Generic placeholder image

Drug Delivery Letters

Editor-in-Chief

ISSN (Print): 2210-3031
ISSN (Online): 2210-304X

Research Article

Dry Emulsions based on Alpha Cyclodextrin and Vegetable Oils for Buccal Delivery of Lipophilic Drugs

Author(s): Angela Abruzzo, Bruno Saladini, Francesco Dalena, Fiore P. Nicoletta, Barbara Luppi, Federica Bigucci and Teresa Cerchiara*

Volume 10, Issue 3, 2020

Page: [219 - 227] Pages: 9

DOI: 10.2174/2210303110666200303125449

Price: $65

Abstract

Background: Buccal delivery of drugs can be used as an alternative administration route to conventional oral route avoiding the liver first-pass effect and improving patient compliance.

Objective: The goal of this work was to develop dry emulsions for buccal delivery of ketoprofen, used as a lipophilic model drug. The influence of two vegetable oils, olive oil or wheat germ oil, in the presence of α-cyclodextrin and different drying techniques on the dry emulsion properties was evaluated.

Methods: Emulsions were prepared by adding olive oil or wheat germ oil to an aqueous solution of α-cyclodextrin and subsequently dried through an oven, freeze-dryer or spray-dryer. Dry emulsions were characterized in terms of yield, encapsulation efficiency, morphology and drug solid-state. In vitro drug release and permeation studies were carried out to evaluate dry emulsion ability to release the drug and to allow its permeation through the esophageal porcine epithelium.

Results: The formation of stable and milky emulsion was assured by cyclodextrin ability to interact with oil components obtaining an inclusion complex with amphiphilic property able to act as a surfaceactive agent. The drying process influenced the yield and the encapsulation efficiency, while no significant differences were observed between olive oil and wheat germ oil. Freeze-dried emulsions, selected as the best formulations, resulted in fast release of drug thereby ensuring its permeation across the epithelium.

Conclusion: Dry emulsions prepared with a simple and easy method, using natural ingredients and avoiding synthetic surfactants and organic solvents, could be used for buccal delivery of lipophilic drugs.

Keywords: Ketoprofen, α-cyclodextrin, olive oil, wheat germ oil, dry emulsions, freeze-drying, spray-drying.

Graphical Abstract
[1]
Abruzzo, A.; Nicoletta, F.P.; Dalena, F.; Cerchiara, T.; Luppi, B.; Bigucci, F. Bilayered buccal films as child-appropriate dosage form for systemic administration of propranolol. Int. J. Pharm., 2017, 531(1), 257-265.
[http://dx.doi.org/10.1016/j.ijpharm.2017.08.070] [PMID: 28811117]
[2]
Nazari, K.; Kontogiannidou, E.; Ahmad, R.H.; Gratsani, A.; Rasekh, M.; Arshad, M.S.; Sunar, B.S.; Armitage, A.; Bouropoulos, N.; Chang, M.W.; Li, X.; Fatouros, D.G.; Ahmad, Z. Development and characterisation of cellulose based electrospun mats for buccal delivery of non-steroidal anti-inflammatory drug (NSAID). Eur. J. Pharm. Sci., 2017, 102, 147-155.
[http://dx.doi.org/10.1016/j.ejps.2017.02.033] [PMID: 28249823]
[3]
Badri, W.; Miladi, K.; Nazari, O.A; Greige Gerges, H.; Fessi, H.; Elaissari, A. Encapsulation of NSAIDs for inflammation management: Overview, progress, challenges and prospects. Int. J. Pharm., 2016, 515, 757-773.
[http://dx.doi.org/10.1016/j.ijpharm.2016.11.002] [PMID: 27829170]
[4]
Porter, C.J.H.; Pouton, C.W.; Cuine, J.F.; Charman, W.N. Enhancing intestinal drug solubilisation using lipid-based delivery systems. Adv. Drug Deliv. Rev., 2008, 60(6), 673-691.
[http://dx.doi.org/10.1016/j.addr.2007.10.014] [PMID: 18155801]
[5]
Hamoudi, M.C.; Bourasset, F.; Domergue Dupont, V.; Gueutin, C.; Nicolas, V.; Fattal, E.; Bochot, A. Formulations based on alpha cyclodextrin and soybean oil: an approach to modulate the oral release of lipophilic drugs. J. Control. Release, 2012, 161(3), 861-867.
[http://dx.doi.org/10.1016/j.jconrel.2012.05.032] [PMID: 22634090]
[6]
Bochot, A.; Trichard, L.; Le Bas, G.; Alphandary, H.; Grossiord, J.L.; Duchene, D.; Fattal, E. alpha Cyclodextrin/oil beads: an innovative self-assembling system. Int. J. Pharm., 2007, 339(1-2), 121-129.
[http://dx.doi.org/10.1016/j.ijpharm.2007.02.034] [PMID: 17408890]
[7]
Trichard, L.; Delgado Charro, M.B.; Guy, R.H.; Fattal, E.; Bochot, A. Novel beads made of alpha-cyclodextrin and oil for topical delivery of a lipophilic drug. Pharm. Res., 2008, 25(2), 435-440.
[http://dx.doi.org/10.1007/s11095-007-9395-0] [PMID: 17671830]
[8]
Trichard, L.; Fattal, E.; Besnard, M.; Bochot, A. Alpha-cyclodextrin/oil beads as a new carrier for improving the oral bioavailability of lipophilic drugs. J. Control. Release, 2007, 122(1), 47-53.
[http://dx.doi.org/10.1016/j.jconrel.2007.06.004] [PMID: 17629584]
[9]
Hamoudi, M.; Fattal, E.; Gueutin, C.; Nicolas, V.; Bochot, A. Beads made of cyclodextrin and oil for the oral delivery of lipophilic drugs: in vitro studies in simulated gastro-intestinal fluids. Int. J. Pharm., 2011, 416(2), 507-514.
[http://dx.doi.org/10.1016/j.ijpharm.2011.01.062] [PMID: 21310222]
[10]
Lakkakula, J.R.; Krause, R.W. M A vision for cyclodextrin nanoparticles in drug delivery systems and pharmaceutical applications. Nanomedicine (Lond.), 2014, 9(6), 877-894.
[http://dx.doi.org/10.2217/nnm.14.41] [PMID: 24981652]
[11]
Duchene, D.; Bochot, A.; Yu, S.C.; Pepin, C.; Seiller, M. Cyclodextrins and emulsions. Int. J. Pharm., 2003, 266(1-2), 85-90.
[http://dx.doi.org/10.1016/S0378-5173(03)00384-3] [PMID: 14559397]
[12]
Marques, M.R.C.; Loebenberg, R.; Almukainzi, M. Simulated biological fluids with possible application in dissolution testing. Dissolut. Technol., 2011, 18, 15-28.
[http://dx.doi.org/10.14227/DT180311P15]
[13]
Diaz Del Consuelo, I.; Pizzolato, G.P.; Falson, F.; Guy, R.H.; Jacques, Y. Evaluation of pig esophageal mucosa as a permeability barrier model for buccal tissue. J. Pharm. Sci., 2005, 94(12), 2777-2788.
[http://dx.doi.org/10.1002/jps.20409] [PMID: 16258996]
[14]
Badr Eldin, S.M.; Labib, G.S.; Aburahma, M.H. Eco-friendly Tadalafil Surfactant-Free Dry Emulsion Tablets (SFDETs) stabilized by in situ self-assembled aggregates of natural oil and native cyclodextrins. AAPS PharmSciTech, 2019, 20(7), 255.
[http://dx.doi.org/10.1208/s12249-019-1450-8] [PMID: 31321570]
[15]
Jang, D.J.; Jeong, E.J.; Lee, H.M.; Kim, B.C.; Lim, S.J.; Kim, C.K. Improvement of bioavailability and photostability of amlodipine using redispersible dry emulsion. Eur. J. Pharm. Sci., 2006, 28(5), 405-411.
[http://dx.doi.org/10.1016/j.ejps.2006.04.013] [PMID: 16777390]
[16]
Gavini, E.; Hegge, A.B.; Rassu, G.; Sanna, V.; Testa, C.; Pirisino, G.; Karlsen, J.; Giunchedi, P. Nasal administration of carbamazepine using chitosan microspheres: in vitro/in vivo studies. Int. J. Pharm., 2006, 307(1), 9-15.
[http://dx.doi.org/10.1016/j.ijpharm.2005.09.013] [PMID: 16257156]
[17]
Abruzzo, A.; Cerchiara, T.; Bigucci, F.; Gallucci, M.C.; Luppi, B. Mucoadhesive Buccal Tablets Based on Chitosan/Gelatin Microparticles for Delivery of Propranolol Hydrochloride. J. Pharm. Sci., 2015, 104(12), 4365-4372.
[http://dx.doi.org/10.1002/jps.24688] [PMID: 26505621]
[18]
Rohman, A.; Che, Man Y.B. Quantification and classification of corn and sunflower oils as adulterants in olive oil using chemometrics and FTIR spectra. ScientificWorldJournal, 2012., 2012250795.
[http://dx.doi.org/10.1100/2012/250795] [PMID: 22448127]
[19]
Abruzzo, A.; Zuccheri, G.; Belluti, F.; Provenzano, S.; Verardi, L.; Bigucci, F.; Cerchiara, T.; Luppi, B.; Calonghi, N. Chitosan nanoparticles for lipophilic anticancer drug delivery: Development, characterization and in vitro studies on HT29 cancer cells. Colloids Surf. B Biointerfaces, 2016, 145, 362-372.
[http://dx.doi.org/10.1016/j.colsurfb.2016.05.023] [PMID: 27214786]
[20]
Mura, P.; Moyano, J.R.; Gonzalez Rodriguez, M.L.; Rabasco-Alvarz, A.M.; Cirri, M.; Maestrelli, F. Characterization and dissolution properties of ketoprofen in binary and ternary solid dispersions with polyethylene glycol and surfactants. Drug Dev. Ind. Pharm., 2005, 31(4-5), 425-434.
[http://dx.doi.org/10.1080/03639040500214621] [PMID: 16093208]
[21]
Rumondor, A.C.F.; Dhareshwar, S.S.; Kesisoglou, F. Amorphous solid dispersions or prodrugs: complementary strategies to increase drug absorption. J. Pharm. Sci., 2016, 105(9), 2498-2508.
[http://dx.doi.org/10.1016/j.xphs.2015.11.004] [PMID: 26886316]
[22]
Zhang, L.; Xu, C.; Mao, J.; Wang, W.; Han, H.; Pu, Y.; Zhang, T. Formulation and characterization of novel dry suspension and dry emulsion of 20(s)-protopanaxadiol. AAPS PharmSciTech, 2019, 20(7), 275.
[http://dx.doi.org/10.1208/s12249-019-1487-8] [PMID: 31388863]
[23]
Boateng, J.; Okeke, O. Evaluation of clay-functionalized wafers and films for nicotine replacement therapy via buccal mucosa. Pharmaceutics, 2019, 11(3), 104.
[http://dx.doi.org/10.3390/pharmaceutics11030104] [PMID: 30832244]
[24]
Pyka, A.; Babuska, M.; Zachariasz, M. A comparison of theoretical methods of calculation of partition coefficients for selected drugs. Acta Pol. Pharm., 2006, 63(3), 159-167.
[PMID: 20085219]
[25]
Sheng, J.J.; Kasim, N.A.; Chandrasekharan, R.; Amidon, G.L. Solubilization and dissolution of insoluble weak acid, ketoprofen: effects of pH combined with surfactant. Eur. J. Pharm. Sci., 2006, 29(3,4), 306-314.
[http://dx.doi.org/10.1016/j.ejps.2006.06.006] [PMID: 16982177]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy