Generic placeholder image

Drug Delivery Letters

Editor-in-Chief

ISSN (Print): 2210-3031
ISSN (Online): 2210-304X

Mini-Review Article

Microspheres: A Novel Approach for Sustained Colon Targeted Drug Delivery

Author(s): Vaibhavi Jaunjalkar and Shakuntala Chopade*

Volume 13, Issue 4, 2023

Published on: 30 May, 2023

Page: [251 - 263] Pages: 13

DOI: 10.2174/2210303113666230501204329

Price: $65

Abstract

Colon targeted medication delivery is a field of study for disorders including colon cancer and inflammatory bowel disease (IBD), with the goal of delivering localised therapy with minimal systemic damage. In recent decades, the global prevalence of colonic problems has increased, demanding more local treatment of colonic disorders, which will lead to the development of more effective and safe pharmaceutical regimens. When developing a formulation for colonic administration, it's critical to consider both the physiological characteristics of the colon and the environment surrounding the disease site (s). The GI tract experiences dynamic changes in motility, fluid volume, enzyme activity, and pH from the stomach to the intestine. The current review focuses on Biodegradable polymers or protein‑based microspheres having free‑flowing properties and particle size 5200 nm have a variety of advantages over conventional colon targeted drug delivery systems. During drug transit through the GIT, polysaccharides maintain their integrity and inhibit drug release. When it comes into contact with colonic fluid, however, it is attacked by anaerobic microbes, and the imprisoned medication is released. In this review, several methods of microsphere formulation and characterization were investigated along with its in vitro and in vivo study methodology.

Keywords: Polymer, microsphere, colon targeted drug delivery, inflammatory bowel disease, macromolecular drug carrier, colonic disorders.

Next »
Graphical Abstract
[1]
Ferlay, J.; Colombet, M.; Soerjomataram, I.; Dyba, T.; Randi, G.; Bettio, M.; Gavin, A.; Visser, O.; Bray, F. Cancer incidence and mortality patterns in Europe: Estimates for 40 countries and 25 major cancers in 2018. Eur. J. Cancer, 2018, 103, 356-387.
[http://dx.doi.org/10.1016/j.ejca.2018.07.005] [PMID: 30100160]
[2]
Ng, S.C.; Bernstein, C.N.; Vatn, M.H.; Lakatos, P.L.; Loftus, E.V., Jr; Tysk, C.; O’Morain, C.; Moum, B.; Colombel, J.F. Geographical variability and environmental risk factors in inflammatory bowel disease. Gut, 2013, 62(4), 630-649.
[http://dx.doi.org/10.1136/gutjnl-2012-303661] [PMID: 23335431]
[3]
Patole, V.C.; Pandit, A.P. Mesalamine-loaded alginate microspheres filled in enteric coated HPMC capsules for local treatment of ulcerative colitis: in vitro and in vivo characterization. J. Pharm. Investig., 2018, 48(3), 257-267.
[http://dx.doi.org/10.1007/s40005-017-0304-1]
[4]
Rahier, J.F.; Magro, F.; Abreu, C.; Armuzzi, A.; Ben-Horin, S.; Chowers, Y.; Cottone, M.; de Ridder, L. G, D.; Ehehalt, R.; Esteve, M.; Katsanos, K.; Lees, C.W.; MacMahon, E.; Moreels, T.; Reinisch, W.; Tilg, H.; Tremblay, L.; Veereman-Wauters, G.; Viget, N.; Yazdanpanah, Y.; Eliakim, R.; Colombel, J.F. Second European evidence-based consensus on the prevention, diagnosis and management of opportunistic infections in inflammatory bowel disease. J. Crohn’s Colitis, 2014, 8(6), 443-468.
[http://dx.doi.org/10.1016/j.crohns.2013.12.013] [PMID: 24613021]
[5]
Wang, X.; Yu, D.G.; Li, X.Y.; Bligh, S.W.A.; Williams, G.R. Electrospun medicated shellac nanofibers for colon-targeted drug delivery. Int. J. Pharm., 2015, 490(1-2), 384-390.
[http://dx.doi.org/10.1016/j.ijpharm.2015.05.077] [PMID: 26043827]
[6]
Vats, A.; Pathak, K. Exploiting microspheres as a therapeutic proficient doer for colon delivery: A review. Expert Opin. Drug Deliv., 2013, 10(4), 545-557.
[http://dx.doi.org/10.1517/17425247.2013.759937] [PMID: 23316745]
[7]
Duran-Lobato, M.; Niu, Z.; Alonso, M.J. Oral delivery of biologics for precision medicine. Adv. Mater., 2019, 2019, e1901935.
[http://dx.doi.org/10.1002/adma.201901935] [PMID: 31222910]
[8]
Lee, S.H.; Bajracharya, R.; Min, J.Y.; Han, J.W.; Park, B.J.; Han, H.K. Strategic Approaches for Colon Targeted Drug Delivery: An Over-view of Recent Advancements. Pharmaceutics, 2020, 12(1), 68.
[http://dx.doi.org/10.3390/pharmaceutics12010068] [PMID: 31952340]
[9]
Hua, S.; Marks, E.; Schneider, J.J.; Keely, S. Advances in oral nano-delivery systems for colon targeted drug delivery in inflammatory bowel disease: Selective targeting to diseased versus healthy tissue. Nanomedicine, 2015, 11(5), 1117-1132.
[http://dx.doi.org/10.1016/j.nano.2015.02.018] [PMID: 25784453]
[10]
Guo, Y.; Zong, S.; Pu, Y.; Xu, B.; Zhang, T.; Wang, B. Advances in pharmaceutical strategies enhancing the efficiencies of oral colon-targeted delivery systems in inflammatory bowel disease. Molecules, 2018, 23(7), 1622.
[http://dx.doi.org/10.3390/molecules23071622] [PMID: 29973488]
[11]
Khan, M.Z.I.; Prebeg, Ž.; Kurjaković, N. A pH-dependent colon targeted oral drug delivery system using methacrylic acid copolymers. J. Control. Release, 1999, 58(2), 215-222.
[http://dx.doi.org/10.1016/S0168-3659(98)00151-5] [PMID: 10053194]
[12]
Ashford, M.; Fell, J.T.; Attwood, D.; Sharma, H.; Woodhead, P.J. An in vivo investigation into the suitability of pH dependent polymers for colonic targeting. Int. J. Pharm., 1993, 95(1-3), 193-199.
[http://dx.doi.org/10.1016/0378-5173(93)90406-6]
[13]
Cheng, G.; An, F.; Zou, M.J.; Sun, J.; Hao, X.H.; He, Y.X. Time- and pH-dependent colon-specific drug delivery for orally administered diclofenac sodium and 5-aminosalicylic acid. World J. Gastroenterol., 2004, 10(12), 1769-1774.
[http://dx.doi.org/10.3748/wjg.v10.i12.1769] [PMID: 15188503]
[14]
Ibekwe, V.C.; Fadda, H.M.; Parsons, G.E.; Basit, A.W. A comparative in vitro assessment of the drug release performance of pH-responsive polymers for ileo-colonic delivery. Int. J. Pharm., 2006, 308(1-2), 52-60.
[http://dx.doi.org/10.1016/j.ijpharm.2005.10.038] [PMID: 16356670]
[15]
Cole, E.T.; Scott, R.A.; Connor, A.L.; Wilding, I.R.; Petereit, H.U.; Schminke, C.; Beckert, T.; Cadé, D. Enteric coated HPMC capsules designed to achieve intestinal targeting. Int. J. Pharm., 2002, 231(1), 83-95.
[http://dx.doi.org/10.1016/S0378-5173(01)00871-7] [PMID: 11719017]
[16]
Halsas, M.; Penttinen, T.; Veski, P.; Jürjenson, H.; Marvola, M. Time-controlled release pseudoephedrine tablets: Bioavailability and in vitro/in vivo correlations. Pharmazie, 2001, 56(9), 718-723.
[PMID: 11593992]
[17]
Alvarez-Fuentes, J.; Fernández-Arévalo, M.; González-Rodríguez, M.L.; Cirri, M.; Mura, P. Development of enteric-coated timed-release matrix tablets for colon targeting. J. Drug Target., 2004, 12(9-10), 607-612.
[http://dx.doi.org/10.1080/10611860400013501] [PMID: 15621686]
[18]
Peerapattana, J.; Otsuka, K.; Otsuka, M. Time-controlled pulse-drug release from dry-coated wax matrix tablets for colon drug delivery. Biomed. Mater. Eng., 2004, 14(3), 293-301.
[PMID: 15299241]
[19]
Sangalli, M.E.; Maroni, A.; Foppoli, A.; Zema, L.; Giordano, F.; Gazzaniga, A. Different HPMC viscosity grades as coating agents for an oral time and/or site-controlled delivery system: A study on process parameters and in vitro performances. Eur. J. Pharm. Sci., 2004, 22(5), 469-476.
[http://dx.doi.org/10.1016/j.ejps.2004.05.002] [PMID: 15265517]
[20]
Fukui, E.; Miyamura, N.; Kobayashi, M. An in vitro investigation of the suitability of press-coated tablets with hydroxypropylmethylcellulose acetate succinate (HPMCAS) and hydrophobic additives in the outer shell for colon targeting. J. Control. Release, 2001, 70(1-2), 97-107.
[http://dx.doi.org/10.1016/S0168-3659(00)00332-1] [PMID: 11166411]
[21]
Rubinstein, A.; Radai, R.; Ezra, M.; Pathak, S.; Rokem, J.S. In vitro evaluation of calcium pectinate: A potential colon-specific drug delivery carrier. Pharm. Res., 1993, 10(2), 258-263.
[http://dx.doi.org/10.1023/A:1018995029167] [PMID: 8456074]
[22]
Lorenzo-Lamosa, M.L.; Remuñán-López, C.; Vila-Jato, J.L.; Alonso, M.J. Design of microencapsulated chitosan microspheres for colonic drug delivery. J. Control. Release, 1998, 52(1-2), 109-118.
[http://dx.doi.org/10.1016/S0168-3659(97)00203-4] [PMID: 9685941]
[23]
Wong, D.; Larrabeo, S.; Clifford, K. Tremblay.; Friend, DR.; USP dissolution apparatus III (reciprocating cylinder) for screening of guar-based colonic delivery formulation. J. Control. Release, 1997, 47, 173-179.
[http://dx.doi.org/10.1016/S0168-3659(97)01633-7]
[24]
Rubinstein, A.; Nakar, D.; Sintov, A. Chondroitin sulfate: A potential biodegradable carrier for colon-specific drug delivery. Int. J. Pharm., 1992, 84(2), 141-150.
[http://dx.doi.org/10.1016/0378-5173(92)90054-6]
[25]
Krishnaiah, Y.S.; Seetha Devi, A.; Nageswara Rao, L.; Bhaskar Reddy, P.R.; Karthikeyan, R.S.; Satyanarayana, V. Guar gum as a carrier for colon specific delivery; influence of metronidazole and tinidazole on in vitro release of albendazole from guar gum matrix tablets. J. Pharm. Pharm. Sci., 2001, 4(3), 235-243.
[PMID: 11737989]
[26]
Milojevic, S.; Newton, J.M.; Cummings, J.H.; Gibson, G.R.; Louise Botham, R.; Ring, S.G.; Stockham, M.; Allwood, M.C. Amylose as a coating for drug delivery to the colon: Preparation and in vitro evaluation using 5-aminosalicylic acid pellets. J. Control. Release, 1996, 38(1), 75-84.
[http://dx.doi.org/10.1016/0168-3659(95)00112-3]
[27]
Lin, S.Y.; Ayres, J.W. Calcium alginate beads as core carriers of 5-aminosalicylic acid. Pharm. Res., 1992, 9(9), 1128-1131.
[http://dx.doi.org/10.1023/A:1015887318767] [PMID: 1409392]
[28]
Liu, F.; Moreno, P.; Basit, A.W. A novel double-coating approach for improved pH-triggered delivery to the ileo-colonic region of the gastrointestinal tract. Eur. J. Pharm. Biopharm., 2010, 74(2), 311-315.
[http://dx.doi.org/10.1016/j.ejpb.2009.11.008] [PMID: 19932177]
[29]
Fernandez-Hervas, M.J.; Fell, J.T. In vitro assessment of pectin/chitosan combos as coatings for colon particular drug transport. Int. J. Pharm., 1998, 169, 115-119.
[http://dx.doi.org/10.1016/S0378-5173(98)00114-8]
[30]
Rubinstein, A.; Nakar, D.; Sintov, A. Colonic drug delivery: Increased release of indomethacin from cross-linked Chondritin matrix in rat cecal content. Pharm. Res., 1992, 9(2), 276-278.
[http://dx.doi.org/10.1023/A:1018910128452] [PMID: 1553354]
[31]
Hideyuki, T.; Tomokazu, O.; Naoki, O. Chitosan capsules for colon-specific drug delivery. increased localisation of 5- aminosalicylic acid in the large intestine speeds up the healing of TNBS-induced colitis in rats. J. Control. Release, 2002, 82(1), 51-61.
[http://dx.doi.org/10.1016/S0168-3659(02)00084-6] [PMID: 12106976]
[32]
Sekigawa, F.; Onda, Y. Coated solid medicament form having releasability in large intestine. Patent US5217720, 1993.
[33]
Li, J.; Yang, L.; Ferguson, S.M.; Hudson, T.J.; Watanabe, S.; Katsuma, M.; Fix, J.A. In vitro evaluation of dissolution behavior for a co-lon-specific drug delivery system (CODES™) in multi-pH media using United States Pharmacopeia apparatus II and III. AAPS PharmSciTech, 2002, 3(4), 59.
[http://dx.doi.org/10.1208/pt030433] [PMID: 12916927]
[34]
Newton, J.M.; Siew, L.F. US20036534549 2003.
[35]
Zhang, L.; Zhu, W.; Yang, C.; Guo, H.; Yu, A.; Ji, J.; Gao, Y.; Sun, M.; Zhai, G. A novel folate-modified self-microemulsifying drug delivery system of curcumin for colon targeting. Int. J. Nanomedicine, 2012, 7, 151-162.
[PMID: 22275831]
[36]
Yoshida, T.; Lai, T.C.; Kwon, G.S.; Sako, K. pH- and ion-sensitive polymers for drug delivery. Expert Opin. Drug Deliv., 2013, 10(11), 1497-1513.
[http://dx.doi.org/10.1517/17425247.2013.821978] [PMID: 23930949]
[37]
Crowe, J.S.; Roberts, K.J.; Carlton, T.M.; Maggiore, L.; Cubitt, M.F.; Ray, K.P.; Donnelly, M.C.; Wahlich, J.C.; Humphreys, J.I.; Robinson, J.R.; Whale, G.A.; West, M.R. Oral delivery of the anti-tumor necrosis factor α domain antibody, V565, results in high intestinal and fecal concentrations with minimal systemic exposure in cynomolgus monkeys. Drug Dev. Ind. Pharm., 2019, 45(3), 387-394.
[http://dx.doi.org/10.1080/03639045.2018.1542708] [PMID: 30395728]
[38]
Lin, C.; Ng, H.; Pan, W.; Chen, H.; Zhang, G.; Bian, Z.; Lu, A.; Yang, Z. Exploring different strategies for efficient delivery of colorectal cancer therapy. Int. J. Mol. Sci., 2015, 16(11), 26936-26952.
[http://dx.doi.org/10.3390/ijms161125995] [PMID: 26569228]
[39]
Park, H.J.; Jung, H.J.; Ho, M.J.; Lee, D.R.; Cho, H.R.; Choi, Y.S.; Jun, J.; Son, M.; Kang, M.J. Colon-targeted delivery of solubilized bisacodyl by doubly enteric-coated multiple-unit tablet. Eur. J. Pharm. Sci., 2017, 102, 172-179.
[http://dx.doi.org/10.1016/j.ejps.2017.03.006] [PMID: 28279763]
[40]
Ramirez, H.L.; Valdivia, A.; Cao, R.; Fragoso, A.; Torres Labandeira, J.J.; Baños, M.; Villalonga, R. Preparation of β-cyclodextrin-dextran polymers and their use as supramolecular carrier systems for naproxen. Polym. Bull., 2007, 59(5), 597-605.
[http://dx.doi.org/10.1007/s00289-007-0803-8]
[41]
Larsen, C.; Harboe, E.; Johansen, M. Olesen, HP Macromolecular prodrugs. XVI. Colon targeted delivery comparison of the rate of release of naproxen from dextran ester prodrugs in homogenates of various segments of the pig gastrointestinal tract. Pharm. Res., 1989, 995-999.
[42]
Lee, J.S.; Jung, Y.J.; Doh, M.J.; Kim, Y.M. Synthesis and properties of dextran nalidixic acid ester as a colon-specific prodrug of nalidixic acid. Drug Develop. Indust. Pharm., 2001, 27(4), 331-336.
[http://dx.doi.org/10.1081/DDC-100103732]
[43]
Larsen, C.; Jensen, B.H. Bioavailability of ketoprofen from orally administered ketoprofen dextran ester prodrugs in the pig. Acta Pharm. Nord., 1991.
[44]
Shrivastava, S.K.; Shrivastava, P.K.; Shrivastava, A.; Sinha, S.K. Dextran carrier macromolecules for colon-specific delivery of 5-aminosalicylic acid. Indian J. Pharm. Sci., 2013, 75(3), 277-283.
[http://dx.doi.org/10.4103/0250-474X.117420] [PMID: 24082343]
[45]
Foppoli, A.; Maroni, A.; Moutaharrik, S.; Melocchi, A.; Zema, L.; Palugan, L.; Cerea, M.; Gazzaniga, A. In vitro and human pharmacoscintigraphic evaluation of an oral 5-ASA delivery system for colonic release. Int. J. Pharm., 2019, 572, 118723.
[http://dx.doi.org/10.1016/j.ijpharm.2019.118723] [PMID: 31628978]
[46]
Szejtli, J. Introduction and general overview of cyclodextrin chemistry. Chem. Rev., 1998, 98(5), 1743-1754.
[http://dx.doi.org/10.1021/cr970022c]
[47]
Hirayama, F.; Minami, K.; Uekama, K. In-vitro evaluation of biphenylyl acetic acid-beta-cyclodextrin conjugates as colon-targeting pro-drugs: Drug release behaviour in rat biological media. J. Pharm. Pharmacol., 2011, 48(1), 27-31.
[http://dx.doi.org/10.1111/j.2042-7158.1996.tb05871.x] [PMID: 8722490]
[48]
Chourasia, M.K.; Jain, S.K. Pharmaceutical approaches to colon targeted drug delivery systems. J. Pharm. Pharm. Sci., 2003, 6(1), 33-66.
[PMID: 12753729]
[49]
Maurer, J.M.; Schellekens, R.C.A.; van Rieke, H.M.; Stellaard, F.; Wutzke, K.D.; Buurman, D.J.; Dijkstra, G.; Woerdenbag, H.J.; Frijlink, H.W.; Kosterink, J.G.W. ColoPulse tablets perform comparably in healthy volunteers and Crohn’s patients and show no influence of food and time of food intake on bioavailability. J. Control. Release, 2013, 172(3), 618-624.
[http://dx.doi.org/10.1016/j.jconrel.2013.09.021] [PMID: 24096020]
[50]
Vaidya, A.; Jain, S.; Agrawal, R.K.; Jain, S.K. Pectin-metronidazole prodrug bearing microspheres for colon targeting. J. Saudi Chem. Soc., 2015, 19(3), 257-264.
[http://dx.doi.org/10.1016/j.jscs.2012.03.001]
[51]
Hales, D.; Tefas, L.R.; Tomuță, I.; Moldovan, C.; Gulei, D.; Munteanu, R.; Porfire, A. Development of a curcumin-loaded polymeric microparticulate oral drug delivery system for colon targeting by quality-by-design approach. Pharmaceutics, 2020, 12(11), 1027.
[http://dx.doi.org/10.3390/pharmaceutics12111027] [PMID: 33121175]
[52]
Sabra, R.; Roberts, C.J.; Billa, N. Courier properties of modified citrus pectinate-chitosan nanoparticles in colon delivery of curcumin. Colloid Interface Sci. Commun., 2019, 32, 100192.
[http://dx.doi.org/10.1016/j.colcom.2019.100192]
[53]
Umadevi, S.K.; Thiruganesh, R.; Suresh, S.; Reddy, K.B. Formulation and evaluation of chitosan microspheres of aceclofenac for colon-targeted drug delivery. Biopharm. Drug Dispos., 2010, 31(7), 407-427.
[http://dx.doi.org/10.1002/bdd.722] [PMID: 20848388]
[54]
Kumar, S.; Kaur, R.; Sharma, R.K. Formulation and evaluation of Microspheres for Colon targeted delivery of Ondansetron. Int. J. Res. Develop. Pharm. Life Sci., 2018, 7(5), 3083-3091.
[http://dx.doi.org/10.21276/IJRDPL.2278-0238.2018.7(5).3083-3091]
[55]
Dhas, S.K.; Deshmukh, G. Formulation and evaluation of meloxicam microspheres for colon targeted drug delivery. Asian J. Pharm. Clin. Res., 2021, 14(8), 45-51.
[http://dx.doi.org/10.22159/ajpcr.2021.v14i8.38482]
[56]
Ren, Y.; Jiang, L.; Yang, S.; Gao, S.; Yu, H.; Hu, J.; Hu, D.; Mao, W.; Peng, H.; Zhou, Y. Design and preparation of a novel colon-targeted tablet of hydrocortisone. Braz. J. Pharm. Sci., 2016, 52(2), 239-250.
[http://dx.doi.org/10.1590/S1984-82502016000200002]
[57]
Ranjan Kar, N.; Dinda, S.C. Formulation design and characterization of colon-targeted mesalamine microspheres and their biodistribution potential study in mice. As. J. Pharm., 2018, 14(4), 1481-1494.
[58]
Karan, S.; Choudhury, H.; Chakra, B.K.; Chatterjee, T.K. Polymeric Microsphere Formulation for Colon Targeted Delivery of 5-Fluorouracil Using Biocompatible Natural Gum Katira. Asian Pac. J. Cancer Prev., 2019, 20(7), 2181-2194.
[http://dx.doi.org/10.31557/APJCP.2019.20.7.2181] [PMID: 31350983]
[59]
Bharti, C.; Nagaich, U.; Pandey, J.; Jain, S.; Jain, N. Development of nitazoxanide-loaded colon-targeted formulation for intestinal parasitic infections: Centre composite design-based optimization and characterization. Future Journal of Pharmaceutical Sciences, 2020, 6(1), 119.
[http://dx.doi.org/10.1186/s43094-020-00130-1]
[60]
Jha, M.K. Modified release formulations to achieve the quality target product profile (QTPP). Int. J. Pharm. Sci. Res., 2012, 3, 2376-2386.
[61]
Streubel, A.; Siepmann, J.; Bodmeier, R. Gastroretentive drug delievery system. Expert opinion on drug delivery, 2006, 3, 217-233.
[62]
Kawatra, M.; Jain, U.; Raman, J. Recent advances in floating microspheres as gastro retentive drug delivery system: A Review. International Journal of Recent Advances in Parmaceutical Research, 2012, 2, 1-23.
[63]
Bramhankar, D.M.; Jaiswal, S.B. Biopharmaceutics and Pharmacokinetics A Treatise, 2nd ed; Vallabh Prakashan: New Delhi, 2009, pp. 222-240.
[64]
Prasanth, V.; Moy, V.; Chakraborthy, A. Microspheres: An overview. Int. J. Res. Pharm. Biomed. Sci., 2011, 2, 332-338.
[65]
Fu, X.; Ping, Q.; Gao, Y. Effects of formulation factors on encapsulation efficiency and release behaviour in vitro of huperzine A-PLGA microspheres. J. Microencapsul., 2005, 22(7), 705-714.
[http://dx.doi.org/10.1080/02652040500162196] [PMID: 16421082]
[66]
Ghalop, S.B.; Banerjee, S.K.; Throat, R.M. Hollow microsphere a Review. Int. J. Pharm. Sci. Rev. Res., 2010, 1, 10-15.
[67]
Kataria, S.; Middha, A.; Sandhu, P.; Microsphere, A. Review. Int. J. Res. Pharm. Chem., 2011, 1, 1184-1198.
[68]
Kunchu, K.; Ashwani, R.V. Albumin microspheres: An unique system as drug delivery Carriers for non-steroidal anti-inflammatory drugs (NSAIDS). Int. J. Pharm. Sci. Rev. Res., 2010, 5, 10-17.
[69]
Kuriokase, A.B.; Sathireddy, P.; Padma, P.A. A review on microspheres. Glob. J. Pharmacol., 2015, 9, 28-29.
[70]
Jain, N.K. Controlled and Novel drug delivery; CBS Publishers: New Delhi, 2004.
[71]
Khar, R.K.; Vyas, S.P. Targeted and Controlled Drug Delivery - Novel Carrier System; CBS Publication and Distributors: New Delhi, 2002.
[72]
Lachman, L.; Lieberman, H.A.; Kanig, J.L. The Theory and Practice of Industrial Pharmacy; Lea and Febiger: Philadelphia, 1987.
[73]
Uzbas, T.S.; Akbuga, J. Controlled release of interleukin-2 from Chitosan microspheres. J. Pharm. Sci., 2012, 91, 1245-1251.
[74]
Garg, R.; Gupta, G.D. Progress in controlled gastro retentive delivery systems. Trop. J. Pharm. Res., 2008, 7(3), 1055-1066.
[http://dx.doi.org/10.4314/tjpr.v7i3.14691]
[75]
Madhav, N.V.S.; Kala, S. Review on microparticulate drug delivery system. Int. J. Pharm. Tech. Res., 2011, 3, 1242-1254.
[76]
Parmar, H.; Bakhliwal, S.; Gujhrati, N. Different methods of formulation and evaluation of Mucoadhesive microspheres. Int J. App. Bio. Pharma. Tech, 2010, 1, 1160-1163.
[77]
Ravi, S.; Peh, K.; Darwis, Y.; Murthy, B. Development and characterization of polymeric microspheres for controlled release protein loaded drug delivery syste. Indian J. Pharm. Sci., 2008, 70(3), 303-309.
[http://dx.doi.org/10.4103/0250-474X.42978] [PMID: 20046737]
[78]
Srivastava, P.; Visht, S. Application and advancement of microspheres as controlled drug delivery system. Int. J. Pharm. Life Sci., 2013, 4, 2583-2594.
[79]
Ansari, M.; Sadarani, B.; Majumdar, A. Colon targeted beads loaded with pterostilbene: Formulation, optimization, characterization and in vivo evaluation. Saudi Pharm. J., 2019, 27(1), 71-81.
[http://dx.doi.org/10.1016/j.jsps.2018.07.021] [PMID: 30662309]
[80]
Ahmad, M.Z.; Akhter, S.; Anwar, M.; Ahmad, F.J. Assam Bora rice starch based biocompatible mucoadhesive microsphere for targeted delivery of 5-fluorouracil in colorectal cancer. Mol. Pharm., 2012, 9(11), 2986-2994.
[http://dx.doi.org/10.1021/mp300289y] [PMID: 22994847]
[81]
Asghar, L.F.; Chandran, S. Multiparticulate formulation approach to colon specific drug delivery: Current perspectives. J. Pharm. Pharm. Sci., 2006, 9(3), 327-338. [- PubMed].
[PMID: 17207416]
[82]
Atyabi, F.; Majzoob, S.; Iman, M.; Salehi, M.; Dorkoosh, F. In vitro evaluation and modification of pectinate gel beads containing trimethyl chitosan, as a multi-particulate system for delivery of water-soluble macromolecules to colon. Carbohydr. Polym., 2005, 61(1), 39-51.
[http://dx.doi.org/10.1016/j.carbpol.2005.02.005]
[83]
Bond, J.H. Polyp guideline: Diagnosis, treatment, and surveillance for patients with nonfamilial colorectal polyps. Ann. Intern. Med., 1993, 119(8), 836-843.
[http://dx.doi.org/10.7326/0003-4819-119-8-199310150-00010] [PMID: 8379605]
[84]
Bourgeois, S.; Tsapis, N.; Honnas, H.; Andremont, A.; Shakweh, M.; Besnard, M.; Fattal, E. Colonic delivery of β-lactamases does not affect amoxicillin pharmacokinetics in rats. J. Pharm. Sci., 2008, 97(5), 1853-1863.
[http://dx.doi.org/10.1002/jps.21115] [PMID: 17803197]
[85]
Chambin, O.; Dupuis, G.; Champion, D.; Voilley, A.; Pourcelot, Y. Colon-specific drug delivery: Influence of solution reticulation properties upon pectin beads performance. Int. J. Pharm., 2006, 321(1-2), 86-93.
[http://dx.doi.org/10.1016/j.ijpharm.2006.05.015] [PMID: 16790326]
[86]
Chiou, Y.S.; Tsai, M.L.; Wang, Y.J.; Cheng, A.C.; Lai, W.M.; Badmaev, V.; Ho, C.T.; Pan, M.H. Pterostilbene inhibits colorectal aberrant crypt foci (ACF) and colon carcinogenesis via suppression of multiple signal transduction pathways in azoxymethane-treated mice. J. Agric. Food Chem., 2010, 58(15), 8833-8841.
[http://dx.doi.org/10.1021/jf101571z] [PMID: 20681671]
[87]
Das, S.; Ng, K.Y.; Ho, P.C. Formulation and optimization of zinc-pectinate beads for the controlled delivery of resveratrol. AAPS PharmSciTech, 2010, 11(2), 729-742.
[http://dx.doi.org/10.1208/s12249-010-9435-7] [PMID: 20440587]
[88]
El-Gibaly, I. Oral delayed-release system based on Zn-pectinate gel (ZPG) microparticles as an alternative carrier to calcium pectinate beads for colonic drug delivery. Int. J. Pharm., 2002, 232(1-2), 199-211.
[http://dx.doi.org/10.1016/S0378-5173(01)00903-6] [PMID: 11790504]
[89]
Gadalla, H.H.; Soliman, G.M.; Mohammed, F.A.; El-Sayed, A.M. Development and in vitro/in vivo evaluation of Zn-pectinate microparticles reinforced with chitosan for the colonic delivery of progesterone. Drug Deliv., 2016, 23(7), 2541-2554.
[http://dx.doi.org/10.3109/10717544.2015.1028602] [PMID: 25853478]
[90]
Jose, S.; Prema, M.T.; Chacko, A.J.; Thomas, A.C.; Souto, E.B. Colon specific chitosan microspheres for chronotherapy of chronic stable angina. Colloids Surf. B Biointerfaces, 2011, 83(2), 277-283.
[http://dx.doi.org/10.1016/j.colsurfb.2010.11.033] [PMID: 21194900]
[91]
Souder, J.C.; Ellenbogen, W.C. Control of d-amphetamine sulphate sustained release capsule. Drug Standards., 1985, 26, 77-79.
[http://dx.doi.org/10.1016/j.jscs.2012.03.001]
[92]
Sinha, V.R.; Trehan, A. Biodegradable microspheres for protein delivery. J. Control. Release, 2003, 90(3), 261-280.
[http://dx.doi.org/10.1016/S0168-3659(03)00194-9] [PMID: 12880694]
[93]
Mundargi, R.C.; Babu, V.R.; Rangaswamy, V.; Patel, P.; Aminabhavi, T.M. Nano/micro technologies for delivering macromolecular therapeutics using poly(d,l-lactide-co-glycolide) and its derivatives. J. Control. Release, 2008, 125(3), 193-209.
[http://dx.doi.org/10.1016/j.jconrel.2007.09.013] [PMID: 18083265]
[94]
Gomez, A.; Bingham, D.; Juan, L.; Tang, K. Production of protein nanoparticles by electrospray drying. J. Aerosol Sci., 1998, 29(5-6), 561-574.
[http://dx.doi.org/10.1016/S0021-8502(97)10031-3]
[95]
Blanco, D.; Alonso, M.J. Protein encapsulation and release from poly(lactide-co-glycolide) microspheres: Effect of the protein and polymer properties and of the co-encapsulation of surfactants. Eur. J. Pharm. Biopharm., 1998, 45(3), 285-294.
[http://dx.doi.org/10.1016/S0939-6411(98)00011-3] [PMID: 9653633]
[96]
Elsaid, K.A.; Ubhe, A.; Shaman, Z.; D’Souza, G. Intra-articular interleukin-1 receptor antagonist (IL1-ra) microspheres for posttraumatic osteoarthritis: in vitro biological activity and in vivo disease modifying effect. J. Exp. Orthop., 2016, 3(1), 18.
[http://dx.doi.org/10.1186/s40634-016-0054-4] [PMID: 27539076]
[97]
Wan, F.; Maltesen, M.J.; Andersen, S.K.; Bjerregaard, S.; Foged, C.; Rantanen, J.; Yang, M. One-step production of protein-loaded PLGA microparticles via spray drying using 3-fluid nozzle. Pharm. Res., 2014, 31(8), 1967-1977.
[http://dx.doi.org/10.1007/s11095-014-1299-1] [PMID: 24549821]
[98]
Al-Khattawi, A.; Bayly, A.; Phillips, A.; Wilson, D. The design and scale-up of spray dried particle delivery systems. Expert Opin. Drug Deliv., 2018, 15(1), 47-63.
[http://dx.doi.org/10.1080/17425247.2017.1321634] [PMID: 28423954]
[99]
Li, X.; Anton, N.; Arpagaus, C.; Belleteix, F.; Vandamme, T.F. Nanoparticles by spray drying using innovative new technology: The Büchi Nano Spray Dryer B-90. J. Control. Release, 2010, 147(2), 304-310.
[http://dx.doi.org/10.1016/j.jconrel.2010.07.113] [PMID: 20659510]
[100]
Johansen, P.; Men, Y.; Audran, R.; Corradin, G.; Merkle, H.P.; Gander, B. Improving stability and release kinetics of microencapsulated tetanus toxoid by co-encapsulation of additives. Pharm. Res., 1998, 15(7), 1103-1110.
[http://dx.doi.org/10.1023/A:1011998615267] [PMID: 9688067]
[101]
Bilati, U.; Allémann, E.; Doelker, E. Strategic approaches for overcoming peptide and protein instability within biodegradable nano- and microparticles. Eur. J. Pharm. Biopharm., 2005, 59(3), 375-388.
[http://dx.doi.org/10.1016/j.ejpb.2004.10.006] [PMID: 15760718]
[102]
Harsha, S.; E Aldhubiab, B. ; Nair, A.; Abdulrahman Alhaider, I.; Attimarad, M.; Narayanaswamay, V.; Srinivasan, V.; Gangadhara, N.; Asif, A. Nanoparticle formulation by Büchi B-90 Nano Spray Dryer for oral mucoadhesion. Drug Des. Devel. Ther., 2015, 9, 273-282.
[http://dx.doi.org/10.2147/DDDT.S66654] [PMID: 25670882]
[103]
Berkland, C.; Kipper, M.J.; Narasimhan, B.; Kim, K.K.; Pack, D.W. Microsphere size, precipitation kinetics and drug distribution control drug release from biodegradable polyanhydride microspheres. J. Control. Release, 2004, 94(1), 129-141.
[http://dx.doi.org/10.1016/j.jconrel.2003.09.011] [PMID: 14684277]
[104]
Kim, K.; Pack, D. Microspheres for drug delivery. In: BioMEMS and Biomedical Nanotechnology; Ferrari, M.; Lee, A.; Lee, L.J., Eds.; Springer, US, 2006; pp. 19-50.
[http://dx.doi.org/10.1007/978-0-387-25842-3_2]
[105]
Xia, Y.; Ribeiro, P.F.; Pack, D.W. Controlled protein release from monodisperse biodegradable double-wall microspheres of controllable shell thickness. J. Control. Release, 2013, 172(3), 707-714.
[http://dx.doi.org/10.1016/j.jconrel.2013.08.009] [PMID: 23954731]
[106]
Freiberg, S.; Zhu, X.X. Polymer microspheres for controlled drug release. Int. J. Pharm., 2004, 282(1-2), 1-18.
[http://dx.doi.org/10.1016/j.ijpharm.2004.04.013] [PMID: 15336378]
[107]
Hu, X.; Shen, H.; Yang, F.; Liang, X.; Wang, S.; Wu, D. Modified composite microspheres of hydroxyapatite and poly(lactide-co-glycolide) as an injectable scaffold. Appl. Surf. Sci., 2014, 292, 764-772.
[http://dx.doi.org/10.1016/j.apsusc.2013.12.045]
[108]
Lin, Q.; Chen, H.; Li, H.; Cai, Y. Preparation of PLLA/bpV(pic) microspheres and their effect on nerve cells. J. Huazhong Univ. Sci. Technolog. Med. Sci., 2014, 34(1), 76-80.
[http://dx.doi.org/10.1007/s11596-014-1234-z] [PMID: 24496682]
[109]
Chen, R.; Curran, S.; Curran, J.; Hunt, J. The use of poly(l-lactide) and RGD modified microspheres as cell carriers in a flow intermittency bioreactor for tissue engineering cartilage. Biomaterials, 2006, 27(25), 4453-4460.
[http://dx.doi.org/10.1016/j.biomaterials.2006.04.011] [PMID: 16677706]
[110]
Perez, R.A.; Del Valle, S.; Altankov, G.; Ginebra, M.P. Porous hydroxyapatite and gelatin/hydroxyapatite microspheres obtained by calcium phosphate cement emulsion. J. Biomed. Mater. Res. B Appl. Biomater., 2011, 97B(1), 156-166.
[http://dx.doi.org/10.1002/jbm.b.31798] [PMID: 21290594]
[111]
Cai, Y.; Chen, Y.; Hong, X.; Liu, Z.; Yuan, W. Porous microsphere and its applications. Int. J. Nanomedicine, 2013, 8, 1111-1120.
[PMID: 23515359]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy