Generic placeholder image

Current Stem Cell Research & Therapy

Editor-in-Chief

ISSN (Print): 1574-888X
ISSN (Online): 2212-3946

Research Article

A Novel Nanocomposite Scaffold Based on Polyurethane (PU) Containing Cobalt Nanoparticles (CoNPs) for Bone Tissue Engineering Applications

Author(s): Faezeh Norouz, Delaram Poormoghadam, Raheleh Halabian, Mohsen Ghiasi, Monireh Monfaredi and Ali Salimi*

Volume 18, Issue 8, 2023

Published on: 07 April, 2023

Page: [1120 - 1132] Pages: 13

DOI: 10.2174/1574888X18666230216085615

Price: $65

Abstract

Background: Bone tissue engineering, as a relatively new approach, has focused on combining biodegradable scaffolds, cells, and biologically active molecules for the recovery of different damaged tissues, such as bone defects. Polyurethane (PU), as a synthetic polymer, benefits from a porous structure which impersonates bone's natural environment. However, PU lacks osteoinduction activities. Cobalt nanoparticles (CoNPs) stimulate angiogenesis and biomineralization, which greatly favors osteogenesis.

Methods: Here, we designed a novel scaffold based on PU and combined it with CoNPs for bone regeneration applications. The composition and structure of PU-CoNPs nanocomposite were characterized using Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), and differential scanning calorimetry (DSC). MTT and AO data showed biocompatibility and enhanced viability and proliferation of fibroblasts on PU-CoNPs scaffold. Ascorbic acid-2-phosphate, β-glycerophosphate, and dexamethasone-induced osteogenesis for 14 days.

Results: The alkaline phosphatase test asserts the increased mineralization of hADSCs cultured on PUCoNPs compared to pure PU scaffold. Further, the results disclosed an elevated osteogenic differentiation at the level of genes and proteins using immunocytochemical analysis (ICC) and quantitative real-time PCR (qPCR).

Conclusion: These findings provide an evidence that PU-CoNPs nanocomposite might be a promising candidate for bone repair applications.

Keywords: Stem cells, osteogenic differentiation, cobalt nanoparticles, polyurethane, nanocomposites, tissue engineering.

Graphical Abstract
[1]
Fernandez de Grado G, Keller L, Idoux-Gillet Y, et al. Bone substitutes: a review of their characteristics, clinical use, and perspectives for large bone defects management. J Tissue Eng 2018; 9: 1-18.
[http://dx.doi.org/10.1177/2041731418776819] [PMID: 29899969]
[2]
Wang W, Yeung KWK. Bone grafts and biomaterials substitutes for bone defect repair: A review. Bioact Mater 2017; 2(4): 224-47.
[http://dx.doi.org/10.1016/j.bioactmat.2017.05.007] [PMID: 29744432]
[3]
Ashammakhi N, Hasan A, Kaarela O, et al. Advancing frontiers in bone bioprinting. Adv Healthc Mater 2019; 8(7): 1801048.
[http://dx.doi.org/10.1002/adhm.201801048] [PMID: 30734530]
[4]
Bardsley K, Kwarciak A, Freeman C, Brook I, Hatton P, Crawford A. Repair of bone defects in vivo using tissue engineered hypertrophic cartilage grafts produced from nasal chondrocytes. Biomaterials 2017; 112: 313-23.
[http://dx.doi.org/10.1016/j.biomaterials.2016.10.014] [PMID: 27770634]
[5]
Zhang L, Yang G, Johnson BN, Jia X. Three-dimensional (3D) printed scaffold and material selection for bone repair. Acta Biomater 2019; 84: 16-33.
[http://dx.doi.org/10.1016/j.actbio.2018.11.039] [PMID: 30481607]
[6]
Khademhosseini A, Langer R. A decade of progress in tissue engineering. Nat Protoc 2016; 11(10): 1775-81.
[http://dx.doi.org/10.1038/nprot.2016.123] [PMID: 27583639]
[7]
Zhang L, Webster TJ. Nanotechnology and nanomaterials: Promises for improved tissue regeneration. Nano Today 2009; 4(1): 66-80.
[http://dx.doi.org/10.1016/j.nantod.2008.10.014]
[8]
Shams M, Nezafati N, Poormoghadam D, Zavareh S, Zamanian A, Salimi A. Synthesis and characterization of electrospun bioactive glass nanofibers-reinforced calcium sulfate bone cement and its cell biological response. Ceram Int 2020; 46(8): 10029-39.
[http://dx.doi.org/10.1016/j.ceramint.2019.12.270]
[9]
Norouz F, Halabian R, Salimi A, Ghollasi M. A new nanocomposite scaffold based on polyurethane and clay nanoplates for osteogenic differentiation of human mesenchymal stem cells in vitro. Mater Sci Eng C 2019; 103: 109857.
[http://dx.doi.org/10.1016/j.msec.2019.109857] [PMID: 31349533]
[10]
Azizipour E, Aghamollaei H, Halabian R, et al. A novel hydrogel scaffold contained bioactive glass nanowhisker (BGnW) for osteogenic differentiation of human mesenchymal stem cells (hMSCs) in vitro. Int J Biol Macromol 2021; 174: 562-72.
[http://dx.doi.org/10.1016/j.ijbiomac.2021.01.002] [PMID: 33434552]
[11]
Shams M, Karimi M, Ghollasi M, Nezafati N, Salimi A. Electrospun poly-l-lactic acid nanofibers decorated with melt-derived S53P4 bioactive glass nanoparticles: The effect of nanoparticles on proliferation and osteogenic differentiation of human bone marrow mesenchymal stem cells in vitro. Ceram Int 2018; 44(16): 20211-9.
[http://dx.doi.org/10.1016/j.ceramint.2018.08.005]
[12]
Shams M, Karimi M, Heydari M, Salimi A. Nanocomposite scaffolds composed of Apacite (apatite-calcite) nanostructures, poly (ε-caprolactone) and poly (2-hydroxyethylmethacrylate): The effect of nanostructures on physico-mechanical properties and osteogenic differentiation of human bone marrow mesenchymal stem cells in vitro. Mater Sci Eng C 2020; 117: 111271.
[http://dx.doi.org/10.1016/j.msec.2020.111271] [PMID: 32919635]
[13]
Poormoghadam D, Ghollasi M, Babavalian H, et al. Modification and characterization of an innovative polyvinyl alcohol-45S5 bioactive glass nanocomposite scaffold containing Donepezil hydrochloride for bone tissue engineering applications. Mater Lett 2021; 300: 130160.
[http://dx.doi.org/10.1016/j.matlet.2021.130160]
[14]
Janik H, Marzec M. A review: Fabrication of porous polyurethane scaffolds. Mater Sci Eng C 2015; 48: 586-91.
[http://dx.doi.org/10.1016/j.msec.2014.12.037] [PMID: 25579961]
[15]
Sheikh Z, Najeeb S, Khurshid Z, Verma V, Rashid H, Glogauer M. Biodegradable materials for bone repair and tissue engineering applications. Materials (Basel) 2015; 8(9): 5744-94.
[http://dx.doi.org/10.3390/ma8095273] [PMID: 28793533]
[16]
Da L, Gong M, Chen A, et al. Composite elastomeric polyurethane scaffolds incorporating small intestinal submucosa for soft tissue engineering. Acta Biomater 2017; 59: 45-57.
[http://dx.doi.org/10.1016/j.actbio.2017.05.041] [PMID: 28528117]
[17]
Shahrousvand E, Shahrousvand M, Ghollasi M, et al. Preparation and evaluation of polyurethane/cellulose nanowhisker bimodal foam nanocomposites for osteogenic differentiation of hMSCs. Carbohydr Polym 2017; 171: 281-91.
[http://dx.doi.org/10.1016/j.carbpol.2017.05.027] [PMID: 28578965]
[18]
Shrestha S, Shrestha BK, Ko SW, Kandel R, Park CH, Kim CS. Engineered cellular microenvironments from functionalized multiwalled carbon nanotubes integrating Zein/Chitosan @Polyurethane for bone cell regeneration. Carbohydr Polym 2021; 251: 117035.
[http://dx.doi.org/10.1016/j.carbpol.2020.117035] [PMID: 33142593]
[19]
Jaganathan SK, Mani MP, Palaniappan SK, Rathanasamy R. Fabrication and characterisation of nanofibrous polyurethane scaffold incorporated with corn and neem oil using single stage electrospinning technique for bone tissue engineering applications. J Polym Res 2018; 25(7): 146.
[http://dx.doi.org/10.1007/s10965-018-1543-1]
[20]
Poormoghadam D, Almasi A, Ashrafizadeh M, Sarem Vishkaei A, Rezayat SM, Tavakol S. The particle size of drug nanocarriers dictates the fate of neurons; critical points in neurological therapeutics. Nanotechnology 2020; 31(33): 335101.
[http://dx.doi.org/10.1088/1361-6528/ab8d6b] [PMID: 32479427]
[21]
Nobile S, Nobile L. Nanotechnology for biomedical applications: Recent advances in neurosciences and bone tissue engineering. Polym Eng Sci 2017; 57(7): 644-50.
[http://dx.doi.org/10.1002/pen.24595]
[22]
Braddock M. Nanomedicines: design, delivery and detection. (1st ed.), London: Royal Society of Chemistry 2016.
[23]
Eivazzadeh-Keihan R, Bahojb Noruzi E, Khanmohammadi Chenab K, et al. Metal‐based nanoparticles for bone tissue engineering. J Tissue Eng Regen Med 2020; 14(12): 1687-714.
[http://dx.doi.org/10.1002/term.3131] [PMID: 32914573]
[24]
de Laia AGS, Barrioni BR, Valverde TM, de Goes AM, de Sá MA, Pereira MM. Therapeutic cobalt ion incorporated in poly(vinyl alcohol)/bioactive glass scaffolds for tissue engineering. J Mater Sci 2020; 55(20): 8710-27.
[http://dx.doi.org/10.1007/s10853-020-04644-0]
[25]
Kermani F, Mollazadeh Beidokhti S, Baino F, Gholamzadeh-Virany Z, Mozafari M, Kargozar S. Strontium-and cobalt-doped multicomponent mesoporous bioactive glasses (MBGs) for potential use in bone tissue engineering applications. Materials (Basel) 2020; 13(6): 1348.
[http://dx.doi.org/10.3390/ma13061348] [PMID: 32188165]
[26]
Fani N, Farokhi M, Azami M, et al. Endothelial and osteoblast differentiation of adipose-derived mesenchymal stem cells using a cobalt-doped CaP/silk fibroin scaffold. ACS Biomater Sci Eng 2019; 5(5): 2134-46.
[http://dx.doi.org/10.1021/acsbiomaterials.8b01372] [PMID: 33405716]
[27]
Liu G, Wang X, Zhou X, et al. Modulating the cobalt dose range to manipulate multisystem cooperation in bone environment: a strategy to resolve the controversies about cobalt use for orthopedic applications. Theranostics 2020; 10(3): 1074-89.
[http://dx.doi.org/10.7150/thno.37931] [PMID: 31938052]
[28]
Deng Z, Lin B, Jiang Z, et al. Hypoxia-mimicking cobalt-doped borosilicate bioactive glass scaffolds with enhanced angiogenic and osteogenic capacity for bone regeneration. Int J Biol Sci 2019; 15(6): 1113-24.
[http://dx.doi.org/10.7150/ijbs.32358] [PMID: 31223273]
[29]
Zheng Y, Yang Y, Deng Y. Dual therapeutic cobalt-incorporated bioceramics accelerate bone tissue regeneration. Mater Sci Eng C 2019; 99: 770-82.
[http://dx.doi.org/10.1016/j.msec.2019.02.020] [PMID: 30889752]
[30]
Shahrousvand M, Hoseinian MS, Ghollasi M, Karbalaeimahdi A, Salimi A, Tabar FA. Flexible magnetic polyurethane/Fe2O3 nanoparticles as organic-inorganic nanocomposites for biomedical applications: Properties and cell behavior. Mater Sci Eng C 2017; 74: 556-67.
[http://dx.doi.org/10.1016/j.msec.2016.12.117] [PMID: 28254331]
[31]
Shamsi M, Karimi M, Ghollasi M, et al. In vitro proliferation and differentiation of human bone marrow mesenchymal stem cells into osteoblasts on nanocomposite scaffolds based on bioactive glass (64SiO2 -31CaO-5P2O5)-poly-l-lactic acid nanofibers fabricated by electrospinning method. Mater Sci Eng C 2017; 78: 114-23.
[http://dx.doi.org/10.1016/j.msec.2017.02.165] [PMID: 28575950]
[32]
Hoppe A, Jokic B, Janackovic D, et al. Cobalt-releasing 1393 bioactive glass-derived scaffolds for bone tissue engineering applications. ACS Appl Mater Interfaces 2014; 6(4): 2865-77.
[http://dx.doi.org/10.1021/am405354y] [PMID: 24476347]
[33]
Dvir T, Timko BP, Kohane DS, Langer R. Nanotechnological strategies for engineering complex tissues. Nat Nanotechnol 2011; 6(1): 13-22.
[http://dx.doi.org/10.1038/nnano.2010.246] [PMID: 21151110]
[34]
Birmingham E, Niebur GL, McHugh PE, Shaw G, Barry FP, McNamara LM. Osteogenic differentiation of mesenchymal stem cells is regulated by osteocyte and osteoblast cells in a simplified bone niche. Eur Cell Mater 2012; 23: 13-27.
[http://dx.doi.org/10.22203/eCM.v023a02] [PMID: 22241610]
[35]
Iqbal N, Khan AS, Asif A, Yar M, Haycock JW, Rehman IU. Recent concepts in biodegradable polymers for tissue engineering paradigms: a critical review. Int Mater Rev 2019; 64(2): 91-126.
[http://dx.doi.org/10.1080/09506608.2018.1460943]
[36]
Rao SH, Harini B, Shadamarshan RPK, Balagangadharan K, Selvamurugan N. Natural and synthetic polymers/bioceramics/bioactive compounds-mediated cell signalling in bone tissue engineering. Int J Biol Macromol 2018; 110: 88-96.
[http://dx.doi.org/10.1016/j.ijbiomac.2017.09.029] [PMID: 28917940]
[37]
Mi HY, Palumbo S, Jing X, Turng LS, Li WJ, Peng XF. Thermoplastic polyurethane/hydroxyapatite electrospun scaffolds for bone tissue engineering: Effects of polymer properties and particle size. J Biomed Mater Res B Appl Biomater 2014; 102(7): 1434-44.
[http://dx.doi.org/10.1002/jbm.b.33122] [PMID: 24574168]
[38]
Vyas VK, Sampath Kumar A, Singh SP, Pyare R. Effect of cobalt oxide substitution on mechanical behaviour and elastic properties of bioactive glass and glass-ceramics. Trans Indian Ceram Soc 2016; 75(1): 12-9.
[http://dx.doi.org/10.1080/0371750X.2016.1149098]
[39]
Ghali O, Broux O, Falgayrac G, et al. Dexamethasone in osteogenic medium strongly induces adipocyte differentiation of mouse bone marrow stromal cells and increases osteoblast differentiation. BMC Cell Biol 2015; 16(1): 9.
[http://dx.doi.org/10.1186/s12860-015-0056-6] [PMID: 25887471]
[40]
Hadzir SN, Ibrahim SN, Abdul Wahab RM, et al. Ascorbic acid induces osteoblast differentiation of human suspension mononuclear cells. Cytotherapy 2014; 16(5): 674-82.
[http://dx.doi.org/10.1016/j.jcyt.2013.07.013] [PMID: 24176546]
[41]
Orimo H. The mechanism of mineralization and the role of alkaline phosphatase in health and disease. J Nippon Med Sch 2010; 77(1): 4-12.
[http://dx.doi.org/10.1272/jnms.77.4] [PMID: 20154452]
[42]
Liu TM, Lee EH. Transcriptional regulatory cascades in Runx2-dependent bone development. Tissue Eng Part B Rev 2013; 19(3): 254-63.
[http://dx.doi.org/10.1089/ten.teb.2012.0527] [PMID: 23150948]
[43]
Chen M, Le DQ, Hein S, et al. Fabrication and characterization of a rapid prototyped tissue engineering scaffold with embedded multicomponent matrix for controlled drug release. Int J Nanomedicine 2012; 7: 4285-97.
[http://dx.doi.org/10.2147/IJN.S33083] [PMID: 22904634]
[44]
Liu X, Cao M, Palomares M, et al. Metastatic breast cancer cells overexpress and secrete miR-218 to regulate type I collagen deposition by osteoblasts. Breast Cancer Res 2018; 20(1): 127.
[http://dx.doi.org/10.1186/s13058-018-1059-y] [PMID: 30348200]
[45]
Salehi R, Hashemibeni B, Esfandiari E, Bahrambeigi V. Transcriptomic comparison of osteopontin, osteocalcin and core binding factor 1 genes between human adipose derived differentiated osteoblasts and native osteoblasts. Adv Biomed Res 2012; 1(1): 8.
[http://dx.doi.org/10.4103/2277-9175.94431] [PMID: 23210067]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy