Generic placeholder image

Current Drug Therapy

Editor-in-Chief

ISSN (Print): 1574-8855
ISSN (Online): 2212-3903

Mini-Review Article

Safety Profile of Molnupiravir with Significant Effect on COVID-19: A Review

Author(s): Tuhin Mukherjee, Payel Mal, Abhay Kumar Upadhyay, Satyajit Mohanty, Nikita Nayak, Ravi Pratap Singh, Ashok Pattnaik*, Tanisha Das and Sourav Basak

Volume 18, Issue 3, 2023

Published on: 01 March, 2023

Page: [183 - 193] Pages: 11

DOI: 10.2174/1574885518666230124123054

Price: $65

Abstract

Background: As the COVID era unfolds, researchers reveal that rapid changes in viral genetic material allow viruses to circumvent challenges triggered by the host immune system and resist anti-viral drugs, potentially leading to persistent viral manifestations in host cells. Molnupiravir (RNA-dependent RNA polymerase inhibitor) is a novel anti-viral medicine promising a vital role in coming setbacks.

Objectives: This review aims to clarify the safety and efficacy of the molnupiravir molecule in light of existing case studies. As a result, it is intended to explore and discuss the molecular structure, mechanism of action, discovery and development process, preclinical research, clinical investigations, and other subtopics.

Methods: A total of 75 publications were searched using multiple engines, such as Google Scholar, PubMed, Web of Science, Embase, Cochrane Library, ClinicalTrials.gov, and others, with a constraint applied to exclude publications published over 11 years ago. Molnupiravir, safety, efficacy, COVID- 19, RdRp, PK-PD, and clinical study were utilized as keywords.

Results: Clinical results on molnupiravir are supported by investigations that were recently disclosed in a study on both sex volunteers (male and female) with an age restriction of 19 to 60 years, followed by a Phase-3 Clinical Trial (NCT04575584) with 775 randomly assigned participants and no fatalities reported due to treatment.

Conclusion: Molnupiravir proved a high level of safety, allowing it to be tested further. This review supports the safety and efficacy of this molecule based on the established evidence, which claims the most anticipated employment of molnupiravir in COVID protocol.

Keywords: Molnupiravir, safety, efficacy, COVID-19, RdRp, PKPD.

Next »
Graphical Abstract
[1]
Cascella M, Rajnik M, Aleem A. Features, evaluation, and treatment of coronavirus (COVID-19). Treasure Island, (FL): StatPearls Publishing 2022.
[2]
Aleem A, Akbar Samad AB, Slenker AK. Emerging variants of SARS-CoV-2 and novel therapeutics against coronavirus (COVID-19). Treasure Island, FL: StatPearls Publishing 2022.
[3]
Singh A, Singh RS, Sarma P, et al. A comprehensive review of animal models for coronaviruses: SARS-CoV-2, SARS-CoV, and MERS-CoV. Virol Sin 2020; 35(3): 290-304.
[http://dx.doi.org/10.1007/s12250-020-00252-z] [PMID: 32607866]
[4]
Liang Y, Wang ML, Chien CS, et al. Highlight of immune pathogenic response and hematopathologic effect in SARS-COV, mers-cov, and SARS-COV-2 infection. Front Immunol 2020; 11: 1022.
[http://dx.doi.org/10.3389/fimmu.2020.01022] [PMID: 32574260]
[5]
Khoo SH, Fitzgerald R, Fletcher T, et al. Optimal dose and safety of molnupiravir in patients with early SARS-COV-2: A phase I, open-label, dose-escalating, randomized controlled study. J Antimicrob Chemother 2021; 76(12): 3286-95.
[http://dx.doi.org/10.1093/jac/dkab318] [PMID: 34450619]
[6]
Painter WP, Holman W, Bush JA, et al. Human safety, tolerability, and pharmacokinetics of molnupiravir, a novel broad-spectrum oral antiviral agent with activity against SARS-CoV-2. Antimicrob Agents Chemother 2021; 65(5): e02428-20.
[http://dx.doi.org/10.1128/AAC.02428-20] [PMID: 33649113]
[7]
Imran M, Kumar Arora M, Asdaq SMB, et al. Discovery, development, and patent trends on molnupiravir: A prospective oral treatment for COVID-19. Molecules 2021; 26(19): 5795.
[http://dx.doi.org/10.3390/molecules26195795] [PMID: 34641339]
[8]
Zhu W, Chen CZ, Gorshkov K, Xu M, Lo DC, Zheng W. RNA-dependent rna polymerase as a target for COVID-19 drug discovery. SLAS Discov 2020; 25(10): 1141-51.
[http://dx.doi.org/10.1177/2472555220942123] [PMID: 32660307]
[9]
Low ZY, Yip AJW, Lal SK. Repositioning ivermectin for covid-19 treatment: Molecular mechanisms of action against SARS-COV-2 replication. Biochim Biophys Acta Mol Basis Dis 2022; 1868(2): 166294.
[http://dx.doi.org/10.1016/j.bbadis.2021.166294] [PMID: 34687900]
[10]
Perveen RA, Nasir M, Talha KA, Selina F, Islam MA. Systematic review on current antiviral therapy in COVID-19 pandemic. Med J Malaysia 2020; 75(6): 710-6.
[PMID: 33219182]
[11]
Wu C, Liu Y, Yang Y, et al. Analysis of therapeutic targets for SARS-CoV-2 and discovery of potential drugs by computational methods. Acta Pharm Sin B 2020; 10(5): 766-88.
[http://dx.doi.org/10.1016/j.apsb.2020.02.008] [PMID: 32292689]
[12]
Agostini ML, Andres EL, Sims AC, et al. Coronavirus susceptibility to the antiviral remdesivir (gs-5734) is mediated by the viral polymerase and the proofreading exoribonuclease. MBio 2018; 9(2): e00221-18.
[http://dx.doi.org/10.1128/mBio.00221-18] [PMID: 29511076]
[13]
Sahoo BM, Ravi Kumar BVV, Sruti J, Mahapatra MK, Banik BK, Borah P. Drug Repurposing Strategy (DRS): Emerging approach to identify potential therapeutics for treatment of novel coronavirus infection. Front Mol Biosci 2021; 8: 628144.
[http://dx.doi.org/10.3389/fmolb.2021.628144] [PMID: 33718434]
[14]
Heidary F, Gharebaghi R. Ivermectin: A systematic review from antiviral effects to COVID-19 complementary regimen. J Antibiot 2020; 73(9): 593-602.
[http://dx.doi.org/10.1038/s41429-020-0336-z] [PMID: 32533071]
[15]
Dotolo S, Marabotti A, Facchiano A, Tagliaferri R. A review on drug repurposing applicable to COVID-19. Brief Bioinform 2021; 22(2): 726-41.
[http://dx.doi.org/10.1093/bib/bbaa288] [PMID: 33147623]
[16]
Hashemian SMR, Pourhanifeh MH, Hamblin MR, Shahrzad MK, Mirzaei H. RdRp inhibitors and COVID-19: Is molnupiravir a good option? Biomed Pharmacother 2022; 146: 112517.
[http://dx.doi.org/10.1016/j.biopha.2021.112517] [PMID: 34902743]
[17]
Singh AK, Singh A, Singh R, Misra A. Molnupiravir in COVID-19: A systematic review of literature. Diabetes Metab Syndr 2021; 15(6): 102329.
[http://dx.doi.org/10.1016/j.dsx.2021.102329] [PMID: 34742052]
[18]
Toots M, Yoon JJ, Hart M, Natchus MG, Painter GR, Plemper RK. Quantitative efficacy paradigms of the influenza clinical drug candidate EIDD-2801 in the ferret model. Transl Res 2020; 218: 16-28.
[http://dx.doi.org/10.1016/j.trsl.2019.12.002] [PMID: 31945316]
[19]
Chen N, Zhou M, Dong X, et al. Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: A descriptive study. Lancet 2020; 395(10223): 507-13.
[http://dx.doi.org/10.1016/S0140-6736(20)30211-7] [PMID: 32007143]
[20]
Zhang S, Li H, Huang S, You W, Sun H. High-resolution computed tomography features of 17 cases of coronavirus disease 2019 in Sichuan province, China. Eur Respir J 2020; 55(4): 2000334.
[http://dx.doi.org/10.1183/13993003.00334-2020] [PMID: 32139463]
[21]
Benkovics T, McIntosh J, Silverman S, et al. Evolving to an ideal synthesis of molnupiravir, an investigational treatment for COVID-19. ChemRxiv 2020.
[http://dx.doi.org/10.26434/chemrxiv.13472373.v1]
[22]
Sacramento CQ, Fintelman-Rodrigues N, Temerozo JR, et al. In vitro antiviral activity of the anti-HCV drugs daclatasvir and sofosbuvir against SARS-CoV-2, the aetiological agent of COVID-19. J Antimicrob Chemother 2021; 76(7): 1874-85.
[http://dx.doi.org/10.1093/jac/dkab072] [PMID: 33880524]
[23]
Lim YS, Nguyen LP, Lee GH, et al. Asunaprevir, a potent hepatitis c virus protease inhibitor, blocks SARS-COV-2 propagation. Mol Cells 2021; 44(9): 688-95.
[http://dx.doi.org/10.14348/molcells.2021.0076] [PMID: 34518443]
[24]
Fehr AR, Perlman S. Coronaviruses: An overview of their replication and pathogenesis. Methods Mol Biol 2015; 1282: 1-23.
[http://dx.doi.org/10.1007/978-1-4939-2438-7_1] [PMID: 25720466]
[25]
Zhou S, Hill CS, Sarkar S, et al. β- d - N 4-hydroxycytidine inhibits SARS-COV-2 through lethal mutagenesis but is also mutagenic to mammalian cells. J Infect Dis 2021; 224(3): 415-9.
[http://dx.doi.org/10.1093/infdis/jiab247] [PMID: 33961695]
[26]
Holman W, McIntosh S, Painter W, et al. Accelerated first-in-human clinical trial of EIDD-2801/MK-4482 (molnupiravir), a ribonucleoside analog with potent antiviral activity against SARS-CoV-2. Trials 2021; 22(1): 561.
[27]
Vicenti I, Zazzi M, Saladini F. SARS-CoV-2 RNA-dependent RNA polymerase as a therapeutic target for COVID-19. Expert Opin Ther Pat 2021; 31(4): 325-37.
[http://dx.doi.org/10.1080/13543776.2021.1880568] [PMID: 33475441]
[28]
Shannon A, Le NTT, Selisko B, et al. Remdesivir and SARS-CoV-2: Structural requirements at both nsp12 RdRp and nsp14 Exonuclease active-sites. Antiviral Res 2020; 178: 104793.
[http://dx.doi.org/10.1016/j.antiviral.2020.104793] [PMID: 32283108]
[29]
Khan A, Khan M, Saleem S, et al. Phylogenetic analysis and structural perspectives of RNA-dependent RNA-polymerase inhibition from SARS-COV-2 with natural products. Interdiscip Sci 2020; 12(3): 335-48.
[http://dx.doi.org/10.1007/s12539-020-00381-9] [PMID: 32617855]
[30]
Huang C, Wang Y, Li X, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet 2020; 395(10223): 497-506.
[http://dx.doi.org/10.1016/S0140-6736(20)30183-5] [PMID: 31986264]
[31]
Yin W, Mao C, Luan X, et al. Structural basis for inhibition of the RNA-dependent RNA polymerase from SARS-CoV-2 by remdesivir. Science 2020; 368(6498): 1499-504.
[http://dx.doi.org/10.1126/science.abc1560] [PMID: 32358203]
[32]
Jayk BA, Gomes da SMM, Musungaie DB, et al. Molnupiravir for oral treatment of COVID-19 in nonhospitalized patients. N Engl J Med 386(6)2021; : 509-20.
[http://dx.doi.org/10.1056/NEJMoa2116044] [PMID: 34914868]
[33]
Gordon CJ, Tchesnokov EP, Schinazi RF, Götte M. Molnupiravir promotes SARS-CoV-2 mutagenesis via the RNA template. J Biol Chem 2021; 297(1): 100770.
[http://dx.doi.org/10.1016/j.jbc.2021.100770] [PMID: 33989635]
[34]
Kabinger F, Stiller C, Schmitzová J, et al. Mechanism of molnupiravir-induced SARS-CoV-2 mutagenesis. Nat Struct Mol Biol 2021; 28(9): 740-6.
[http://dx.doi.org/10.1038/s41594-021-00651-0] [PMID: 34381216]
[35]
Romano M, Ruggiero A, Squeglia F, et al. A structural view of SARS-CoV-2 RNA replication machinery: RNA synthesis, proofreading and final capping. Cells 2020; 9(5): 1267.
[http://dx.doi.org/10.3390/cells9051267] [PMID: 32443810]
[36]
Viswanathan T, Arya S, Chan SH, et al. Structural basis of RNA cap modification by SARS-CoV-2. Nat Commun 2020; 11(1): 3718.
[http://dx.doi.org/10.1038/s41467-020-17496-8] [PMID: 32709886]
[37]
Gyebi GA, Ogunro OB, Adegunloye AP, Ogunyemi OM, Afolabi SO. Potential inhibitors of coronavirus 3-chymotrypsin-like protease (3CLpro): An in silico screening of alkaloids and terpenoids from African medicinal plants. J Biomol Struct Dyn 2021; 39(9): 3396-408.
[PMID: 32367767]
[38]
Caly L, Druce JD, Catton MG, Jans DA, Wagstaff KM. The FDA-approved drug ivermectin inhibits the replication of SARS-CoV-2 in vitro. Antiviral Res 2020; 178: 104787.
[http://dx.doi.org/10.1016/j.antiviral.2020.104787] [PMID: 32251768]
[39]
Zarenezhad E, Marzi M. Review on molnupiravir as a promising oral drug for the treatment of COVID-19. Med Chem Res 2022; 31(2): 232-43.
[http://dx.doi.org/10.1007/s00044-021-02841-3] [PMID: 35002192]
[40]
Wahl A, Gralinski LE, Johnson CE, et al. SARS-CoV-2 infection is effectively treated and prevented by EIDD-2801. Nature 2021; 591(7850): 451-7.
[http://dx.doi.org/10.1038/s41586-021-03312-w] [PMID: 33561864]
[41]
Pauly MD, Lauring AS. Effective lethal mutagenesis of influenza virus by three nucleoside analogs. J Virol 2015; 89(7): 3584-97.
[http://dx.doi.org/10.1128/JVI.03483-14] [PMID: 25589650]
[42]
Menéndez-Arias L. Decoding molnupiravir-induced mutagenesis in SARS-CoV-2. J Biol Chem 2021; 297(1): 100867.
[http://dx.doi.org/10.1016/j.jbc.2021.100867] [PMID: 34118236]
[43]
Dong Z, Liu Y, Zhang JT. Regulation of ribonucleotide reductase M2 expression by the upstream AUGs. Nucleic Acids Res 2005; 33(8): 2715-25.
[http://dx.doi.org/10.1093/nar/gki569] [PMID: 15888728]
[44]
Ramachandran R, Bhosale V, Reddy H, et al. Phase III, randomized, double-blind, placebo controlled trial of efficacy, safety and tolerability of antiviral drug umifenovir vs standard care of therapy in non-severe COVID-19 patients. Int J Infect Dis 2022; 115: 62-9.
[http://dx.doi.org/10.1016/j.ijid.2021.11.025] [PMID: 34801738]
[45]
Payares-Herrera C, Martínez-Muñoz ME, Vallhonrat IL, et al. Double-blind, randomized, controlled, trial to assess the efficacy of allogenic mesenchymal stromal cells in patients with acute respiratory distress syndrome due to COVID-19 (COVID-AT): A structured summary of a study protocol for a randomised controlled trial. Trials 2021; 22(1): 9.
[http://dx.doi.org/10.1186/s13063-020-04964-1] [PMID: 33407777]
[46]
Rosenke K, Hansen F, Schwarz B, et al. Orally delivered MK-4482 inhibits SARS-CoV-2 replication in the Syrian hamster model. Res Sq 2020; 3: 86289.
[http://dx.doi.org/10.21203/rs.3.rs-86289/v1] [PMID: 33052329]
[47]
Taubenberger JK, Kash JC. Influenza virus evolution, host adaptation, and pandemic formation. Cell Host Microbe 2010; 7(6): 440-51.
[http://dx.doi.org/10.1016/j.chom.2010.05.009] [PMID: 20542248]
[48]
Sharma A, Tiwari S, Deb MK, Marty JL. Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2): A global pandemic and treatment strategies. Int J Antimicrob Agents 2020; 56(2): 106054.
[http://dx.doi.org/10.1016/j.ijantimicag.2020.106054] [PMID: 32534188]
[49]
Singhal T. A review of coronavirus disease-2019 (COVID-19). Indian J Pediatr 2020; 87(4): 281-6.
[http://dx.doi.org/10.1007/s12098-020-03263-6] [PMID: 32166607]
[50]
Eastman RT, Roth JS, Brimacombe KR, et al. Remdesivir: A review of its discovery and development leading to emergency use authorization for treatment of COVID-19. ACS Cent Sci 2020; 6(5): 672-83.
[http://dx.doi.org/10.1021/acscentsci.0c00489] [PMID: 32483554]
[51]
Pardo J, Shukla AM, Chamarthi G, Gupte A. The journey of remdesivir: From ebola to COVID-19. Drugs Context 2020; 9(9): 1-9.
[http://dx.doi.org/10.7573/dic.2020-4-14] [PMID: 32547625]
[52]
Zhao Y, He G, Huang W. A novel model of molnupiravir against SARS-CoV-2 replication: Accumulated RNA mutations to induce error catastrophe. Signal Transduct Target Ther 2021; 6(1): 410.
[http://dx.doi.org/10.1038/s41392-021-00837-4] [PMID: 34857753]
[53]
Troth S, Butterton J, DeAnda CS, et al. Letter to the editor in response to zhou et al. J Infect Dis 2021; 224(8): 1442-3.
[http://dx.doi.org/10.1093/infdis/jiab362]
[54]
Robison TW, Heflich RH, Manjanatha MG, et al. Appropriate in vivo follow-up assays to an in vitro bacterial reverse mutation (Ames) test positive investigational drug candidate (active pharmaceutical ingredient), drug-related metabolite, or drug-related impurity. Mutat Res Genet Toxicol Environ Mutagen 2021; 868-869: 503386.
[http://dx.doi.org/10.1016/j.mrgentox.2021.503386] [PMID: 34454692]
[55]
Lee CC, Hsieh CC, Ko WC. Molnupiravir-a novel oral anti-SARS-CoV-2 agent. Antibiotics 2021; 10(11): 1294.
[http://dx.doi.org/10.3390/antibiotics10111294]
[56]
Artese A, Svicher V, Costa G, et al. Current status of antivirals and druggable targets of SARS CoV-2 and other human pathogenic coronaviruses. Drug Resist Updat 2020; 53: 100721.
[http://dx.doi.org/10.1016/j.drup.2020.100721] [PMID: 33132205]
[57]
Mei M, Tan X. Current strategies of antiviral drug discovery for COVID-19. Front Mol Biosci 2021; 8: 671263.
[http://dx.doi.org/10.3389/fmolb.2021.671263] [PMID: 34055887]
[58]
Eloy P, Le Grand R, Malvy D, Guedj J. Combined treatment of molnupiravir and favipiravir against SARS-CoV-2 infection: One + zero equals two? EBioMedicine 2021; 74: 103663.
[http://dx.doi.org/10.1016/j.ebiom.2021.103663] [PMID: 34768087]
[59]
Koopmeiners JS, Modiano J. A bayesian adaptive phase I–II clinical trial for evaluating efficacy and toxicity with delayed outcomes. Clin Trials 2014; 11(1): 38-48.
[http://dx.doi.org/10.1177/1740774513500589] [PMID: 24082004]
[60]
Singh TU, Parida S, Lingaraju MC, Kesavan M, Kumar D, Singh RK. Drug repurposing approach to fight COVID-19. Pharmacol Rep 2020; 72(6): 1479-508.
[http://dx.doi.org/10.1007/s43440-020-00155-6] [PMID: 32889701]
[61]
Mohamed K, Yazdanpanah N, Saghazadeh A, Rezaei N. Computational drug discovery and repurposing for the treatment of COVID-19: A systematic review. Bioorg Chem 2021; 106: 104490.
[http://dx.doi.org/10.1016/j.bioorg.2020.104490] [PMID: 33261845]
[62]
Molavi Z, Razi S, Mirmotalebisohi SA, et al. Identification of FDA approved drugs against SARS-CoV-2 RNA dependent RNA polymerase (RdRp) and 3-chymotrypsin-like protease (3CLpro), drug repurposing approach. Biomed Pharmacother 2021; 138: 111544.
[http://dx.doi.org/10.1016/j.biopha.2021.111544] [PMID: 34311539]
[63]
Chiou WC, Hsu MS, Chen YT, et al. Repurposing existing drugs: Identification of SARS-CoV-2 3C-like protease inhibitors. J Enzyme Inhib Med Chem 2021; 36(1): 147-53.
[http://dx.doi.org/10.1080/14756366.2020.1850710] [PMID: 33430659]
[64]
Martinez DR, Schäfer A, Leist SR, et al. Prevention and therapy of SARS-CoV-2 and the B.1.351 variant in mice. Cell Rep 2021; 36(4): 109450.
[http://dx.doi.org/10.1016/j.celrep.2021.109450] [PMID: 34289384]
[65]
Seifert M, Bera SC, van Nies P, et al. Inhibition of SARS-CoV-2 polymerase by nucleotide analogs from a single-molecule perspective. eLife 2021; 10: e70968.
[http://dx.doi.org/10.7554/eLife.70968] [PMID: 34617885]
[66]
Shyr ZA, Gorshkov K, Chen CZ, Zheng W. Drug discovery strategies for SARS-CoV-2. J Pharmacol Exp Ther 2020; 375(1): 127-38.
[http://dx.doi.org/10.1124/jpet.120.000123] [PMID: 32723801]
[67]
Danet Danet A. Psychological impact of COVID-19 on frontline healthcare professionals in the western setting. A systematic review. Med Clin 2021; 156(9): 449-58.
[http://dx.doi.org/10.1016/j.medcli.2020.11.009]
[68]
Fischer WA II, Eron JJ Jr, Holman W, et al. A phase 2a clinical trial of molnupiravir in patients with COVID-19 shows accelerated SARS-CoV-2 RNA clearance and elimination of infectious virus. Sci Transl Med 2022; 14(628): eabl7430.
[http://dx.doi.org/10.1126/scitranslmed.abl7430] [PMID: 34941423]
[69]
Akova M, Unal S. A randomized, double-blind, placebo-controlled phase III clinical trial to evaluate the efficacy and safety of SARS-CoV-2 vaccine (inactivated, Vero cell): A structured summary of a study protocol for a randomised controlled trial. Trials 2021; 22(1): 276.
[http://dx.doi.org/10.1186/s13063-021-05180-1] [PMID: 33849629]
[70]
Whitley R. Molnupiravir - A step toward orally bioavailable therapies for COVID-19. N Engl J Med 2021; NEJMe2117814.
[71]
Toots M, Plemper RK. Next-generation direct-acting influenza therapeutics. Transl Res 2020; 220: 33-42.
[http://dx.doi.org/10.1016/j.trsl.2020.01.005] [PMID: 32088166]
[72]
Yang T. Baloxavir marboxil: The first cap-dependent endonuclease inhibitor for the treatment of influenza. Ann Pharmacother 2019; 53(7): 754-9.
[http://dx.doi.org/10.1177/1060028019826565] [PMID: 30674196]
[73]
Brown LAK, Freemantle N, Breuer J, et al. Early antiviral treatment in outpatients with COVID-19 (FLARE): A structured summary of a study protocol for a randomised controlled trial. Trials 2021; 22(1): 193.
[http://dx.doi.org/10.1186/s13063-021-05139-2] [PMID: 33685502]
[74]
Abdelnabi R, Foo CS, Kaptein SJF, et al. The combined treatment of molnupiravir and favipiravir results in a potentiation of antiviral efficacy in a SARS-COV-2 hamster infection model. EBioMedicine 2021; 72: 103595.
[http://dx.doi.org/10.1016/j.ebiom.2021.103595] [PMID: 34571361]
[75]
Pourkarim F, Pourtaghi-Anvarian S, Rezaee H. Molnupiravir: A new candidate for COVID‐19 treatment. Pharmacol Res Perspect 2022; 10(1): e00909.
[http://dx.doi.org/10.1002/prp2.909] [PMID: 34968008]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy