Generic placeholder image

Current Nanoscience

Editor-in-Chief

ISSN (Print): 1573-4137
ISSN (Online): 1875-6786

Review Article

The Role of Biosensors in Detection of SARS-CoV-2: State-of-the-Art and Future Prospects

Author(s): Nimisha Roy, Abhipsha Khadanga, Amar Dhwaj, Amit Prabhakar* and Deepti Verma*

Volume 20, Issue 5, 2024

Published on: 09 August, 2023

Page: [599 - 612] Pages: 14

DOI: 10.2174/1573413719666230714121859

Price: $65

Abstract

The world is fighting a pandemic so grave that perhaps it has never been witnessed before; COVID-19 is caused by the severe acute respiratory syndrome coronavirus 2 (SARSCoV- 2). As of August 31st, 2022, the WHO declared the total number of confirmed cases was 599,825,400, with 6,469,458 confirmed deaths from 223 countries under the scourge of this deadly virus. The SARS-CoV-2 is a β'-coronavirus, which is an enveloped non-segmented positive- sense RNA virus. It is a close relative of the SARS and MERS viruses and has probably entered humans through bats. Human-to-human transmission is very rapid. People in contact with the patient or even the carriers became infected, leading to a widespread chain of contamination. We are presenting a mini-review on the role of biosensors in detecting SARS-CoV-2. Biosensors have been used for a very long time for viral detection and can be utilized for the prompt detection of the novel coronavirus. This article aims to provide a mini-review on the application of biosensors for the detection of the novel coronavirus with a focus on costeffective paper-based sensors, nanobiosensors, Field effect transistors (FETs), and lab-on-chip integrated platforms.

Background: Biosensors have played a crucial role in viral detection for a long time.

Objectives: To present a comprehensive review of the biosensor application in SARS-Cov-2.

Methods: We have presented state-of-the-art work in the biosensors field for SARS-Cov-2 detection.

Results: The biosensors presented here provide an innovative approach to detecting SARS-Cov- 2 infections early.

Conclusion: Biosensors have tremendous potential in accurately detecting viral infections in pandemics requiring rapid screening.

Keywords: COVID-19, SARS-CoV-2, biosensors, field effect transistors, lab-on-chip, microfluidics.

Graphical Abstract
[1]
Qlark, L.C., Jr Monitor and control of blood and tissue oxygen tensions. ASAIO J., 1956, 2(1), 41-48.
[2]
Alhadrami, H.A. Biosensors: Classifications, medical applications, and future prospective. Biotechnol. Appl. Biochem., 2018, 65(3), 497-508.
[http://dx.doi.org/10.1002/bab.1621] [PMID: 29023994]
[3]
Kawamura, A.; Miyata, T. 4.2 - Biosensors. In: Biomaterials Nanoarchitectonics; Ebara, M., Ed.; William Andrew Publishing, 2016; pp. 157-176.
[http://dx.doi.org/10.1016/B978-0-323-37127-8.00010-8]
[4]
Balcer, H.I.; Spiker, J.O.; Kang, K.A. Effects of blocking buffers and plasma proteins on the protein C biosensor performance. Adv. Exp. Med. Biol., 2003, 530, 133-141.
[http://dx.doi.org/10.1007/978-1-4615-0075-9_13] [PMID: 14562711]
[5]
Antiochia, R. Developments in biosensors for CoV detection and future trends. Biosens. Bioelectron., 2021, 173, 112777.
[http://dx.doi.org/10.1016/j.bios.2020.112777] [PMID: 33189015]
[6]
Holford, T.R.J.; Davis, F.; Higson, S.P.J. Recent trends in antibody based sensors. Biosens. Bioelectron., 2012, 34(1), 12-24.
[http://dx.doi.org/10.1016/j.bios.2011.10.023] [PMID: 22387037]
[7]
Haleem, A.; Javaid, M.; Singh, R.P.; Suman, R.; Rab, S. Biosensors applications in medical field: A brief review. Sensors, 2021, 2, 100100.
[http://dx.doi.org/10.1016/j.sintl.2021.100100]
[8]
Naresh, V.; Lee, N. A review on biosensors and recent development of nanostructured materials-enabled biosensors. Sensors, 2021, 21(4), 1109.
[http://dx.doi.org/10.3390/s21041109] [PMID: 33562639]
[9]
Banica, F.G. Chemical sensors and biosensors: fundamentals and applications; John Wiley & Sons, 2012.
[10]
Sun, C.; Wang, X.; Auwalu, M.A.; Cheng, S.; Hu, W. Organic thin film transistors‐based biosensors. EcoMat, 2021, 3(2), e12094.
[http://dx.doi.org/10.1002/eom2.12094]
[11]
Veerapandian, M.; Hunter, R.; Neethirajan, S. Dual immunosensor based on methylene blue-electroadsorbed graphene oxide for rapid detection of the influenza A virus antigen. Talanta, 2016, 155, 250-257.
[http://dx.doi.org/10.1016/j.talanta.2016.04.047] [PMID: 27216681]
[12]
Krishna, V.D.; Wu, K.; Perez, A.M.; Wang, J.P. Giantmagnetoresistance-based biosensor for detection of influenza a virusFront. Front. Microbiol., 2016, 7, 400.
[http://dx.doi.org/10.3389/fmicb.2016.00400] [PMID: 27065967]
[13]
Lu, H.; Stratton, C.W.; Tang, Y.W. Outbreak of pneumonia of unknown etiology in Wuhan, China: The mystery and the miracle. J. Med. Virol., 2020, 92(4), 401-402.
[http://dx.doi.org/10.1002/jmv.25678] [PMID: 31950516]
[14]
Lu, H. Drug treatment options for the 2019-new coronavirus (2019-nCoV). Biosci. Trends, 2020, 14(1), 69-71.
[http://dx.doi.org/10.5582/bst.2020.01020] [PMID: 31996494]
[15]
Wang, W.; Tang, J.; Wei, F. Updated understanding of the outbreak of 2019 novel coronavirus (2019-nCoV) in Wuhan, China. J. Med. Virol., 2020, 92(4), 441-447.
[http://dx.doi.org/10.1002/jmv.25689] [PMID: 31994742]
[16]
Bassetti, M.; Vena, A.; Giacobbe, D.R. The novel Chinese coronavirus (2019-nCoV) infections: Challenges for fighting the storm. Eur. J. Clin. Invest., 2020, 50(3), e13209.
[http://dx.doi.org/10.1111/eci.13209] [PMID: 32003000]
[17]
WHO Director-General's opening remarks at the media briefing on COVID-19 - March 11 2020; World Health Organization, 2020.
[18]
Naming the coronavirus disease (COVID-19) and the virus that causes it; World Health Organization, 2020.
[20]
Kawashima, K.; Matsumoto, T.; Akashi, H. Disease outbreaks: Critical biological factors and control strategies. Urban Resilience, 2016, 2016, 173-204.
[22]
Achaiah, N.C.; Subbarajasetty, S.B.; Shetty, R.M. R0 and re of COVID-19: Can we predict when the pandemic outbreak will be contained? Indian J. Crit. Care Med., 2020, 24(11), 1125-1127.
[http://dx.doi.org/10.5005/jp-journals-10071-23649] [PMID: 33384521]
[23]
Wu, D.; Wu, T.; Liu, Q.; Yang, Z. The SARS-CoV-2 outbreak: What we know. Int. J. Infect. Dis., 2020, 94, 44-48.
[http://dx.doi.org/10.1016/j.ijid.2020.03.004] [PMID: 32171952]
[24]
R0: How Scientists Quantify the Intensity of an Outbreak Like Coronavirus and Its Pandemic Potential, Available from: https://sph.umich.edu/pursuit/2020posts/how-scientists-quantify-outbreaks.html
[26]
Liu, J.; Xie, W.; Wang, Y.; Xiong, Y.; Chen, S.; Han, J.; Wu, Q. A comparative overview of COVID-19, MERS and SARS: Review article. Int. J. Surg., 2020, 81, 1-8.
[http://dx.doi.org/10.1016/j.ijsu.2020.07.032] [PMID: 32730205]
[27]
Abdelrahman, Z.; Li, M.; Wang, X. Comparative review of SARS-CoV-2, SARS-CoV, MERS-CoV, and influenza a respiratory virus. Front. Immunol., 2020, 11, 552909.
[http://dx.doi.org/10.3389/fimmu.2020.552909] [PMID: 33013925]
[28]
Opatowski, L.; Fraser, C.; Griffin, J.; de Silva, E.; Van Kerkhove, M.D.; Lyons, E.J.; Cauchemez, S.; Ferguson, N.M. Transmission characteristics of the 2009 H1N1 influenza pandemic: Comparison of 8 Southern hemisphere countries. PLoS Pathog., 2011, 7(9), e1002225.
[http://dx.doi.org/10.1371/journal.ppat.1002225] [PMID: 21909272]
[29]
Jhung, M.A.; Swerdlow, D.; Olsen, S.J.; Jernigan, D.; Biggerstaff, M.; Kamimoto, L.; Kniss, K.; Reed, C.; Fry, A.; Brammer, L.; Gindler, J.; Gregg, W.J.; Bresee, J.; Finelli, L. Epidemiology of 2009 pandemic influenza A (H1N1) in the United States. Clin. Infect. Dis., 2011, 52(S1), S13-S26.
[http://dx.doi.org/10.1093/cid/ciq008] [PMID: 21342884]
[30]
Halder, N.; Kelso, J.K.; Milne, G.J. Analysis of the effectiveness of interventions used during the 2009 A/H1N1 influenza pandemic. BMC Public Health, 2010, 10(1), 168.
[http://dx.doi.org/10.1186/1471-2458-10-168] [PMID: 20346187]
[31]
Fraser, C.; Donnelly, C.A.; Cauchemez, S.; Hanage, W.P.; Van Kerkhove, M.D.; Hollingsworth, T.D.; Griffin, J.; Baggaley, R.F.; Jenkins, H.E.; Lyons, E.J. Jombart, T Pandemic potential of a strain of influenza A (H1N1): Early findings. Science, 2009, 324(5934), 1557-1561.
[32]
Biggerstaff, M.; Cauchemez, S.; Reed, C.; Gambhir, M.; Finelli, L. Estimates of the reproduction number for seasonal, pandemic, and zoonotic influenza: A systematic review of the literature. BMC Infect. Dis., 2014, 14(1), 480.
[http://dx.doi.org/10.1186/1471-2334-14-480] [PMID: 25186370]
[33]
Kucharski, A.J.; Althaus, C.L. The role of superspreading in Middle East respiratory syndrome coronavirus (MERS-CoV) transmission. Euro Surveill., 2015, 20(25), 14-18.
[http://dx.doi.org/10.2807/1560-7917.ES2015.20.25.21167] [PMID: 26132768]
[34]
Wong, Z.S.Y.; Bui, C.M.; Chughtai, A.A.; Macintyre, C.R. A systematic review of early modelling studies of Ebola virus disease in West Africa. Epidemiol. Infect., 2017, 145(6), 1069-1094.
[http://dx.doi.org/10.1017/S0950268817000164] [PMID: 28166851]
[35]
Guerra, F.M.; Bolotin, S.; Lim, G.; Heffernan, J.; Deeks, S.L.; Li, Y.; Crowcroft, N.S. The basic reproduction number (R0) of measles: A systematic review. Lancet Infect. Dis., 2017, 17(12), e420-e428.
[http://dx.doi.org/10.1016/S1473-3099(17)30307-9]
[36]
Health Care Worker Information (PDF); Ireland’s Health Services, 2020.
[37]
Dowell, D.; Lindsley, W.G.; Brooks, J.T. Reducing SARS-CoV-2 in shared indoor air. JAMA, 2022, 328(2), 141-142.
[http://dx.doi.org/10.1001/jama.2022.9970] [PMID: 35671318]
[38]
National Emerging Special Pathogen Training and Education Center.
[39]
Chowell, G.; Castillo-Chavez, C.; Fenimore, P.W.; Kribs-Zaleta, C.M.; Arriola, L.; Hyman, J.M. Model parameters and outbreak control for SARS. Emerg. Infect. Dis., 2004, 10(7), 1258-1263.
[http://dx.doi.org/10.3201/eid1007.030647] [PMID: 15324546]
[40]
Ajelli, M.; Merler, S. Transmission potential and design of adequate control measures for Marburg hemorrhagic fever. PLoS One, 2012, 7(12), e50948.
[http://dx.doi.org/10.1371/journal.pone.0050948] [PMID: 23251407]
[41]
Chowell, G.; Miller, M.A.; Viboud, C. Seasonal influenza in the United States, France, and Australia: transmission and prospects for control. Epidemiol. Infect., 2008, 136(6), 852-864.
[http://dx.doi.org/10.1017/S0950268807009144] [PMID: 17634159]
[42]
Hulswit, R.J.G.; de Haan, C.A.M.; Bosch, B.J. Coronavirus spike protein and tropism changes. Adv. Virus Res., 2016, 96, 29-57.
[http://dx.doi.org/10.1016/bs.aivir.2016.08.004] [PMID: 27712627]
[43]
Walls, A.C.; Tortorici, M.A.; Bosch, B.J.; Frenz, B.; Rottier, P.J.M.; DiMaio, F.; Rey, F.A.; Veesler, D. Cryo-electron microscopy structure of a coronavirus spike glycoprotein trimer. Nature, 2016, 531(7592), 114-117.
[http://dx.doi.org/10.1038/nature16988] [PMID: 26855426]
[44]
Jackson, C.B.; Farzan, M.; Chen, B.; Choe, H. Mechanisms of SARS-CoV-2 entry into cells. Nat. Rev. Mol. Cell Biol., 2022, 23(1), 3-20.
[http://dx.doi.org/10.1038/s41580-021-00418-x] [PMID: 34611326]
[45]
V’kovski, P.; Kratzel, A.; Steiner, S.; Stalder, H.; Thiel, V. Coronavirus biology and replication: Implications for SARS-CoV-2. Nat. Rev. Microbiol., 2021, 19(3), 155-170.
[http://dx.doi.org/10.1038/s41579-020-00468-6] [PMID: 33116300]
[46]
Petersen, E.; Koopmans, M.; Go, U.; Hamer, D.H.; Petrosillo, N.; Castelli, F.; Storgaard, M.; Al Khalili, S.; Simonsen, L. Comparing SARS-CoV-2 with SARS-CoV and influenza pandemics. Lancet Infect. Dis., 2020, 20(9), e238-e244.
[http://dx.doi.org/10.1016/S1473-3099(20)30484-9] [PMID: 32628905]
[47]
Belouzard, S.; Millet, J.K.; Licitra, B.N.; Whittaker, G.R. Mechanisms of coronavirus cell entry mediated by the viral spike protein. Viruses, 2012, 4(6), 1011-1033.
[http://dx.doi.org/10.3390/v4061011] [PMID: 22816037]
[48]
Alanagreh, L.; Alzoughool, F.; Atoum, M. The human coronavirus disease COVID-19: its origin, characteristics, and insights into potential drugs and its mechanisms. Pathogens, 2020, 9(5), 331.
[http://dx.doi.org/10.3390/pathogens9050331] [PMID: 32365466]
[49]
Galanopoulos, M.; Doukatas, A.; Gazouli, M. Origin and genomic characteristics of SARS-CoV-2 and its interaction with angiotensin converting enzyme type 2 receptors, focusing on the gastrointestinal tract. World J. Gastroenterol., 2020, 26(41), 6335-6345.
[http://dx.doi.org/10.3748/wjg.v26.i41.6335] [PMID: 33244196]
[50]
Qiu, G.; Gai, Z.; Tao, Y.; Schmitt, J.; Kullak-Ublick, G.A.; Wang, J. Dual-functional plasmonic photothermal biosensors for highly accurate severe acute respiratory syndrome coronavirus 2 detection. ACS Nano, 2020, 14(5), 5268-5277.
[http://dx.doi.org/10.1021/acsnano.0c02439] [PMID: 32281785]
[51]
Qiu, G.; Ng, S.P.; Wu, C.M.L. Bimetallic Au-Ag alloy nanoislands for highly sensitive localized surface plasmon resonance biosensing. Sens. Actuators B Chem., 2018, 265, 459-467.
[http://dx.doi.org/10.1016/j.snb.2018.03.066]
[52]
Seo, G.; Lee, G.; Kim, M.J.; Baek, S.H.; Choi, M.; Ku, K.B.; Lee, C.S.; Jun, S.; Park, D.; Kim, H.G.; Kim, S.J.; Lee, J.O.; Kim, B.T.; Park, E.C.; Kim, S.I. Rapid detection of COVID-19 causative virus (SARS-CoV-2) in human nasopharyngeal swab specimens using field-effect transistor-based biosensor. ACS Nano, 2020, 14(4), 5135-5142.
[http://dx.doi.org/10.1021/acsnano.0c02823] [PMID: 32293168]
[53]
Mohammadi, A.; Esmaeilzadeh, E.; Li, Y.; Bosch, R.J.; Li, J.Z. SARS-CoV-2 detection in different respiratory sites: A systematic review and meta-analysis. EBioMedicine, 2020, 59, 102903.
[http://dx.doi.org/10.1016/j.ebiom.2020.102903] [PMID: 32718896]
[54]
Becherer, L.; Borst, N.; Bakheit, M.; Frischmann, S.; Zengerle, R.; von Stetten, F. Loop-mediated isothermal amplification (LAMP) – review and classification of methods for sequence-specific detection. Anal. Methods, 2020, 12(6), 717-746.
[http://dx.doi.org/10.1039/C9AY02246E]
[55]
Notomi, T.; Mori, Y.; Tomita, N.; Kanda, H. Loop-mediated isothermal amplification (LAMP): Principle, features, and future prospects. J. Microbiol., 2015, 53(1), 1-5.
[http://dx.doi.org/10.1007/s12275-015-4656-9] [PMID: 25557475]
[56]
Inaba, M.; Higashimoto, Y.; Toyama, Y.; Horiguchi, T.; Hibino, M.; Iwata, M.; Imaizumi, K.; Doi, Y. Diagnostic accuracy of LAMP versus PCR over the course of SARS-CoV-2 infection. Int. J. Infect. Dis., 2021, 107, 195-200.
[http://dx.doi.org/10.1016/j.ijid.2021.04.018] [PMID: 33862213]
[57]
Suleman, S.; Shukla, S.K.; Malhotra, N.; Bukkitgar, S.D.; Shetti, N.P.; Pilloton, R.; Narang, J.; Nee Tan, Y.; Aminabhavi, T.M. Point of care detection of COVID-19: Advancement in biosensing and diagnostic methods. Chem. Eng. J., 2021, 414, 128759.
[http://dx.doi.org/10.1016/j.cej.2021.128759] [PMID: 33551668]
[59]
Bhadra, S.; Riedel, T.E.; Lakhotia, S.; Tran, N.D.; Ellington, A.D. High-surety isothermal amplification and detection of SARS-CoV-2. MSphere, 2021, 6(3), e00911-e00920.
[http://dx.doi.org/10.1128/mSphere.00911-20] [PMID: 34011690]
[60]
Bokelmann, L.; Nickel, O.; Maricic, T.; Pääbo, S.; Meyer, M.; Borte, S.; Riesenberg, S. Point-of-care bulk testing for SARS-CoV-2 by combining hybridization capture with improved colorimetric LAMP. Nat. Commun., 2021, 12(1), 1467.
[http://dx.doi.org/10.1038/s41467-021-21627-0] [PMID: 33674580]
[61]
Loop mediated isothermal Amplification and Lateral Flow. Available from: https://www.milenia-biotec.com/en/isothermal-amplification-lateral-flow/
[62]
Tang, Y.W.; Schmitz, J.E.; Persing, D.H.; Stratton, C.W. Laboratory diagnosis of COVID-19: Current issues and challenges. J. Clin. Microbiol., 2020, 58(6), e00512-e00520.
[http://dx.doi.org/10.1128/JCM.00512-20] [PMID: 32245835]
[63]
a) Zhu, H.; Fohlerová, Z.; Pekárek, J.; Basova, E.; Neužil, P. Recent advances in lab-on-a-chip technologies for viral diagnosis. Biosens. Bioelectron., 2020, 153, 112041.;
b) Tan, X.; Khaing Oo, M.K.; Gong, Y.; Li, Y.; Zhu, H.; Fan, X. Glass capillary based microfluidic ELISA for rapid diagnostics. Analyst, 2017, 142(13), 2378-2385.
[http://dx.doi.org/10.1039/C7AN00523G] [PMID: 28548141]
[65]
Parolo, C.; Arben, M. Paper-based nanobiosensors for diagnostics. Chem. Soc. Rev., 2013, 42(2), 450-457.
[http://dx.doi.org/10.1039/C2CS35255A] [PMID: 23032871]
[66]
Chamorro-Garcia, A.; Merkoçi, A. Nanobiosensors in diagnostics. Nanobiomedicine, 2016, 3.
[http://dx.doi.org/10.1177/1849543516663574] [PMID: 29942385]
[67]
Martinez, A.W.; Phillips, S.T.; Butte, M.J.; Whitesides, G.M. Patterned paper as a platform for inexpensive, low-volume, portable bioassays. Angew. Chem. Int. Ed., 2007, 46(8), 1318-1320.
[http://dx.doi.org/10.1002/anie.200603817] [PMID: 17211899]
[68]
Ratajczak, K.; Stobiecka, M. High-performance modified cellulose paper-based biosensors for medical diagnostics and early cancer screening: A concise review. Carbohydr. Polym., 2020, 229, 115463.
[http://dx.doi.org/10.1016/j.carbpol.2019.115463] [PMID: 31826408]
[69]
Yang, T.; Wang, Y.C.; Shen, C.F.; Cheng, C.M. Point-of-Care RNA-based diagnostic device for COVID-19. Diagnostics, 2020, 10(2), 165.
[http://dx.doi.org/10.3390/diagnostics10030165]
[70]
Lo, S.J.; Yang, S.C.; Yao, D.J.; Chen, J.H.; Tu, W.C.; Cheng, C.M. Molecular-level dengue fever diagnostic devices made out of paper. Lab Chip, 2013, 13(14), 2686-2692.
[http://dx.doi.org/10.1039/c3lc50135c] [PMID: 23563693]
[71]
Jenison, R.; La, H.; Haeberli, A.; Ostroff, R.; Polisky, B. Silicon-based biosensors for rapid detection of protein or nucleic acid targets. Clin. Chem., 2001, 47(10), 1894-1900.
[http://dx.doi.org/10.1093/clinchem/47.10.1894]
[72]
Ni, M.; Xu, H.; Luo, J.; Liu, W.; Zhou, D. Simultaneous detection and differentiation of SARS-CoV-2, influenza A virus and influenza B virus by one-step quadruplex real-time RT-PCR in patients with clinical manifestations. Int. J. Infect. Dis., 2021, 103, 517-524.
[http://dx.doi.org/10.1016/j.ijid.2020.12.027] [PMID: 33326873]
[73]
Koczula, K.M.; Gallotta, A. Lateral flow assays. Essays Biochem., 2016, 60(1), 111-120.
[http://dx.doi.org/10.1042/EBC20150012] [PMID: 27365041]
[74]
Cantera, J.L.; Cate, D.M.; Golden, A.; Peck, R.B.; Lillis, L.L.; Domingo, G.J.; Murphy, E.; Barnhart, B.C.; Anderson, C.A.; Alonzo, L.F.; Glukhova, V.; Hermansky, G.; Barrios-Lopez, B.; Spencer, E.; Kuhn, S.; Islam, Z.; Grant, B.D.; Kraft, L.; Herve, K.; de Puyraimond, V.; Hwang, Y.; Dewan, P.K.; Weigl, B.H.; Nichols, K.P.; Boyle, D.S. Screening antibodies raised against the spike glycoprotein of SARS-CoV-2 to support the development of rapid antigen assays. ACS Omega, 2021, 6(31), 20139-20148.
[http://dx.doi.org/10.1021/acsomega.1c01321] [PMID: 34373846]
[75]
Alexandersen, S.; Chamings, A.; Bhatta, T.R. SARS-CoV-2 genomic and subgenomic RNAs in diagnostic samples are not an indicator of active replication. Nat. Commun., 2020, 11(1), 6059.
[http://dx.doi.org/10.1038/s41467-020-19883-7] [PMID: 33247099]
[76]
He, X.; Lau, E.H.Y.; Wu, P.; Deng, X.; Wang, J.; Hao, X.; Lau, Y.C.; Wong, J.Y.; Guan, Y.; Tan, X.; Mo, X.; Chen, Y.; Liao, B.; Chen, W.; Hu, F.; Zhang, Q.; Zhong, M.; Wu, Y.; Zhao, L.; Zhang, F.; Cowling, B.J.; Li, F.; Leung, G.M. Temporal dynamics in viral shedding and transmissibility of COVID-19. Nat. Med., 2020, 26(5), 672-675.
[http://dx.doi.org/10.1038/s41591-020-0869-5] [PMID: 32296168]
[77]
Larremore, D.B.; Wilder, B.; Lester, E.; Shehata, S.; Burke, J.M.; Hay, J.A.; Tambe, M.; Mina, M.J.; Parker, R. Test sensitivity is secondary to frequency and turnaround time for COVID-19 screening. Sci. Adv., 2021, 7(1), eabd5393.
[http://dx.doi.org/10.1126/sciadv.abd5393] [PMID: 33219112]
[78]
Burbelo, P.D.; Riedo, F.X.; Morishima, C.; Rawlings, S.; Smith, D.; Das, S.; Strich, J.R.; Chertow, D.S.; Davey, R.T., Jr; Cohen, J.I. Detection of nucleocapsid antibody to SARS-CoV-2 is more sensitive than antibody to spike protein in COVID-19 patients. MedRxiv, 2020.
[http://dx.doi.org/10.1101/2020.04.20.20071423]
[79]
Ke, Z.; Oton, J.; Qu, K.; Cortese, M.; Zila, V.; McKeane, L.; Nakane, T.; Zivanov, J.; Neufeldt, C.J.; Cerikan, B.; Lu, J.M.; Peukes, J.; Xiong, X.; Kräusslich, H.G.; Scheres, S.H.W.; Bartenschlager, R.; Briggs, J.A.G. Structures and distributions of SARS-CoV-2 spike proteins on intact virions. Nature, 2020, 588(7838), 498-502.
[http://dx.doi.org/10.1038/s41586-020-2665-2] [PMID: 32805734]
[80]
Mingkai, W.; Chuanyu, H.; Qianqian, S. Luminescent lifetime regulation of lanthanide-doped nanoparticles for biosensing. Biosensors, 2022, 12(2), 131.
[81]
Banerjee, R.; Jaiswal, A. Recent advances in nanoparticle-based lateral flow immunoassay as a point-of-care diagnostic tool for infectious agents and diseases. Analyst, 2018, 143(9), 1970-1996.
[http://dx.doi.org/10.1039/C8AN00307F]
[82]
Chen, Z.; Zhang, Z.; Zhai, X.; Li, Y.; Lin, L.; Zhao, H.; Lin, G. Rapid and sensitive detection of anti-SARS-CoV-2 IgG, using lanthanide-doped nanoparticles-based lateral flow immunoassay. Anal. Chem., 2020, 92(10), 7226-7231.
[http://dx.doi.org/10.1021/acs.analchem.0c00784]
[83]
Li, S.; Ma, L.; Zhou, M.; Li, Y.; Xia, Y.; Fan, X.; Cheng, C.; Luo, H. New opportunities for emerging 2D materials in bioelectronics and biosensors. Curr. Opin. Biomed. Eng., 2020, 13, 32-41.
[http://dx.doi.org/10.1016/j.cobme.2019.08.016]
[84]
Peña-Bahamonde, J.; Nguyen, H.N.; Fanourakis, S.K.; Rodrigues, D.F. Recent advances in graphene-based biosensor technology with applications in life sciences. J. Nanobiotechnology, 2018, 16(1), 75.
[http://dx.doi.org/10.1186/s12951-018-0400-z] [PMID: 30243292]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy