lactic acid from renewable materials by Rhizopus fungi. Biochem Eng J 2007; 35(3): 251-63.
[http://dx.doi.org/10.1016/j.bej.2007.01.028]
[48]
Guo W, Jia W, Li Y, Chen S. Performances of Lactobacillus brevis for producing lactic acid from hydrolysate of lignocel-lulosics Appl Biochem Biotechnol 2010; 161(1-8): 124-36.
[http://dx.doi.org/10.1007/s12010-009-8857-8] [PMID: 19937398]
[49]
Bustamante D, Tortajada M, Ramón D, Rojas A. Production of D-lactic acid by the fermentation of orange peel waste hy-drolysate by lactic acid bacteria. Fermentation (Basel) 2020; 6(1): 1.
[http://dx.doi.org/10.3390/fermentation6010001]
[50]
Peng L, Wang L, Che C, Yang G, Yu B, Ma Y. Bacillus sp. strain P38: An efficient producer of L-lactate from cellulosic hydrolysate, with high tolerance for 2-furfural. Bioresour Technol 2013; 149: 169-76.
[http://dx.doi.org/10.1016/j.biortech.2013.09.047] [PMID: 24096283]
[51]
Hong AA, Cheng KK, Peng F, et al. Strain isolation and opti-mization of process parameters for bioconversion of glycerol to lactic acid. J Chem Technol Biotechnol 2009; 84(10): 1576-81.
[http://dx.doi.org/10.1002/jctb.2209]
[52]
Wang L, Zhao B, Liu B, et al. Efficient production of L-lactic acid from corncob molasses, a waste by-product in xylitol production, by a newly isolated xylose utilizing Bacillus sp. strain. Bioresour Technol 2010; 101(20): 7908-15.
[http://dx.doi.org/10.1016/j.biortech.2010.05.031] [PMID: 20627714]
[53]
Djukić-Vuković AP, Mojović LV, Jokić BM, Nikolić SB, Pejin JD. Lactic acid production on liquid distillery stillage by Lac-tobacillus rhamnosus immobilized onto zeolite. Bioresour Technol 2013; 135: 454-8.
[http://dx.doi.org/10.1016/j.biortech.2012.10.066] [PMID: 23186681]
[54]
Wee YJ, Ryu HW. Lactic acid production by Lactobacillus sp. RKY2 in a cell-recycle continuous fermentation using ligno-cellulosic hydrolyzates as inexpensive raw materials. Bioresour Technol 2009; 100(18): 4262-70.
[http://dx.doi.org/10.1016/j.biortech.2009.03.074] [PMID: 19394215]
[55]
Vodnar DC, Dulf FV, Pop OL, Socaciu C. L (+)-lactic acid production by pellet-form Rhizopus oryzae NRRL 395 on bi-odiesel crude glycerol. Microb Cell Fact 2013; 12(1): 92.
[http://dx.doi.org/10.1186/1475-2859-12-92] [PMID: 24112554]
[56]
Sreenath HK, Moldes AB, Koegel RG, Straub RJ. Lactic acid production by simultaneous saccharification and fermentation of alfalfa fiber. J Biosci Bioeng 2001; 92(6): 518-23.
[http://dx.doi.org/10.1016/S1389-1723(01)80309-1] [PMID: 16233139]
[57]
Boontawan P, Kanchanathawee S, Boontawan A. Extractive fermentation of l-(+)-lactic acid by Pediococcus pentosaceus sing electrodeionization (EDI) technique.u Biochem Eng J 2011; 54(3): 192-9.
[http://dx.doi.org/10.1016/j.bej.2011.02.021]
[58]
Gao C, Ma C, Xu P. Biotechnological routes based on lactic acid production from biomass. Biotechnol Adv 2011; 29(6): 930-9.
[http://dx.doi.org/10.1016/j.biotechadv.2011.07.022] [PMID: 21846500]
[59]
Wang Y, Wu J, Lv M, et al. Metabolism characteristics of lactic acid bacteria and the expanding applications in food in-dustry. Front Bioeng Biotechnol 2021; 9: 612285.
[http://dx.doi.org/10.3389/fbioe.2021.612285] [PMID: 34055755]
[60]
Kumar P, Nagarajan A, Uchil P D. Analysis of cell viability by the lactate dehydrogenase assay Cold Spring Harb Protoc 2018; (6): pdb-prot095497.
[61]
Li Z, Ding S, Li Z, Tan T. L-lactic acid production by Lacto-bacillus casei fermentation with corn steep liquor-supplemented acid-hydrolysate of soybean meal. Biotechnol J 2006; 1(12): 1453-8.
[http://dx.doi.org/10.1002/biot.200600099] [PMID: 17089436]
[62]
Taleghani HG, Najafpour GD, Ghoreyshi AA. A study on the effect of parameters on lactic acid production from whey. Pol J Chem Technol 2016; 18(1): 58-63.
[http://dx.doi.org/10.1515/pjct-2016-0010]
[63]
Beitel SM, Coelho LF, Contiero J. Efficient conversion of agroindustrial waste into D(-) lactic acid by Lactobacillus del-brueckii using fed-batch fermentation. BioMed Res Int 2020; 2020: 4194052.
[http://dx.doi.org/10.1155/2020/4194052] [PMID: 32382549]
[64]
Cheng KK, Zeng J, Jian JH, Zhu JF, Zhang GX, Liu DH. Mod-el-based temperature control for improving lactic acid produc-tion from glycerol. RSC Advances 2019; 9(21): 11614-20.
[http://dx.doi.org/10.1039/C9RA01323G]
[65]
Yang E, Fan L, Yan J, et al. Influence of culture media, pH and temperature on growth and bacteriocin production of bac-teriocinogenic lactic acid bacteria. AMB Express 2018; 8(1): 10.
[http://dx.doi.org/10.1186/s13568-018-0536-0] [PMID: 29368243]
[66]
De la Torre I, Ladero M, Santos VE. Production of D-lactic acid by L. delbrueckii growing on orange peel waste hydroly-sates and model monosaccharide solutions: Effects of pH and temperature on process kinetics. Biomass Convers Biorefin 2019; 9(3): 565-75.
[http://dx.doi.org/10.1007/s13399-019-00396-3]
[67]
Cubas-Cano E, González-Fernández C, Tomás-Pejó E. Evolu-tionary engineering of Lactobacillus pentosus improves lactic acid productivity from xylose-rich media at low pH. Bioresour Technol 2019; 288: 121540.
[http://dx.doi.org/10.1016/j.biortech.2019.121540] [PMID: 31174085]
[68]
Ghadiri A, Pourkhalili S, Taravati A, Veysi S. Lactic acid production by Lactobacillus delbrueckii from agricultural waste: Role of C:N ratio and different carbon and nitrogen sources. Available from: https://civilica.com/doc/782708/
[69]
Ghadiri A, Veysi S, Safari G, Taravati A. The effect of C:N ratio and different nitrogen sources on lactic acid production by Lactobacillus delbrueckii. In: 18th International & Iranian Congress of Microbiology; 2017 Aug 29, Tehran, Iran
[70]
de la Torre I, Ladero M, Santos VE. Production of D-lactic acid by Lactobacillus delbrueckii ssp. delbrueckii from orange peel waste: Techno-economical assessment of nitrogen sources. Appl Microbiol Biotechnol 2018; 102(24): 10511-21.
[http://dx.doi.org/10.1007/s00253-018-9432-4] [PMID: 30324487]
[71]
Komesu A, Maciel MRW, Maciel Filho R. Separation and purification technologies for lactic acid-a brief review. BioResources 2017; 12(3): 6885-901.
[http://dx.doi.org/10.15376/biores.12.3.6885-6901]
[72]
Komesu A, de Oliveira JAR, da Silva Martins LH, Maciel MRW, Maciel Filho R. Lactic acid production to purification: A review. BioResources 2017; 12(2): 4364-83.
[http://dx.doi.org/10.15376/biores.12.2.Komesu]
[73]
Pal P, Sikder J, Roy S, Giorno L. Process intensification in lactic acid production: A review of membrane-based process-es. Chem Eng Process 2009; 48(11-12): 1549-59.
[http://dx.doi.org/10.1016/j.cep.2009.09.003]
[74]
Kawaguchi H, Takada K, Elkasaby T, et al. Recent advances in lignocellulosic biomass white biotechnology for bioplas-tics Bioresour Technol 2022; 344(Pt B): 126165.
[http://dx.doi.org/10.1016/j.biortech.2021.126165] [PMID: 34695585]
[75]
Komesu A, Wolf Maciel MR, Rocha de Oliveira JA, da Silva Martins LH, Maciel Filho R. Purification of lactic acid pro-duced by fermentation: Focus on non-traditional distillation processes. Separ Purif Rev 2017; 46(3): 241-54.
[http://dx.doi.org/10.1080/15422119.2016.1260034]
[76]
Wasewar KL. Separation of lactic acid: Recent advances. Chem Biochem Eng Q 2005; 19: 159-72.
[77]
Parra-Ramírez D, Martinez A, Cardona CA. Lactic acid pro-duction from glucose and xylose using the lactogenic Esche-richia coli strain JU15: Experiments and techno-economic re-sults. Bioresour Technol 2019; 273: 86-92.
[http://dx.doi.org/10.1016/j.biortech.2018.10.061] [PMID: 30415073]
[78]
Min DJ, Choi KH, Chang YK, Kim JH. Effect of operating parameters on precipitation for recovery of lactic acid from calcium lactate fermentation broth. Korean J Chem Eng 2011; 28(10): 1969-74.
[http://dx.doi.org/10.1007/s11814-011-0082-9]
[79]
Kumar R, Nanavati H, Noronha SB, Mahajani SM. A continu-ous process for the recovery of lactic acid by reactive distilla-tion. J Chem Technol Biotechnol 2006; 81(11): 1767-77.
[80]
Spaho N. Distillation techniques in the fruit spirits produc-tion. Distillation-Innovative Applications and Modeling 2017; pp. 129-52.
[81]
Vane LM. A review of pervaporation for product recovery from biomass fermentation processes. J Chem Technol Biotechnol 2005; 80(6): 603-29.
[82]
Cheng KK, Zhao XB, Zeng J, et al. Downstream processing of biotechnological produced succinic acid. Appl Microbiol Biotechnol 2012; 95(4): 841-50.
[http://dx.doi.org/10.1007/s00253-012-4214-x] [PMID: 22707056]
[83]
Alexandri M, Schneider R, Venus J. Membrane technologies for lactic acid separation from fermentation broths derived from renewable resources. Membranes (Basel) 2018; 8(4): 94.
[http://dx.doi.org/10.3390/membranes8040094] [PMID: 30322044]
[84]
Gössi A, Burgener F, Kohler D, et al. In-situ recovery of car-boxylic acids from fermentation broths through membrane supported reactive extraction using membrane modules with improved stability. Separ Purif Tech 2020; 241: 116694.
[http://dx.doi.org/10.1016/j.seppur.2020.116694]
[85]
Phanthumchinda N, Thitiprasert S, Tanasupawat S, Assabum-rungrat S, Thongchul N. Process and cost modeling of lactic acid recovery from fermentation broths by membrane-based process. Process Biochem 2018; 68: 205-13.
[http://dx.doi.org/10.1016/j.procbio.2018.02.013]
[86]
Lee SC, Kim HC. Batch and continuous separation of acetic acid from succinic acid in a feed solution with high concentra-tions of carboxylic acids by emulsion liquid membranes. J Membr Sci 2011; 367(1-2): 190-6.
[http://dx.doi.org/10.1016/j.memsci.2010.10.057]
[87]
Ghaffar T, Irshad M, Anwar Z, et al. Recent trends in lactic acid biotechnology: A brief review on production to purifica-tion. J Radiat Res Appl Sci (New York) 2014; 7(2): 222-9.
[88]
Joglekar HG, Rahman I, Babu S, Kulkarni BD, Joshi A. Com-parative assessment of downstream processing options for lactic acid. Separ Purif Tech 2006; 52(1): 1-17.
[http://dx.doi.org/10.1016/j.seppur.2006.03.015]
[89]
Baker RW. Membrane transport theory. In: Baker RW. Membrane Technology and Applications Hoboken, New Jersey: John Wiley & Sons, 2004; pp. 15-88.
[90]
Ghyselbrecht K, Huygebaert M, Van der Bruggen B, Ballet R, Meesschaert B, Pinoy L. Desalination of an industrial saline water with conventional and bipolar membrane electrodialy-sis. Desalination 2013; 318: 9-18.
[http://dx.doi.org/10.1016/j.desal.2013.03.020]
[91]
Dufton G, Mikhaylin S, Gaaloul S, Bazinet L. How electrodi-alysis configuration influences acid whey deacidification and membrane scaling. J Dairy Sci 2018; 101(9): 7833-50.
[http://dx.doi.org/10.3168/jds.2018-14639] [PMID: 29935834]
[92]
Lee LL, Niknafs N, Hancocks RD, Norton IT. Emulsification: Mechanistic understanding. Trends Food Sci Technol 2013; 31(1): 72-8.
[http://dx.doi.org/10.1016/j.tifs.2012.08.006]
[93]
Huang HC, Lee IJ, Huang C, Chang TM. Lactic acid bacteria and lactic acid for skin health and melanogenesis inhibition. Curr Pharm Biotechnol 2020; 21(7): 566-77.
[http://dx.doi.org/10.2174/1389201021666200109104701] [PMID: 31916515]
[94]
Auras RA, Lim LT, Selke SE, Tsuji H. Poly (Lactic Acid): Synthesis, Structures, Properties, Processing, and Applica-tions. Hoboken, New Jersey: John Wiley & Sons 2010; Vol. 10.
[95]
Das D, Goyal A. Lactic acid bacteria in food industry. In: Satyanarayana T, Johri B, Eds. Microorganisms in Sustainable Agriculture and Biotechnology. Dordrecht: Springer 2012; pp. 757-72.
[http://dx.doi.org/10.1007/978-94-007-2214-9_33]
[96]
Abu Hajleh MN, Al-Samydai A, Al-Dujaili EAS. Nano, micro particulate and cosmetic delivery systems of polylactic acid: A mini review. J Cosmet Dermatol 2020; 19(11): 2805-11.
[http://dx.doi.org/10.1111/jocd.13696] [PMID: 32954588]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy