Generic placeholder image

Current Nanoscience

Editor-in-Chief

ISSN (Print): 1573-4137
ISSN (Online): 1875-6786

Review Article

The Pharmaceutical Role of Silver Nanoparticles in Treating Multidrug- Resistant Bacteria and Biofilms

Author(s): Ayham R. Alnsour, Rawand M. Daghmash, Majed M. Masadeh*, Karem H. Alzoubi, Majd M. Masadeh, Nayef H. Bataineh, Hala H. Batayneh and Mustafa S. Al-Ogaidi

Volume 20, Issue 4, 2024

Published on: 09 June, 2023

Page: [471 - 494] Pages: 24

DOI: 10.2174/1573413719666230525093326

Price: $65

Abstract

Background: According to the WHO, antimicrobial resistance has recently become worrisome and constitutes an international public health crisis. The advent of multidrug-resistant bacteria has been implicated in the rise in morbidity and death caused by microbial diseases. However, the lack of new and effective antibiotics has been associated with the emergence of drug resistance. This has resulted in worldwide endeavors to advance innovative drugs with higher efficiency and more sophisticated drug delivery technologies. In addition, the utilization of nanoparticles as innovative biological substances is considered a worldwide issue of interest.

Nanoparticles have the potential to become a vital and viable treatment alternative for treating drug-resistant illnesses. Nanoparticles contain metallic substances and their oxides, which have the highest possibility among all nanoparticles and have piqued the curiosity of numerous experts. Furthermore, using silver nanoparticles in photothermal treatment has attracted much interest.

Purpose: This review includes knowledge about the problems of drug resistance and the mechanism of action of silver nanoparticles.

Results: This review comprehensively assesses the current discoveries for using silver nanoparticles as antimicrobial medicines in infections caused by resistant microorganisms. Also being explored as nanomaterials that can react with light (photothermal treatment) to destroy bacteria and promote improved medication administration and release. Furthermore, it focuses on the synergy between nanoparticles with antimicrobial action and other nanoparticles, microbial adaptation mechanisms to nanoparticles, and existing obstacles and future possibilities that were thoroughly examined.

Keywords: Silver nanoparticles, antimicrobials, mechanism of action, production methods, nanotechnology, multidrugresistant bacteria.

Graphical Abstract
[1]
Tenover, F.C. Mechanisms of antimicrobial resistance in bacteria. Am. J. Infect. Control, 2006, 34(S5), S3-S10.
[http://dx.doi.org/10.1016/j.ajic.2006.05.219] [PMID: 16813980]
[2]
Ventola, C.L. The antibiotic resistance crisis: Part 1: causes and threats. P&T, 2015, 40(4), 277-283.
[PMID: 25859123]
[3]
Webb, G.F.; D’Agata, E.M.C.; Magal, P.; Ruan, S. A model of antibiotic-resistant bacterial epidemics in hospitals. Proc. Natl. Acad. Sci., 2005, 102(37), 13343-13348.
[http://dx.doi.org/10.1073/pnas.0504053102] [PMID: 16141326]
[4]
O’Neill, J. Tackling drug-resistant infections globally: final report and recommendations; Government of the United Kingdom, 2016.
[5]
Shrivastava, S.; Shrivastava, P.; Ramasamy, J. World health organization releases global priority list of antibiotic-resistant bacteria to guide research, discovery, and development of new antibiotics. J. Med. Soc., 2018, 32(1), 76-77.
[http://dx.doi.org/10.4103/jms.jms_25_17]
[6]
Thomson, R.B. Jr Commentary: One small step for the gram stain, one giant leap for clinical microbiology. J. Clin. Microbiol., 2016, 54(6), 1416-1417.
[http://dx.doi.org/10.1128/JCM.00303-16] [PMID: 27008876]
[7]
Navarre, W.W.; Schneewind, O. Surface proteins of gram-positive bacteria and mechanisms of their targeting to the cell wall envelope. Microbiol. Mol. Biol. Rev., 1999, 63(1), 174-229.
[http://dx.doi.org/10.1128/MMBR.63.1.174-229.1999] [PMID: 10066836]
[8]
Kohler, T.; Weidenmaier, C.; Peschel, A. Wall teichoic acid protects Staphylococcus aureus against antimicrobial fatty acids from human skin. J. Bacteriol., 2009, 191(13), 4482-4484.
[http://dx.doi.org/10.1128/JB.00221-09] [PMID: 19429623]
[9]
Baron, I. Medical microbiology; The University of Texas Medical Branch at Galveston: Galveston, TX, 1996.
[10]
Beveridge, T.J. Structures of gram-negative cell walls and their derived membrane vesicles. J. Bacteriol., 1999, 181(16), 4725-4733.
[http://dx.doi.org/10.1128/JB.181.16.4725-4733.1999] [PMID: 10438737]
[11]
Cooper, B.S.; Medley, G.F.; Stone, S.P.; Kibbler, C.C.; Cookson, B.D.; Roberts, J.A.; Duckworth, G.; Lai, R.; Ebrahim, S. Methicillin-resistant Staphylococcus aureus in hospitals and the community: Stealth dynamics and control catastrophes. Proc. Natl. Acad. Sci., 2004, 101(27), 10223-10228.
[http://dx.doi.org/10.1073/pnas.0401324101] [PMID: 15220470]
[12]
Kidd, T.J.; Mills, G.; Sá-Pessoa, J.; Dumigan, A.; Frank, C.G.; Insua, J.L.; Ingram, R.; Hobley, L.; Bengoechea, J.A. A Klebsiella pneumoniae antibiotic resistance mechanism that subdues host defences and promotes virulence. EMBO Mol. Med., 2017, 9(4), 430-447.
[http://dx.doi.org/10.15252/emmm.201607336] [PMID: 28202493]
[13]
Meletis, G. Carbapenem resistance: Overview of the problem and future perspectives. Ther. Adv. Infect. Dis., 2016, 3(1), 15-21.
[http://dx.doi.org/10.1177/2049936115621709] [PMID: 26862399]
[14]
Zumla, A.; Schito, M.; Chakaya, J.; Marais, B.; Mwaba, P.; Migliori, G.B.; Hoelscher, M.; Maeurer, M.; Wallis, R.S.; World, T.B.; World, T.B. Day 2016: Reflections on the global TB emergency. Lancet Respir. Med., 2016, 4(4), 249-251.
[http://dx.doi.org/10.1016/S2213-2600(16)00066-7] [PMID: 27016869]
[15]
Udwadia, Z.F. Totally drug-resistant tuberculosis in India: Who let the djinn out? Respirology, 2012, 17(5), 741-742.
[http://dx.doi.org/10.1111/j.1440-1843.2012.02192.x] [PMID: 22564108]
[16]
Flemming, H.C.; Wuertz, S. Bacteria and archaea on Earth and their abundance in biofilms. Nat. Rev. Microbiol., 2019, 17(4), 247-260.
[http://dx.doi.org/10.1038/s41579-019-0158-9] [PMID: 30760902]
[17]
Dobretsov, S.; Dahms, H.U.; Qian, P.Y. Inhibition of biofouling by marine microorganisms and their metabolites. Biofouling, 2006, 22(1), 43-54.
[http://dx.doi.org/10.1080/08927010500504784] [PMID: 16551560]
[18]
Wang, H.; Wang, H.; Xing, T.; Wu, N.; Xu, X.; Zhou, G. Removal of Salmonella biofilm formed under meat processing environment by surfactant in combination with bio-enzyme. Lebensm. Wiss. Technol., 2016, 66, 298-304.
[http://dx.doi.org/10.1016/j.lwt.2015.10.049]
[19]
Dongari-Bagtzoglou, A. Pathogenesis of mucosal biofilm infections: Challenges and progress. Expert Rev. Anti Infect. Ther., 2008, 6(2), 201-208.
[http://dx.doi.org/10.1586/14787210.6.2.201] [PMID: 18380602]
[20]
Percival, S.L.; Suleman, L.; Vuotto, C.; Donelli, G. Healthcare-associated infections, medical devices and biofilms: risk, tolerance and control. J. Med. Microbiol., 2015, 64(4), 323-334.
[http://dx.doi.org/10.1099/jmm.0.000032] [PMID: 25670813]
[21]
Miesel, L.; Greene, J.; Black, T.A. Genetic strategies for antibacterial drug discovery. Nat. Rev. Genet., 2003, 4(6), 442-456.
[http://dx.doi.org/10.1038/nrg1086] [PMID: 12776214]
[22]
Lee, J.Y.; Park, Y.K.; Chung, E.S.; Na, I.Y.; Ko, K.S. Evolved resistance to colistin and its loss due to genetic reversion in Pseudomonas aeruginosa. Sci. Rep., 2016, 6(1), 25543.
[http://dx.doi.org/10.1038/srep25543] [PMID: 27150578]
[23]
Gold, H.S.; Gold, H. Vancomycin-resistant enterococci: Mechanisms and clinical observations. Clin. Infect. Dis., 2001, 33(2), 210-219.
[http://dx.doi.org/10.1086/321815] [PMID: 11418881]
[24]
Koonin, E.V.; Makarova, K.S.; Aravind, L. Horizontal gene transfer in prokaryotes: Quantification and classification. Annu. Rev. Microbiol., 2001, 55(1), 709-742.
[http://dx.doi.org/10.1146/annurev.micro.55.1.709] [PMID: 11544372]
[25]
Furuya, E.Y.; Lowy, F.D. Antimicrobial-resistant bacteria in the community setting. Nat. Rev. Microbiol., 2006, 4(1), 36-45.
[http://dx.doi.org/10.1038/nrmicro1325] [PMID: 16357859]
[26]
Fomda, B.A.; Khan, A.; Zahoor, D. NDM-1 (New Delhi metallo beta lactamase-1) producing Gram-negative bacilli: emergence & clinical implications. Indian J. Med. Res., 2014, 140(5), 672-678.
[PMID: 25579151]
[27]
Marcato, P.D.; Durán, N. New aspects of nanopharmaceutical delivery systems. J. Nanosci. Nanotechnol., 2008, 8(5), 2216-2229.
[http://dx.doi.org/10.1166/jnn.2008.274] [PMID: 18572633]
[28]
Singh, R.; Nalwa, H.S. Medical applications of nanoparticles in biological imaging, cell labeling, antimicrobial agents, and anticancer nanodrugs. J. Biomed. Nanotechnol., 2011, 7(4), 489-503.
[http://dx.doi.org/10.1166/jbn.2011.1324] [PMID: 21870454]
[29]
Dybowska-Sarapuk, Ł .; Kotela, A.; Krzemiński, J.; Wróblewska, M.; Marchel, H.; Romaniec, M.; Łęgosz, P.; Jakubowska, M. Graphene nanolayers as a new method for bacterial biofilm prevention: Preliminary results. J. AOAC Int., 2017, 100(4), 900-904.
[http://dx.doi.org/10.5740/jaoacint.17-0164] [PMID: 28623661]
[30]
Qing, Y.; Cheng, L.; Li, R.; Liu, G.; Zhang, Y.; Tang, X.; Wang, J.; Liu, H.; Qin, Y. Potential antibacterial mechanism of silver nanoparticles and the optimization of orthopedic implants by advanced modification technologies. Int. J. Nanomedicine, 2018, 13, 3311-3327.
[http://dx.doi.org/10.2147/IJN.S165125] [PMID: 29892194]
[31]
Kędziora, A.; Speruda, M.; Krzyżewska, E.; Rybka, J.; Łukowiak, A.; Bugla-Płoskońska, G. Similarities and differences between silver ions and silver in nanoforms as antibacterial agents. Int. J. Mol. Sci., 2018, 19(2), 444.
[http://dx.doi.org/10.3390/ijms19020444] [PMID: 29393866]
[32]
Lee, N.Y.; Ko, W.C.; Hsueh, P.R. Nanoparticles in the treatment of infections caused by multidrug-resistant organisms. Front. Pharmacol., 2019, 10, 1153.
[http://dx.doi.org/10.3389/fphar.2019.01153] [PMID: 31636564]
[33]
Shobha, G.; Moses, V.; Ananda, S. Biological synthesis of copper nanoparticles and its impact. Int. J. Pharm. Sci. Invent., 2014, 3(8), 6-28.
[34]
Jaworski, S. Wierzbicki, M.; Sawosz, E.; Jung, A.; Gielerak, G.; Biernat, J.; Jaremek, H.; Łojkowski, W.; Woźniak, B.; Wojnarowicz, J.; Stobiński, L.; Małolepszy, A.; Mazurkiewicz-Pawlicka, M.; Łojkowski, M.; Kurantowicz, N.; Chwalibog, A. Graphene oxide-based nanocomposites decorated with silver nanoparticles as an antibacterial agent. Nanoscale Res. Lett., 2018, 13(1), 116.
[http://dx.doi.org/10.1186/s11671-018-2533-2] [PMID: 29687296]
[35]
Decuzzi, P.; Mitragotri, S. Introduction to special issue on “nanoparticles in medicine: Targeting, optimization and clinical applications”. Bioeng. Transl. Med., 2016, 1(1), 8-9.
[http://dx.doi.org/10.1002/btm2.10012] [PMID: 29313003]
[36]
Yetisgin, A.A.; Cetinel, S.; Zuvin, M.; Kosar, A.; Kutlu, O. Therapeutic nanoparticles and their targeted delivery applications. Molecules, 2020, 25(9), 2193.
[http://dx.doi.org/10.3390/molecules25092193] [PMID: 32397080]
[37]
Mba, I.E.; Nweze, E.I. The use of nanoparticles as alternative therapeutic agents against Candida infections: An up-to-date overview and future perspectives. World J. Microbiol. Biotechnol., 2020, 36(11), 163.
[http://dx.doi.org/10.1007/s11274-020-02940-0] [PMID: 32990838]
[38]
Mba, I.E.; Nweze, E.I. Nanoparticles as therapeutic options for treating multidrug-resistant bacteria: Research progress, challenges, and prospects. World J. Microbiol. Biotechnol., 2021, 37(6), 108.
[http://dx.doi.org/10.1007/s11274-021-03070-x] [PMID: 34046779]
[39]
Rasheed, T.; Bilal, M.; Li, C.; Iqbal, H.M.N. Biomedical potentialities of taraxacum officinale-based nanoparticles biosynthesized using methanolic leaf extract. Curr. Pharm. Biotechnol., 2018, 18(14), 1116-1123.
[http://dx.doi.org/10.2174/1389201019666180214145421] [PMID: 29446732]
[40]
Liao, S.; Zhang, Y.; Pan, X.; Zhu, F.; Jiang, C.; Liu, Q.; Cheng, Z.; Dai, G.; Wu, G.; Wang, L.; Chen, L. Antibacterial activity and mechanism of silver nanoparticles against multidrug-resistant Pseudomonas aeruginosa. Int. J. Nanomedicine, 2019, 14, 1469-1487.
[http://dx.doi.org/10.2147/IJN.S191340] [PMID: 30880959]
[41]
Möhler, J.S.; Sim, W.; Blaskovich, M.A.T.; Cooper, M.A.; Ziora, Z.M. Silver bullets: A new lustre on an old antimicrobial agent. Biotechnol. Adv., 2018, 36(5), 1391-1411.
[http://dx.doi.org/10.1016/j.biotechadv.2018.05.004] [PMID: 29847770]
[42]
Dye, C. After 2015: infectious diseases in a new era of health and development. Philos. Trans. R. Soc. Lond. B Biol. Sci., 2014, 369(1645), 20130426.
[http://dx.doi.org/10.1098/rstb.2013.0426] [PMID: 24821913]
[43]
Estimates, G. H. Deaths by cause, age, sex, by country and by region, 2000–2016. 2016.
[44]
Fenollar, F.; Mediannikov, O. Emerging infectious diseases in Africa in the 21st century. New Microbes New Infect., 2018, 26, S10-S18.
[http://dx.doi.org/10.1016/j.nmni.2018.09.004] [PMID: 30402238]
[45]
Munita, J.M.; Arias, C.A. Mechanisms of antibiotic resistance. Microbiol. Spectr., 2016, 4(2), 4.2.15.
[http://dx.doi.org/10.1128/microbiolspec.VMBF-0016-2015] [PMID: 27227291]
[46]
Wang, L.; Hu, C.; Shao, L. The antimicrobial activity of nanoparticles: Present situation and prospects for the future. Int. J. Nanomedicine, 2017, 12, 1227-1249.
[http://dx.doi.org/10.2147/IJN.S121956] [PMID: 28243086]
[47]
Sanchez, C.J., Jr; Mende, K.; Beckius, M.L.; Akers, K.S.; Romano, D.R.; Wenke, J.C.; Murray, C.K. Biofilm formation by clinical isolates and the implications in chronic infections. BMC Infect. Dis., 2013, 13(1), 47.
[http://dx.doi.org/10.1186/1471-2334-13-47] [PMID: 23356488]
[48]
Roca, I.; Akova, M.; Baquero, F.; Carlet, J.; Cavaleri, M.; Coenen, S.; Cohen, J.; Findlay, D.; Gyssens, I.; Heure, O.E.; Kahlmeter, G.; Kruse, H.; Laxminarayan, R.; Liébana, E.; López-Cerero, L.; MacGowan, A.; Martins, M.; Rodríguez-Baño, J.; Rolain, J.M.; Segovia, C.; Sigauque, B.; Tacconelli, E.; Wellington, E.; Vila, J. The global threat of antimicrobial resistance: science for intervention. New Microbes New Infect., 2015, 6, 22-29.
[http://dx.doi.org/10.1016/j.nmni.2015.02.007] [PMID: 26029375]
[49]
Lebeaux, D.; Chauhan, A.; Rendueles, O.; Beloin, C. From in vitro to in vivo models of bacterial biofilm-related infections. Pathogens, 2013, 2(2), 288-356.
[http://dx.doi.org/10.3390/pathogens2020288] [PMID: 25437038]
[50]
Saginur, R.; StDenis, M.; Ferris, W.; Aaron, S.D.; Chan, F.; Lee, C.; Ramotar, K. Multiple combination bactericidal testing of staphylococcal biofilms from implant-associated infections. Antimicrob. Agents Chemother., 2006, 50(1), 55-61.
[http://dx.doi.org/10.1128/AAC.50.1.55-61.2006] [PMID: 16377667]
[51]
Hall-Stoodley, L.; Costerton, J.W.; Stoodley, P. Bacterial biofilms: From the Natural environment to infectious diseases. Nat. Rev. Microbiol., 2004, 2(2), 95-108.
[http://dx.doi.org/10.1038/nrmicro821] [PMID: 15040259]
[52]
Hall, C.W.; Mah, T.F. Molecular mechanisms of biofilm-based antibiotic resistance and tolerance in pathogenic bacteria. FEMS Microbiol. Rev., 2017, 41(3), 276-301.
[http://dx.doi.org/10.1093/femsre/fux010] [PMID: 28369412]
[53]
Nathwani, D.; Raman, G.; Sulham, K.; Gavaghan, M.; Menon, V. Clinical and economic consequences of hospital-acquired resistant and multidrug-resistant Pseudomonas aeruginosa infections: A systematic review and meta-analysis. Antimicrob. Resist. Infect. Control, 2014, 3(1), 32.
[http://dx.doi.org/10.1186/2047-2994-3-32] [PMID: 25371812]
[54]
Morgan, D.J.; Okeke, I.N.; Laxminarayan, R.; Perencevich, E.N.; Weisenberg, S. Non-prescription antimicrobial use worldwide: A systematic review. Lancet Infect. Dis., 2011, 11(9), 692-701.
[http://dx.doi.org/10.1016/S1473-3099(11)70054-8] [PMID: 21659004]
[55]
Resistance, W.A.J. Multi-country public awareness survey; World Health Organization: Switzerland, 2015, p. 59.
[56]
Hussain, S.; Joo, J.; Kang, J.; Kim, B.; Braun, G.B.; She, Z.G.; Kim, D.; Mann, A.P.; Mölder, T.; Teesalu, T.J.N.e. Antibiotic-loaded nanoparticles targeted to the site of infection enhance antibacterial efficacy. Nat. Biomed. Eng., 2018, 2(2), 95-103.
[http://dx.doi.org/10.1038/s41551-017-0187-5]
[57]
Hsiao, C.W.; Chen, H.L.; Liao, Z.X.; Sureshbabu, R.; Hsiao, H.C.; Lin, S.J.; Chang, Y.; Sung, H.W. Effective photothermal killing of pathogenic bacteria by using spatially tunable colloidal gels with nano-localized heating sources. Adv. Funct. Mater., 2015, 25(5), 721-728.
[http://dx.doi.org/10.1002/adfm.201403478]
[58]
Qiu, M.; Wang, D.; Liang, W.; Liu, L.; Zhang, Y.; Chen, X.; Sang, D.K.; Xing, C.; Li, Z.; Dong, B.; Xing, F.; Fan, D.; Bao, S.; Zhang, H.; Cao, Y. Novel concept of the smart NIR-light–controlled drug release of black phosphorus nanostructure for cancer therapy. Proc. Natl. Acad. Sci., 2018, 115(3), 501-506.
[http://dx.doi.org/10.1073/pnas.1714421115] [PMID: 29295927]
[59]
Markowska, K.; Grudniak, A.M.; Wolska, K.I. Silver nanoparticles as an alternative strategy against bacterial biofilms. Acta Biochim. Pol., 2013, 60(4), 523-530.
[PMID: 24432308]
[60]
Abbasi, E.; Milani, M.; Fekri Aval, S.; Kouhi, M.; Akbarzadeh, A.; Tayefi Nasrabadi, H.; Nikasa, P.; Joo, S.W.; Hanifehpour, Y.; Nejati-Koshki, K.; Samiei, M. Silver nanoparticles: Synthesis methods, bio-applications and properties. Crit. Rev. Microbiol., 2016, 42(2), 173-180.
[PMID: 24937409]
[61]
Das, C.G.A.; Kumar, V.G.; Dhas, T.S.; Karthick, V.; Govindaraju, K.; Joselin, J.M.; Baalamurugan, J. Antibacterial activity of silver nanoparticles (biosynthesis): A short review on recent advances. Biocatal. Agric. Biotechnol., 2020, 27, 101593.
[http://dx.doi.org/10.1016/j.bcab.2020.101593]
[62]
Mohandas, A.; Deepthi, S.; Biswas, R.; Jayakumar, R. Chitosan based metallic nanocomposite scaffolds as antimicrobial wound dressings. Bioact. Mater., 2018, 3(3), 267-277.
[http://dx.doi.org/10.1016/j.bioactmat.2017.11.003] [PMID: 29744466]
[63]
Guggenbichler, J.P.; Böswald, M.; Lugauer, S.; Krall, T. A new technology of microdispersed silver in polyurethane induces antimicrobial activity in central venous catheters. Infection, 1999, 27(S1), S16-S23.
[http://dx.doi.org/10.1007/BF02561612] [PMID: 10379438]
[64]
Rojas-Andrade, M.; Cho, A.T.; Hu, P.; Lee, S.J.; Deming, C.P.; Sweeney, S.W.; Saltikov, C.; Chen, S. Enhanced antimicrobial activity with faceted silver nanostructures. J. Mater. Sci., 2015, 50(7), 2849-2858.
[http://dx.doi.org/10.1007/s10853-015-8847-x]
[65]
Mathur, P.; Jha, S.; Ramteke, S.; Jain, N.K. Pharmaceutical aspects of silver nanoparticles. Artif. Cells Nanomed. Biotechnol., 2018, 46(S1), 115-126.
[http://dx.doi.org/10.1080/21691401.2017.1414825]
[66]
Arya, G.; Sharma, N.; Mankamna, R.; Nimesh, S. Antimicrobial silver nanoparticles: Future of nanomaterials. In: Microbial Nanobionics: Volume 2, Basic Research and Applications; Prasad, R. Springer International Publishing: Cham, 2019; p. 89-119.
[67]
Singh, A.; Joshi, N.C.; Ramola, M. Magnesium oxide Nanoparticles (MgONPs): Green Synthesis, Characterizations and Antimicrobial activity. Res J Pharm Technol., 2019, 12(10), 4644-4646.
[68]
Singh, S. Comparative study on antimicrobial efficiency of AgSiO2, ZnAg and Ag- zeolite for the application of fishery plastic container. Mater. Sci. Eng., 2015, 4, 1-5.
[69]
Flores-López, L.Z.; Espinoza-Gómez, H.; Somanathan, R. Silver nanoparticles: Electron transfer, reactive oxygen species, oxidative stress, beneficial and toxicological effects. Mini review. J. Appl. Toxicol., 2019, 39(1), 16-26.
[http://dx.doi.org/10.1002/jat.3654] [PMID: 29943411]
[70]
Maurer, L.L.; Meyer, J.N. A systematic review of evidence for silver nanoparticle-induced mitochondrial toxicity. Environ. Sci. Nano, 2016, 3(2), 311-322.
[http://dx.doi.org/10.1039/C5EN00187K]
[71]
Sriram, M.I.; Kalishwaralal, K.; Barathmanikanth, S.; Gurunathani, S. Size-based cytotoxicity of silver nanoparticles in bovine retinal endothelial cells. Nanoscience Methods, 2012, 1(1), 56-77.
[http://dx.doi.org/10.1080/17458080.2010.547878]
[72]
Abuayyash, A.; Ziegler, N.; Gessmann, J.; Sengstock, C.; Schildhauer, T.A.; Ludwig, A.; Köller, M. Antibacterial efficacy of sacrifical anode thin films combining silver with platinum group elements within a bacteria-containing human plasma clot. Adv. Eng. Mater., 2018, 20(2), 1700493.
[http://dx.doi.org/10.1002/adem.201700493]
[73]
Tamayo, L.A.; Zapata, P.A.; Vejar, N.D.; Azócar, M.I.; Gulppi, M.A.; Zhou, X.; Thompson, G.E.; Rabagliati, F.M.; Páez, M.A. Release of silver and copper nanoparticles from polyethylene nanocomposites and their penetration into Listeria monocytogenes. Mater. Sci. Eng. C, 2014, 40, 24-31.
[http://dx.doi.org/10.1016/j.msec.2014.03.037] [PMID: 24857461]
[74]
Hamouda, R.A.; Hussein, M.H.; Abo-elmagd, R.A.; Bawazir, S.S. Synthesis and biological characterization of silver nanoparticles derived from the cyanobacterium Oscillatoria limnetica. Sci. Rep., 2019, 9(1), 13071.
[http://dx.doi.org/10.1038/s41598-019-49444-y] [PMID: 31506473]
[75]
Dakal, T.C.; Kumar, A.; Majumdar, R.S.; Yadav, V. Mechanistic basis of antimicrobial actions of silver nanoparticles. Front. Microbiol., 2016, 7, 1831.
[http://dx.doi.org/10.3389/fmicb.2016.01831] [PMID: 27899918]
[76]
Aziz, N.; Fatma, T.; Varma, A.; Prasad, R. Biogenic synthesis of silver nanoparticles using Scenedesmus abundans and evaluation of their antibacterial activity. J. Nanopart. Res., 2014, 2014, 1-6.
[http://dx.doi.org/10.1155/2014/689419]
[77]
Aziz, N.; Pandey, R.; Barman, I.; Prasad, R. Leveraging the attributes of Mucor hiemalis-Derived silver nanoparticles for a synergistic broad-spectrum antimicrobial platform. Front. Microbiol., 2016, 7, 1984.
[http://dx.doi.org/10.3389/fmicb.2016.01984] [PMID: 28018316]
[78]
Rodríguez-Cutiño, G.; Gaytán-Andrade, J.J.; García-Cruz, A.; Ramos-González, R.; Chávez-González, M.L.; Segura-Ceniceros, E.P.; Martínez-Hernández, J.L.; Govea-Salas, M.; Ilyina, A. Nanobiotechnology approaches for crop protection. In: Phytobiont and Ecosystem Restitution; Springer: Singapore, 2018; pp. 1-21.
[http://dx.doi.org/10.1007/978-981-13-1187-1_1]
[79]
Agnihotri, S.; Mukherji, S.; Mukherji, S. Size-controlled silver nanoparticles synthesized over the range 5–100 Nm using the same protocol and their antibacterial efficacy. RSC Advances, 2013, 4.
[80]
Patil, M.P.; Kim, G.D. Eco-friendly approach for nanoparticles synthesis and mechanism behind antibacterial activity of silver and anticancer activity of gold nanoparticles. Appl. Microbiol. Biotechnol., 2017, 101(1), 79-92.
[http://dx.doi.org/10.1007/s00253-016-8012-8] [PMID: 27915376]
[81]
Hsueh, Y.H.; Lin, K.S.; Ke, W.J.; Hsieh, C.T.; Chiang, C.L.; Tzou, D.Y.; Liu, S.T. The antimicrobial properties of silver nanoparticles in bacillus subtilis are mediated by released Ag+ Ions. PLoS One, 2015, 10(12), e0144306.
[http://dx.doi.org/10.1371/journal.pone.0144306] [PMID: 26669836]
[82]
Kumar, N.; Das, S.; Jyoti, A.; Kaushik, S. Synergistic effect of silver nanoparticles with doxycycline against Klebsiella pneumonia. Int. J. Pharm. Pharm. Sci., 2016, 8, 183-186.
[83]
Yang, X.; Gondikas, A.P.; Marinakos, S.M.; Auffan, M.; Liu, J.; Hsu-Kim, H.; Meyer, J.N. Mechanism of silver nanoparticle toxicity is dependent on dissolved silver and surface coating in Caenorhabditis elegans. Environ. Sci. Technol., 2012, 46(2), 1119-1127.
[http://dx.doi.org/10.1021/es202417t] [PMID: 22148238]
[84]
Tang, S.; Zheng, J. Antibacterial activity of silver nanoparticles: Structural effects. Adv. Healthc. Mater., 2018, 7(13), 1701503.
[http://dx.doi.org/10.1002/adhm.201701503] [PMID: 29808627]
[85]
Prasad, R.; Swamy, V.S. Antibacterial activity of silver nanoparticles synthesized by bark extract of Syzygium cumini. J. Nanopart. Res., 2013, 2013, 1-6.
[http://dx.doi.org/10.1155/2013/431218]
[86]
Korshed, P.; Li, L.; Liu, Z.; Wang, T. The molecular mechanisms of the antibacterial effect of picosecond laser generated silver nanoparticles and their toxicity to human cells. PLoS One, 2016, 11(8), e0160078.
[http://dx.doi.org/10.1371/journal.pone.0160078] [PMID: 27575485]
[87]
Prasad, R.; Gupta, N.; Kumar, M.; Kumar, V.; Wang, S.; Abd-Elsalam, K.A. Nanomaterials act as plant defense mechanism. In: Nanotechnology: Food and Environmental Paradigm; Springer Singapore: Singapore, 2017; p. 253-269.
[http://dx.doi.org/10.1007/978-981-10-4678-0_14]
[88]
Gupta, N.; Upadhyaya, C.P.; Singh, A.; Abd-Elsalam, K.A.; Prasad, R. Applications of silver nanoparticles in plant protection. In: Nanobiotechnology applications in plant protection; Springer: New York City, 2018; pp. 247-265.
[http://dx.doi.org/10.1007/978-3-319-91161-8_9]
[89]
Singh, J.; Kaur, G.; Kaur, P.; Bajaj, R.; Rawat, M. A review on green synthesis and characterization of silver nanoparticles and their applications: a green nanoworld. World J. Pharm. Pharm. Sci., 2016, 6, 730-762.
[90]
Purohit, J.; Chattopadhyay, A.; Singh, N.K. Green synthesis of microbial nanoparticle: approaches to application. In: Microbial Nanobionics; Springer: New York City, 2019; pp. 35-60.
[http://dx.doi.org/10.1007/978-3-030-16534-5_3]
[91]
Joshi, N.; Jain, N.; Pathak, A.; Singh, J.; Prasad, R.; Upadhyaya, C.P. Biosynthesis of silver nanoparticles using Carissa carandas berries and its potential antibacterial activities. J. Sol-Gel Sci. Technol., 2018, 86(3), 682-689.
[http://dx.doi.org/10.1007/s10971-018-4666-2]
[92]
Kumari, R.M.; Thapa, N.; Gupta, N.; Kumar, A.; Nimesh, S. Antibacterial and photocatalytic degradation efficacy of silver nanoparticles biosynthesized using Cordia dichotoma leaf extract. Adv. Nat. Sci.: Nanosci. Nanotechnol., 2016, 7(4), 045009.
[http://dx.doi.org/10.1088/2043-6262/7/4/045009]
[93]
Ahmadi, M.; Adibhesami, M. The Effect of silver nanoparticles on wounds contaminated with Pseudomonas aeruginosa in mice: An experimental study. Iran. J. Pharm. Res., 2017, 16(2), 661-669.
[PMID: 28979320]
[94]
Arya, G.; Kumar, N.; Gupta, N.; Kumar, A.; Nimesh, S. Antibacterial potential of silver nanoparticles biosynthesised using Canarium ovatum leaves extract. IET Nanobiotechnol., 2017, 11(5), 506-511.
[http://dx.doi.org/10.1049/iet-nbt.2016.0144] [PMID: 28745281]
[95]
Arya, G.; Sharma, N.; Ahmed, J.; Gupta, N.; Kumar, A.; Chandra, R.; Nimesh, S. Degradation of anthropogenic pollutant and organic dyes by biosynthesized silver nano-catalyst from Cicer arietinum leaves. J. Photochem. Photobiol. B, 2017, 174, 90-96.
[http://dx.doi.org/10.1016/j.jphotobiol.2017.07.019] [PMID: 28756157]
[96]
Arya, G.; Malav, A.K.; Gupta, N.; Kumar, A.; Nimesh, S. Biosynthesis and in vitro antimicrobial potential of silver nanoparticles prepared using dicoma tomentosa plant extract. Nanosci. Nanotechnol. Asia, 2018, 8(2), 240-247.
[http://dx.doi.org/10.2174/2210681207666170613095203]
[97]
Baghayeri, M.; Mahdavi, B.; Hosseinpor-Mohsen, A.Z.; Farhadi, S. Green synthesis of silver nanoparticles using water extract of Salvia leriifolia: Antibacterial studies and applications as catalysts in the electrochemical detection of nitrite. Appl. Organomet. Chem., 2018, 32(2), e4057.
[http://dx.doi.org/10.1002/aoc.4057]
[98]
Taghavizadeh Yazdi, M.E.; Khara, J.; Sadeghnia, H.R.; Esmaeilzadeh, B.S.; Darroudi, M. Biosynthesis, characterization, and antibacterial activity of silver nanoparticles using Rheum turkestanicum shoots extract. Res. Chem. Intermed., 2018, 44(2), 1325-1334.
[http://dx.doi.org/10.1007/s11164-017-3169-z]
[99]
Abou El-Nour, K.M.M.; Eftaiha, A.; Al-Warthan, A.; Ammar, R.A.A. Synthesis and applications of silver nanoparticles. Arab. J. Chem., 2010, 3(3), 135-140.
[http://dx.doi.org/10.1016/j.arabjc.2010.04.008]
[100]
Shelar, G.; Chavan, A. Fusarium semitectum mediated extracellular synthesis of silver nanoparticles and their antibacterial activity. Int. J. Biol. Adv. Res., 2014.
[101]
Cui, H.; Liu, P.; Yang, G.W. Noble metal nanoparticle patterning deposition using pulsed-laser deposition in liquid for surface-enhanced Raman scattering. Appl. Phys. Lett., 2006, 89(15), 153124.
[http://dx.doi.org/10.1063/1.2359289]
[102]
Kibis, L.S.; Stadnichenko, A.I.; Pajetnov, E.M.; Koscheev, S.V.; Zaykovskii, V.I.; Boronin, A.I. The investigation of oxidized silver nanoparticles prepared by thermal evaporation and radio-frequency sputtering of metallic silver under oxygen. Appl. Surf. Sci., 2010, 257(2), 404-413.
[http://dx.doi.org/10.1016/j.apsusc.2010.07.002]
[103]
Nate, Z.; Moloto, M.J.; Mubiayi, P.K.; Sibiya, P.N. Green synthesis of chitosan capped silver nanoparticles and their antimicrobial activity. MRS Adv., 2018, 3(42-43), 2505-2517.
[http://dx.doi.org/10.1557/adv.2018.368]
[104]
Turkevich, J.; Stevenson, P.C.; Hillier, J. A study of the nucleation and growth processes in the synthesis of colloidal gold. Discuss. Faraday Soc., 1951, 11(0), 55-75.
[http://dx.doi.org/10.1039/df9511100055]
[105]
Sharma, V.K.; Yngard, R.A.; Lin, Y. Silver nanoparticles: Green synthesis and their antimicrobial activities. Adv. Colloid Interface Sci., 2009, 145(1-2), 83-96.
[http://dx.doi.org/10.1016/j.cis.2008.09.002] [PMID: 18945421]
[106]
de Marco, B.A.; Rechelo, B.S.; Tótoli, E.G.; Kogawa, A.C.; Salgado, H.R.N. Evolution of green chemistry and its multidimensional impacts: A review. Saudi Pharm. J., 2019, 27(1), 1-8.
[http://dx.doi.org/10.1016/j.jsps.2018.07.011] [PMID: 30627046]
[107]
Biao, L.; Tan, S.; Wang, Y.; Guo, X.; Fu, Y.; Xu, F.; Zu, Y.; Liu, Z. Synthesis, characterization and antibacterial study on the chitosan-functionalized Ag nanoparticles. Mater. Sci. Eng. C, 2017, 76, 73-80.
[http://dx.doi.org/10.1016/j.msec.2017.02.154] [PMID: 28482584]
[108]
Sasidharan, D.; Namitha, T.R.; Johnson, S.P.; Jose, V.; Mathew, P. Synthesis of silver and copper oxide nanoparticles using Myristica fragrans fruit extract: Antimicrobial and catalytic applications. Sustain. Chem. Pharm., 2020, 16, 100255.
[http://dx.doi.org/10.1016/j.scp.2020.100255]
[109]
Troupis, A.; Hiskia, A.; Papaconstantinou, E. Synthesis of metal nanoparticles by using polyoxometalates as photocatalysts and stabilizers. Angew. Chem. Int. Ed., 2002, 41(11), 1911-1914.
[http://dx.doi.org/10.1002/1521-3773(20020603)41:11<1911:AID-ANIE1911>3.0.CO;2-0] [PMID: 19750630]
[110]
Chen, P.; Song, L.; Liu, Y.; Fang, Y. Synthesis of silver nanoparticles by γ-ray irradiation in acetic water solution containing chitosan. Radiat. Phys. Chem., 2007, 76(7), 1165-1168.
[http://dx.doi.org/10.1016/j.radphyschem.2006.11.012]
[111]
Cao, X.L.; Cheng, C.; Ma, Y.L.; Zhao, C.S. Preparation of silver nanoparticles with antimicrobial activities and the researches of their biocompatibilities. J. Mater. Sci. Mater. Med., 2010, 21(10), 2861-2868.
[http://dx.doi.org/10.1007/s10856-010-4133-2] [PMID: 20652373]
[112]
Vigneshwaran, N.; Nachane, R.P.; Balasubramanya, R.H.; Varadarajan, P.V. A novel one-pot ‘green’ synthesis of stable silver nanoparticles using soluble starch. Carbohydr. Res., 2006, 341(12), 2012-2018.
[http://dx.doi.org/10.1016/j.carres.2006.04.042] [PMID: 16716274]
[113]
Li, G.; He, D.; Qian, Y.; Guan, B.; Gao, S.; Cui, Y.; Yokoyama, K.; Wang, L. Fungus-mediated green synthesis of silver nanoparticles using Aspergillus terreus. Int. J. Mol. Sci., 2011, 13(1), 466-476.
[http://dx.doi.org/10.3390/ijms13010466] [PMID: 22312264]
[114]
Neethu, S.; Midhun, S.J.; Radhakrishnan, E.K.; Jyothis, M. Surface functionalization of central venous catheter with mycofabricated silver nanoparticles and its antibiofilm activity on multidrug resistant Acinetobacter baumannii. Microb. Pathog., 2020, 138, 103832.
[http://dx.doi.org/10.1016/j.micpath.2019.103832] [PMID: 31689474]
[115]
El-Sherbiny, I.M.; Salih, E.; Reicha, F.M. Green synthesis of densely dispersed and stable silver nanoparticles using myrrh extract and evaluation of their antibacterial activity. J. Nanostructure Chem., 2013, 3(1), 8.
[http://dx.doi.org/10.1186/2193-8865-3-8]
[116]
Hu, G.; Jin, W.; Zhang, W.; Wu, K.; He, J.; Zhang, Y.; Chen, Q.; Zhang, W. Surfactant-assisted shape separation from silver nanoparticles prepared by a seed-mediated method. Colloids Surf. A Physicochem. Eng. Asp., 2018, 540, 136-142.
[http://dx.doi.org/10.1016/j.colsurfa.2017.12.071]
[117]
Vanitha, G.; Rajavel, K.; Boopathy, G.; Veeravazhuthi, V.; Neelamegam, P. Physiochemical charge stabilization of silver nanoparticles and its antibacterial applications. Chem. Phys. Lett., 2017, 669, 71-79.
[http://dx.doi.org/10.1016/j.cplett.2016.11.037]
[118]
Pal, S.; Tak, Y.K.; Song, J.M. Does the antibacterial activity of silver nanoparticles depend on the shape of the nanoparticle? A study of the Gram-negative bacterium Escherichia coli. Appl. Environ. Microbiol., 2007, 73(6), 1712-1720.
[http://dx.doi.org/10.1128/AEM.02218-06] [PMID: 17261510]
[119]
Raza, M.; Kanwal, Z.; Rauf, A.; Sabri, A.; Riaz, S.; Naseem, S. Size- and shape-dependent antibacterial studies of silver nanoparticles synthesized by wet chemical routes. Nanomaterials, 2016, 6(4), 74.
[http://dx.doi.org/10.3390/nano6040074] [PMID: 28335201]
[120]
Dogru, E.; Demirbas, A.; Altinsoy, B.; Duman, F.; Ocsoy, I. Formation of Matricaria chamomilla extract-incorporated Ag nanoparticles and size-dependent enhanced antimicrobial property. J. Photochem. Photobiol. B, 2017, 174, 78-83.
[http://dx.doi.org/10.1016/j.jphotobiol.2017.07.024] [PMID: 28756155]
[121]
Ginjupalli, K.; Shaw, T.; Tellapragada, C.; Alla, R.; Gupta, L.; Perampalli, N.U. Does the size matter? Evaluation of effect of incorporation of silver nanoparticles of varying particle size on the antimicrobial activity and properties of irreversible hydrocolloid impression material. Dent. Mater., 2018, 34(7), e158-e165.
[http://dx.doi.org/10.1016/j.dental.2018.03.016] [PMID: 29706228]
[122]
Chang, S.; Chen, K.; Hua, Q.; Ma, Y.; Huang, W. Evidence for the growth mechanisms of silver nanocubes and nanowires. J. Phys. Chem. C, 2011, 115(16), 7979-7986.
[http://dx.doi.org/10.1021/jp2010088]
[123]
Xia, Y.; Xia, X.; Peng, H.C. Shape-controlled synthesis of colloidal metal nanocrystals: Thermodynamic versus kinetic products. J. Am. Chem. Soc., 2015, 137(25), 7947-7966.
[http://dx.doi.org/10.1021/jacs.5b04641] [PMID: 26020837]
[124]
Gao, M.; Sun, L.; Wang, Z.; Zhao, Y. Controlled synthesis of Ag nanoparticles with different morphologies and their antibacterial properties. Mater. Sci. Eng. C, 2013, 33(1), 397-404.
[http://dx.doi.org/10.1016/j.msec.2012.09.005] [PMID: 25428087]
[125]
Logaranjan, K.; Raiza, A.J.; Gopinath, S.C.B.; Chen, Y.; Pandian, K. Shape- and size-controlled synthesis of silver nanoparticles using aloe vera plant extract and their antimicrobial activity. Nanoscale Res. Lett., 2016, 11(1), 520.
[http://dx.doi.org/10.1186/s11671-016-1725-x] [PMID: 27885623]
[126]
Helmlinger, J.; Sengstock, C.; Groß-Heitfeld, C.; Mayer, C.; Schildhauer, T.A.; Köller, M.; Epple, M. Silver nanoparticles with different size and shape: equal cytotoxicity, but different antibacterial effects. RSC Advances, 2016, 6(22), 18490-18501.
[http://dx.doi.org/10.1039/C5RA27836H]
[127]
Kim, J.H.; Park, H.; Seo, S.W. In situ synthesis of silver nanoparticles on the surface of PDMS with high antibacterial activity and biosafety toward an implantable medical device. Nano Converg., 2017, 4(1), 33.
[http://dx.doi.org/10.1186/s40580-017-0126-x] [PMID: 29214127]
[128]
Acharya, D.; Singha, K.M.; Pandey, P.; Mohanta, B.; Rajkumari, J.; Singha, L.P. Shape dependent physical mutilation and lethal effects of silver nanoparticles on bacteria. Sci. Rep., 2018, 8(1), 201.
[http://dx.doi.org/10.1038/s41598-017-18590-6] [PMID: 29317760]
[129]
Silva, T.; Pokhrel, L.R.; Dubey, B.; Tolaymat, T.M.; Maier, K.J.; Liu, X. Particle size, surface charge and concentration dependent ecotoxicity of three organo-coated silver nanoparticles: Comparison between general linear model-predicted and observed toxicity. Sci. Total Environ., 2014, 468-469, 968-976.
[http://dx.doi.org/10.1016/j.scitotenv.2013.09.006] [PMID: 24091120]
[130]
Abbaszadegan, A.; Ghahramani, Y.; Gholami, A.; Hemmateenejad, B.; Dorostkar, S.; Nabavizadeh, M.; Sharghi, H. The effect of charge at the surface of silver nanoparticles on antimicrobial activity against gram-positive and gram-negative bacteria: A preliminary study. J. Nanomater., 2015, 2015, 1-8.
[http://dx.doi.org/10.1155/2015/720654]
[131]
Salvioni, L.; Galbiati, E.; Collico, V.; Alessio, G.; Avvakumova, S.; Corsi, F.; Tortora, P.; Prosperi, D.; Colombo, M. Negatively charged silver nanoparticles with potent antibacterial activity and reduced toxicity for pharmaceutical preparations. Int. J. Nanomedicine, 2017, 12, 2517-2530.
[http://dx.doi.org/10.2147/IJN.S127799] [PMID: 28408822]
[132]
Nam, G.; Rangasamy, S.; Purushothaman, B.; Song, J.M. The application of bactericidal silver nanoparticles in wound treatment. Nanomater. Nanotechnol., 2015, 5, 23.
[http://dx.doi.org/10.5772/60918]
[133]
Wilkinson, L.J.; White, R.J.; Chipman, J.K. Silver and nanoparticles of silver in wound dressings: A review of efficacy and safety. J. Wound Care, 2011, 20(11), 543-549.
[http://dx.doi.org/10.12968/jowc.2011.20.11.543] [PMID: 22240850]
[134]
Gong, C.P.; Li, S.C.; Wang, R.Y. Development of biosynthesized silver nanoparticles based formulation for treating wounds during nursing care in hospitals. J. Photochem. Photobiol. B, 2018, 183, 137-141.
[http://dx.doi.org/10.1016/j.jphotobiol.2018.04.030] [PMID: 29705505]
[135]
Vickers, N.J. Animal communication: When i’m calling you, will you answer too? Curr. Biol., 2017, 27(14), R713-R715.
[http://dx.doi.org/10.1016/j.cub.2017.05.064] [PMID: 28743020]
[136]
Zangeneh, M.M. Green synthesis and chemical characterization of silver nanoparticles from aqueous extract of Falcaria Vulgaris leaves and assessment of their cytotoxicity and antioxidant, antibacterial, antifungal and cutaneous wound healing properties. Appl. Organomet. Chem., 2019, 33(9), e4963.
[http://dx.doi.org/10.1002/aoc.4963]
[137]
Diniz, F.; Maia, R.; de Andrade, L.R.; Andrade, L.; Vinicius, C.M.; da Silva, C.; Corrêa, C.; de Albuquerque, J.R.; da Costa, P.L.; Shin, S.; Hassan, S.; Sanchez-Lopez, E.; Souto, E.; Severino, P. Silver nanoparticles-composing alginate/gelatine hydrogel improves wound healing in vivo. Nanomaterials, 2020, 10(2), 390.
[http://dx.doi.org/10.3390/nano10020390] [PMID: 32102229]
[138]
Manikandan, R.; Anjali, R.; Beulaja, M.; Prabhu, N.M.; Koodalingam, A.; Saiprasad, G.; Chitra, P.; Arumugam, M. Synthesis, characterization, anti-proliferative and wound healing activities of silver nanoparticles synthesized from Caulerpa scalpelliformis. Process Biochem., 2019, 79, 135-141.
[http://dx.doi.org/10.1016/j.procbio.2019.01.013]
[139]
Selvam, S.I.; Joicesky, S.M.B.; Dashli, A.A.; Vinothini, A.; Premkumar, K. Assessment of anti bacterial, anti inflammation and wound healing activity in Wistar albino rats using green silver nanoparticles synthesized from Tagetes erecta leaves. J. Appl. Nat. Sci., 2021, 13(1), 343-351.
[http://dx.doi.org/10.31018/jans.v13i1.2519]
[140]
Al-Shabib, N.A.; Husain, F.M.; Nadeem, M.; Khan, M.S.; Al-Qurainy, F.; Alyousef, A.A.; Arshad, M.; Khan, A.; Khan, J.M.; Alam, P.; Albalawi, T.; Shahzad, S.A. Bio-inspired facile fabrication of silver nanoparticles from in vitro grown shoots of Tamarix nilotica: explication of its potential in impeding growth and biofilms of Listeria monocytogenes and assessment of wound healing ability. RSC Advances, 2020, 10(50), 30139-30149.
[http://dx.doi.org/10.1039/D0RA04587J] [PMID: 35518236]
[141]
Shaheen, H.M.J.G.D.T. Wound healing and silver nanoparticles. oat, 2016, 1(1), 1-2.
[http://dx.doi.org/10.15761/GDT.1000105]
[142]
Nadworny, P.L.; Wang, J.; Tredget, E.E.; Burrell, R.E. Anti-inflammatory activity of nanocrystalline silver in a porcine contact dermatitis model. Nanomedicine, 2008, 4(3), 241-251.
[http://dx.doi.org/10.1016/j.nano.2008.04.006] [PMID: 18550449]
[143]
Gurunathan, S.; Lee, K.J.; Kalishwaralal, K.; Sheikpranbabu, S.; Vaidyanathan, R.; Eom, S.H. Antiangiogenic properties of silver nanoparticles. Biomaterials, 2009, 30(31), 6341-6350.
[http://dx.doi.org/10.1016/j.biomaterials.2009.08.008] [PMID: 19698986]
[144]
Muniyan, A.; Ravi, K.; Mohan, U.; Panchamoorthy, R. Characterization and in vitro antibacterial activity of saponin-conjugated silver nanoparticles against bacteria that cause burn wound infection. World J. Microbiol. Biotechnol., 2017, 33(7), 147.
[http://dx.doi.org/10.1007/s11274-017-2309-3] [PMID: 28634713]
[145]
Luna-Hernández, E.; Cruz-Soto, M.E.; Padilla-Vaca, F.; Mauricio-Sánchez, R.A.; Ramirez-Wong, D.; Muñoz, R.; Granados-López, L.; Ovalle-Flores, L.R.; Menchaca-Arredondo, J.L.; Hernández-Rangel, A.; Prokhorov, E.; García-Rivas, J.L.; España-Sánchez, B.L.; Luna-Bárcenas, G. Combined antibacterial/tissue regeneration response in thermal burns promoted by functional chitosan/silver nanocomposites. Int. J. Biol. Macromol., 2017, 105(Pt 1), 1241-1249.
[http://dx.doi.org/10.1016/j.ijbiomac.2017.07.159] [PMID: 28757422]
[146]
Stojkovska, J.; Djurdjevic, Z.; Jancic, I.; Bufan, B.; Milenkovic, M.; Jankovic, R.; Miskovic-Stankovic, V.; Obradovic, B. Comparative in vivo evaluation of novel formulations based on alginate and silver nanoparticles for wound treatments. J. Biomater. Appl., 2018, 32(9), 1197-1211.
[http://dx.doi.org/10.1177/0885328218759564] [PMID: 29463162]
[147]
Jackson, J.; Burt, H.; Lange, D.; Whang, I.; Evans, R.; Plackett, D. The design, characterization and antibacterial activity of heat and silver crosslinked poly(Vinyl Alcohol) hydrogel forming dressings containing silver nanoparticles. Nanomaterials, 2021, 11(1), 96.
[http://dx.doi.org/10.3390/nano11010096] [PMID: 33406651]
[148]
Smith, R.N.; Nolan, J.P. Central venous catheters. BMJ, 2013, 34(nov11 4), f6570.
[http://dx.doi.org/10.1136/bmj.f6570] [PMID: 24217269]
[149]
Bottros, M.M.; Christo, P.J. Current perspectives on intrathecal drug delivery. J. Pain Res., 2014, 7, 615-626.
[PMID: 25395870]
[150]
Marassi, V.; Di Cristo, L.; Smith, S.G.J.; Ortelli, S.; Blosi, M.; Costa, A.L.; Reschiglian, P.; Volkov, Y.; Prina-Mello, A. Silver nanoparticles as a medical device in healthcare settings: A five-step approach for candidate screening of coating agents. R. Soc. Open Sci., 2018, 5(1), 171113.
[http://dx.doi.org/10.1098/rsos.171113] [PMID: 29410826]
[151]
Gomez-Carretero, S.; Nybom, R.; Richter-Dahlfors, A. Electroenhanced antimicrobial coating based on conjugated polymers with covalently coupled silver nanoparticles prevents staphylococcus aureus biofilm formation. Adv. Healthc. Mater., 2017, 6(20), 1700435.
[http://dx.doi.org/10.1002/adhm.201700435] [PMID: 28805046]
[152]
Bai, T.; Wang, M.; Cao, M.; Zhang, J.; Zhang, K.; Zhou, P.; Liu, Z.; Liu, Y.; Guo, Z.; Lu, X. Functionalized Au@Ag-Au nanoparticles as an optical and SERS dual probe for lateral flow sensing. Anal. Bioanal. Chem., 2018, 410(9), 2291-2303.
[http://dx.doi.org/10.1007/s00216-018-0850-z] [PMID: 29445833]
[153]
Kanakaris, N.K.; Giannoudis, P.V. The health economics of the treatment of long-bone non-unions. Injury, 2007, 38(S2), S77-S84.
[http://dx.doi.org/10.1016/S0020-1383(07)80012-X] [PMID: 17920421]
[154]
Behzadi, S.; Luther, G.A.; Harris, M.B.; Farokhzad, O.C.; Mahmoudi, M. Nanomedicine for safe healing of bone trauma: Opportunities and challenges. Biomaterials, 2017, 146, 168-182.
[http://dx.doi.org/10.1016/j.biomaterials.2017.09.005] [PMID: 28918266]
[155]
Farokhzad, O.; Langer, R. Nanomedicine: Developing smarter therapeutic and diagnostic modalities. Adv. Drug Deliv. Rev., 2006, 58(14), 1456-1459.
[http://dx.doi.org/10.1016/j.addr.2006.09.011] [PMID: 17070960]
[156]
Montanaro, L.; Speziale, P.; Campoccia, D.; Ravaioli, S.; Cangini, I.; Pietrocola, G.; Giannini, S.; Arciola, C.R. Scenery of Staphylococcus implant infections in orthopedics. Future Microbiol., 2011, 6(11), 1329-1349.
[http://dx.doi.org/10.2217/fmb.11.117] [PMID: 22082292]
[157]
Guzman, M.; Dille, J.; Godet, S. Synthesis and antibacterial activity of silver nanoparticles against gram-positive and gram-negative bacteria. Nanomedicine, 2012, 8(1), 37-45.
[http://dx.doi.org/10.1016/j.nano.2011.05.007] [PMID: 21703988]
[158]
Zhang, S.; Xu, K.; Darabi, M.A.; Yuan, Q.; Xing, M. Mussel-inspired alginate gel promoting the osteogenic differentiation of mesenchymal stem cells and anti-infection. Mater. Sci. Eng. C, 2016, 69, 496-504.
[http://dx.doi.org/10.1016/j.msec.2016.06.044] [PMID: 27612740]
[159]
Zhang, Y.; Zhai, D.; Xu, M.; Yao, Q.; Zhu, H.; Chang, J.; Wu, C. 3D-printed bioceramic scaffolds with antibacterial and osteogenic activity. Biofabrication, 2017, 9(2), 025037.
[http://dx.doi.org/10.1088/1758-5090/aa6ed6] [PMID: 28631614]
[160]
Deng, L.; Deng, Y.; Xie, K. AgNPs-decorated 3D printed PEEK implant for infection control and bone repair. Colloids Surf. B Biointerfaces, 2017, 160, 483-492.
[http://dx.doi.org/10.1016/j.colsurfb.2017.09.061] [PMID: 28992487]
[161]
Aurore, V.; Caldana, F.; Blanchard, M.; Kharoubi Hess, S.; Lannes, N.; Mantel, P.Y.; Filgueira, L.; Walch, M. Silver-nanoparticles increase bactericidal activity and radical oxygen responses against bacterial pathogens in human osteoclasts. Nanomedicine, 2018, 14(2), 601-607.
[http://dx.doi.org/10.1016/j.nano.2017.11.006] [PMID: 29155361]
[162]
Mao, Z.; Li, Y.; Yang, Y.; Fang, Z.; Chen, X.; Wang, Y.; Kang, J.; Qu, X.; Yuan, W.; Dai, K.; Yue, B. Osteoinductivity and antibacterial properties of strontium ranelate-loaded poly(Lactic-co-Glycolic Acid) microspheres with assembled silver and hydroxyapatite nanoparticles. Front. Pharmacol., 2018, 9, 368.
[http://dx.doi.org/10.3389/fphar.2018.00368] [PMID: 29720940]
[163]
Rueggeberg, F.A. From vulcanite to vinyl, a history of resins in restorative dentistry. J. Prosthet. Dent., 2002, 87(4), 364-379.
[http://dx.doi.org/10.1067/mpr.2002.123400] [PMID: 12011846]
[164]
Melo, M.A.S.; Guedes, S.F.F.; Xu, H.H.K.; Rodrigues, L.K.A. Nanotechnology-based restorative materials for dental caries management. Trends Biotechnol., 2013, 31(8), 459-467.
[http://dx.doi.org/10.1016/j.tibtech.2013.05.010] [PMID: 23810638]
[165]
Fatemeh, K.O.O.H.P.E.I.M.A.; Mohammad Javad, M.O.K.H.T.A.R.I.; Samaneh, K.H.A.L.A.F.I. The effect of silver nanoparticles on composite shear bond strength to dentin with different adhesion protocols. J. Appl. Oral Sci., 2017, 25(4), 367-373.
[http://dx.doi.org/10.1590/1678-7757-2016-0391] [PMID: 28877274]
[166]
Inbakandan, D.; Kumar, C.; Bavanilatha, M.; Ravindra, D.N.; Kirubagaran, R.; Khan, S.A. Ultrasonic-assisted green synthesis of flower like silver nanocolloids using marine sponge extract and its effect on oral biofilm bacteria and oral cancer cell lines. Microb. Pathog., 2016, 99, 135-141.
[http://dx.doi.org/10.1016/j.micpath.2016.08.018] [PMID: 27554277]
[167]
Al-Ansari, M.M.; Al-Dahmash, N.D.; Ranjitsingh, A.J.A. Synthesis of silver nanoparticles using gum Arabic: Evaluation of its inhibitory action on Streptococcus mutans causing dental caries and endocarditis. J. Infect. Public Health, 2021, 14(3), 324-330.
[http://dx.doi.org/10.1016/j.jiph.2020.12.016] [PMID: 33618277]
[168]
García-Ruiz, A.; Crespo, J.; López-de-Luzuriaga, J.; Olmos, M.; Monge, M.; Rodríguez-Álfaro, M.; Martín-Álvarez, P.; Bartolome, B.; Moreno-Arribas, M.J.F.C. Novel biocompatible silver nanoparticles for controlling the growth of lactic acid bacteria and acetic acid bacteria in wines. Food Control, 2015, 50, 613-619.
[http://dx.doi.org/10.1016/j.foodcont.2014.09.035]
[169]
Zorraquín-Peña, I.; Cueva, C.; González de Llano, D.; Bartolomé, B.; Moreno-Arribas, M.V. Glutathione-stabilized silver nanoparticles: Antibacterial activity against periodontal bacteria, and cytotoxicity and inflammatory response in oral cells. Biomedicines, 2020, 8(10), 375.
[http://dx.doi.org/10.3390/biomedicines8100375] [PMID: 32977686]
[170]
Takamiya, A.S.; Monteiro, D.R.; Gorup, L.F.; Silva, E.A.; de Camargo, E.R.; Gomes-Filho, J.E.; de Oliveira, S.H.P.; Barbosa, D.B. Biocompatible silver nanoparticles incorporated in acrylic resin for dental application inhibit Candida albicans biofilm. Mater. Sci. Eng. C, 2021, 118, 111341.
[http://dx.doi.org/10.1016/j.msec.2020.111341] [PMID: 33254968]
[171]
Vazquez-Muñoz, R.; Meza-Villezcas, A.; Fournier, P.G.J.; Soria-Castro, E.; Juarez-Moreno, K.; Gallego-Hernández, A.L.; Bogdanchikova, N.; Vazquez-Duhalt, R.; Huerta-Saquero, A. Enhancement of antibiotics antimicrobial activity due to the silver nanoparticles impact on the cell membrane. PLoS One, 2019, 14(11), e0224904.
[http://dx.doi.org/10.1371/journal.pone.0224904] [PMID: 31703098]
[172]
Lopes, L.C.S.; Brito, L.M.; Bezerra, T.T.; Gomes, K.N.; Carvalho, F.A.D.A.; Chaves, M.H.; Cantanhêde, W. Silver and gold nanoparticles from tannic acid: synthesis, characterization and evaluation of antileishmanial and cytotoxic activities. An. Acad. Bras. Cienc., 2018, 90(3), 2679-2689.
[http://dx.doi.org/10.1590/0001-3765201820170598] [PMID: 30043906]
[173]
Fayaz, A.M.; Balaji, K.; Girilal, M.; Yadav, R.; Kalaichelvan, P.T.; Venketesan, R. Biogenic synthesis of silver nanoparticles and their synergistic effect with antibiotics: A study against gram-positive and gram-negative bacteria. Nanomedicine, 2010, 6(1), 103-109.
[http://dx.doi.org/10.1016/j.nano.2009.04.006] [PMID: 19447203]
[174]
Panáček, A.; Smékalová, M.; Kilianová, M.; Prucek, R.; Bogdanová, K.; Večeřová, R.; Kolář M.; Havrdová, M.; Płaza, G.; Chojniak, J.; Zbořil, R.; Kvítek, L. Strong and nonspecific synergistic antibacterial efficiency of antibiotics combined with silver nanoparticles at very low concentrations showing no cytotoxic effect. Molecules, 2015, 21(1), 26.
[http://dx.doi.org/10.3390/molecules21010026] [PMID: 26729075]
[175]
Chamundeeswari, M.; Sobhana, S.S.L.; Jacob, J.P.; Kumar, M.G.; Devi, M.P.; Sastry, T.P.; Mandal, A.B. Preparation, characterization and evaluation of a biopolymeric gold nanocomposite with antimicrobial activity. Biotechnol. Appl. Biochem., 2010, 55(1), 29-35.
[http://dx.doi.org/10.1042/BA20090198] [PMID: 19929854]
[176]
Farooq, U.; Ahmad, T.; Khan, A.; Sarwar, R.; Shafiq, J.; Raza, Y.; Ahmed, A.; Ullah, S.; Ur Rehman, N.; Al-Harrasi, A. Rifampicin conjugated silver nanoparticles: A new arena for development of antibiofilm potential against methicillin resistant Staphylococcus aureus and Klebsiella pneumoniae. Int. J. Nanomedicine, 2019, 14, 3983-3993.
[http://dx.doi.org/10.2147/IJN.S198194] [PMID: 31213810]
[177]
Surwade, P.; Ghildyal, C.; Weikel, C.; Luxton, T.; Peloquin, D.; Fan, X.; Shah, V. Augmented antibacterial activity of ampicillin with silver nanoparticles against methicillin-resistant Staphylococcus aureus (MRSA). J. Antibiot., 2019, 72(1), 50-53.
[http://dx.doi.org/10.1038/s41429-018-0111-6] [PMID: 30361634]
[178]
Sajjad, S.; Uzair, B.; Shaukat, A.; Jamshed, M.; Leghari, S.A.K.; Ismail, M.; Mansoor, Q. Synergistic evaluation of AgO 2 nanoparticles with ceftriaxone against CTXM and blaSHV genes positive ESBL producing clinical strains of Uro‐pathogenic E. coli. IET Nanobiotechnol., 2019, 13(4), 435-440.
[http://dx.doi.org/10.1049/iet-nbt.2018.5415] [PMID: 31171749]
[179]
Al-Sharqi, A.; Apun, K.; Vincent, M.; Kanakaraju, D.; Bilung, L.M.; Sum, M.S.H. Investigation of the antibacterial activity of Ag‐NPs conjugated with a specific antibody against Staphylococcus aureus after photoactivation. J. Appl. Microbiol., 2020, 128(1), 102-115.
[http://dx.doi.org/10.1111/jam.14471] [PMID: 31596989]
[180]
Sueoka, K.; Chikama, T.; Latief, M.A.; Ko, J.A.; Kiuchi, Y.; Sakaguchi, T.; Obana, A. Time-dependent antimicrobial effect of photodynamic therapy with TONS 504 on Pseudomonas aeruginosa. Lasers Med. Sci., 2018, 33(7), 1455-1460.
[http://dx.doi.org/10.1007/s10103-018-2490-0] [PMID: 29589177]
[181]
Rodríguez Nuñez, Y.; Castro, R.; Arenas, F.; López-Cabaña, Z.; Carreño, G.; Carrasco-Sánchez, V.; Marican, A.; Villaseñor, J.; Vargas, E.; Santos, L.; Durán-Lara, E. Preparation of hydrogel/silver nanohybrids mediated by tunable-size silver nanoparticles for potential antibacterial applications. Polymers, 2019, 11(4), 716.
[http://dx.doi.org/10.3390/polym11040716] [PMID: 31010156]
[182]
Wei, X.; Liu, L.; Guo, X.; Wang, Y.; Zhao, J.; Zhou, S. Light-activated ROS-responsive nanoplatform codelivering apatinib and doxorubicin for enhanced chemo-photodynamic therapy of multidrug-resistant tumors. ACS Appl. Mater. Interfaces, 2018, 10(21), 17672-17684.
[http://dx.doi.org/10.1021/acsami.8b04163] [PMID: 29737828]
[183]
Canaparo, R.; Foglietta, F.; Giuntini, F.; Della Pepa, C.; Dosio, F.; Serpe, L. Recent developments in antibacterial therapy: Focus on stimuli-responsive drug-delivery systems and therapeutic nanoparticles. Molecules, 2019, 24(10), 1991.
[http://dx.doi.org/10.3390/molecules24101991] [PMID: 31137622]
[184]
Ramezani, P.; Abnous, K.; Taghdisi, S.M.; Zahiri, M.; Ramezani, M.; Alibolandi, M. Targeted MMP-2 responsive chimeric polymersomes for therapy against colorectal cancer. Colloids Surf. B Biointerfaces, 2020, 193, 111135.
[http://dx.doi.org/10.1016/j.colsurfb.2020.111135] [PMID: 32447200]
[185]
Qi, M.; Chi, M.; Sun, X.; Xie, X.; Weir, M.D.; Oates, T.W.; Zhou, Y.; Wang, L.; Bai, Y.; Xu, H.H.K. Novel nanomaterial-based antibacterial photodynamic therapies to combat oral bacterial biofilms and infectious diseases. Int. J. Nanomedicine, 2019, 14, 6937-6956.
[http://dx.doi.org/10.2147/IJN.S212807] [PMID: 31695368]
[186]
Bao, Z.; Liu, X.; Liu, Y.; Liu, H.; Zhao, K. Near-infrared light-responsive inorganic nanomaterials for photothermal therapy. Asian J. Pharm. Sci., 2016, 11(3), 349-364.
[http://dx.doi.org/10.1016/j.ajps.2015.11.123]
[187]
Chen, H.; Zhao, Y. Applications of light-responsive systems for cancer theranostics. ACS Appl. Mater. Interfaces, 2018, 10(25), 21021-21034.
[http://dx.doi.org/10.1021/acsami.8b01114] [PMID: 29648777]
[188]
Cheng, L.; Wang, C.; Feng, L.; Yang, K.; Liu, Z. Functional nanomaterials for phototherapies of cancer. Chem. Rev., 2014, 114(21), 10869-10939.
[http://dx.doi.org/10.1021/cr400532z] [PMID: 25260098]
[189]
Yu, Z.; Li, Q.; Wang, J.; Yu, Y.; Wang, Y.; Zhou, Q.; Li, P. Reactive oxygen species-related nanoparticle toxicity in the biomedical field. Nanoscale Res. Lett., 2020, 15(1), 115.
[http://dx.doi.org/10.1186/s11671-020-03344-7] [PMID: 32436107]
[190]
Galanzha, E.I.; Shashkov, E.; Sarimollaoglu, M.; Beenken, K.E.; Basnakian, A.G.; Shirtliff, M.E.; Kim, J.W.; Smeltzer, M.S.; Zharov, V.P. In vivo magnetic enrichment, photoacoustic diagnosis, and photothermal purging of infected blood using multifunctional gold and magnetic nanoparticles. PLoS One, 2012, 7(9), e45557.
[http://dx.doi.org/10.1371/journal.pone.0045557] [PMID: 23049814]
[191]
Halstead, F.D.; Thwaite, J.E.; Burt, R.; Laws, T.R.; Raguse, M.; Moeller, R.; Webber, M.A.; Oppenheim, B.A. Antibacterial activity of blue light against nosocomial wound pathogens growing planktonically and as mature biofilms. Appl. Environ. Microbiol., 2016, 82(13), 4006-4016.
[http://dx.doi.org/10.1128/AEM.00756-16] [PMID: 27129967]
[192]
Katayama, B.; Ozawa, T.; Morimoto, K.; Awazu, K.; Ito, N.; Honda, N.; Oiso, N.; Tsuruta, D. Enhanced sterilization and healing of cutaneous pseudomonas infection using 5-aminolevulinic acid as a photosensitizer with 410-nm LED light. J. Dermatol. Sci., 2018, 90(3), 323-331.
[http://dx.doi.org/10.1016/j.jdermsci.2018.03.001] [PMID: 29534858]
[193]
Jain, P.K.; Huang, X.; El-Sayed, I.H.; El-Sayed, M.A. Review of some interesting surface plasmon resonance-enhanced properties of noble metal nanoparticles and their applications to biosystems. Plasmonics, 2007, 2(3), 107-118.
[http://dx.doi.org/10.1007/s11468-007-9031-1]
[194]
Wu, S.; Li, A.; Zhao, X.; Zhang, C.; Yu, B.; Zhao, N.; Xu, F.J. Silica-coated gold–silver nanocages as photothermal antibacterial agents for combined anti-infective therapy. ACS Appl. Mater. Interfaces, 2019, 11(19), 17177-17183.
[http://dx.doi.org/10.1021/acsami.9b01149] [PMID: 30997794]
[195]
Balashanmugam, P.; Santhosh, S.; Giyaullah, H.; Balakumaran, M.; Kalaichelvan, P. Mycosynthesis, characterization and antibacterial activity of silver nanoparticles from Microporus xanthopus: A macro mushroom. Int. J. Innov. Res. Sci. Eng. Technol., 2013, 2(11), 6262-6270.
[196]
Verma, H.N.; Singh, P.; Chavan, R.M. Gold nanoparticle: Synthesis and characterization. Vet. World, 2014, 7(2), 72-77.
[http://dx.doi.org/10.14202/vetworld.2014.72-77]
[197]
Siemieniec, J. Synthesis of silver and gold nanoparticles using methods of green chemistry. CHEMIK, 2013, 67, 842-847.
[198]
Sunkar, S.; Nachiyar, C.V. Biogenesis of antibacterial silver nanoparticles using the endophytic bacterium Bacillus cereus isolated from Garcinia xanthochymus. Asian Pac. J. Trop. Biomed., 2012, 2(12), 953-959.
[http://dx.doi.org/10.1016/S2221-1691(13)60006-4] [PMID: 23593575]
[199]
Siddiqi, K.S.; Husen, A. Fabrication of metal nanoparticles from fungi and metal salts: Scope and application. Nanoscale Res. Lett., 2016, 11(1), 98.
[http://dx.doi.org/10.1186/s11671-016-1311-2] [PMID: 26909778]
[200]
Jasim, N.O.; Nabel, B.; Taleb, A. Characterization and biological activity of green synthesis silver nanoparticles. Int. J. Drug Deliv. Technol., 2019, 9(3), 94-97.
[201]
Bharathidasan, R.; Panneerselvam, A. Biosynthesis and characterization of silver nanoparticles using endophytic fungi Aspergillus concius, Penicillium janthinellum and Phomopsis sp. Int. J. Pharm. Sci. Res., 2012, 3, 3163-3169.
[202]
Ninganagouda, S.; Rathod, V.; Singh, D. Characterization and biosynthesis of silver nanoparticles using a fungus Aspergillus niger. Int. Lett. Nat. Sci., 2014, 10, 1-6.
[203]
Moharrer, S.; Mohammadi, B.; Gharamohammadi, R.A.; Yargoli, M. Biological synthesis of silver nanoparticles by Aspergillus flavus, isolated from soil of Ahar copper mine. Indian J. Sci. Technol., 2012, 5(3), 1-2.
[http://dx.doi.org/10.17485/ijst/2012/v5i3.41]
[204]
Thakker, J.N.; Dalwadi, P.; Dhandhukia, P.C. Biosynthesis of gold nanoparticles using Fusarium oxysporum f. sp. cubense JT1, a plant pathogenic fungus. Int. Sch. Res. Notices, 2013, 2013
[205]
Vasanthi Bathrinarayanan, P.; Thangavelu, D.; Muthukumarasamy, V.K.; Munusamy, C.; Gurunathan, B. Biological synthesis and characterization of intracellular gold nanoparticles using biomass of Aspergillus fumigatus. Bull. Mater. Sci., 2013, 36(7), 1201-1205.
[http://dx.doi.org/10.1007/s12034-013-0599-0]
[206]
Boroumand Moghaddam, A.; Namvar, F.; Moniri, M.; Md Tahir, P.; Azizi, S.; Mohamad, R. Nanoparticles biosynthesized by fungi and yeast: a review of their preparation, properties, and medical applications. Molecules, 2015, 20(9), 16540-16565.
[http://dx.doi.org/10.3390/molecules200916540] [PMID: 26378513]
[207]
Sett, A.; Gadewar, M.; Sharma, P.; Deka, M.; Bora, U. Green synthesis of gold nanoparticles using aqueous extract of Dillenia indica. Adv. Nat. Sci.: Nanosci. Nanotechnol., 2016, 7(2), 025005.
[http://dx.doi.org/10.1088/2043-6262/7/2/025005]
[208]
Mukherjee, P.; Roy, M.; Mandal, B.P.; Dey, G.K.; Mukherjee, P.K.; Ghatak, J.; Tyagi, A.K.; Kale, S.P. Green synthesis of highly stabilized nanocrystalline silver particles by a non-pathogenic and agriculturally important fungus T. asperellum. Nanotechnology, 2008, 19(7), 075103.
[http://dx.doi.org/10.1088/0957-4484/19/7/075103] [PMID: 21817628]
[209]
Shafeev, G.A.; Freysz, E.; Bozon-Verduraz, F. Self-influence of a femtosecond laser beam upon ablation of Ag in liquids. Appl. Phys., A Mater. Sci. Process., 2004, 78(3), 307-309.
[http://dx.doi.org/10.1007/s00339-003-2357-4]
[210]
Gaikwad, S.C.; Birla, S.S.; Ingle, A.P.; Gade, A.K.; Marcato, P.D.; Rai, M.; Duran, N. Screening of different Fusarium species to select potential species for the synthesis of silver nanoparticles. J. Braz. Chem. Soc., 2013, 24, 1974-1982.
[211]
Mahmoud, M.A.; Al-Sohaibani, S.A.; Al-Othman, M.R.; Abd El-Aziz, A.; Eifan, S.A. Synthesis of extracellular silver nanoparticles using Fusarium semitectum (KSU-4) isolated from Saudi Arabia. Dig. J. Nanomater. Biostruct., 2013, 8(2), 589-596.
[212]
Srinath, B.S.; Rai, R.V. Biosynthesis of gold nanoparticles using extracellular molecules produced by Enterobacter aerogenes and their catalytic study. J. Cluster Sci., 2015, 26(5), 1483-1494.
[http://dx.doi.org/10.1007/s10876-014-0835-9]
[213]
Maliszewska, I. Microbial mediated synthesis of gold nanoparticles: Preparation, characterization and cytotoxicity studies. Dig. J. Nanomater. Biostruct., 2013, 8(3), 1123-1131.
[214]
Sagar, G.; Ashok, B. Green synthesis of silver nanoparticles using Aspergillus niger and its efficacy against human pathogens. Eur. J. Exp. Biol., 2012, 2(5), 1654-1658.
[215]
Sangappa, M.; Thiagarajan, P. Mycobiosynthesis and characterization of silver nanoparticles from Aspergillus niger: a soil fungal isolate. Int. J. Life Sci. Biotechnol. Pharma Res., 2012, 1(2), 282-289.
[216]
Shah, M.; Fawcett, D.; Sharma, S.; Tripathy, S.; Poinern, G. Green synthesis of metallic nanoparticles via biological entities. Materials, 2015, 8(11), 7278-7308.
[http://dx.doi.org/10.3390/ma8115377] [PMID: 28793638]
[217]
Birla, S.S.; Gaikwad, S.C.; Gade, A.K.; Rai, M.K. Rapid synthesis of silver nanoparticles from Fusarium oxysporum by optimizing physicocultural conditions. Sci. World J., 2013, 2013, 796018.
[http://dx.doi.org/10.1155/2013/796018] [PMID: 24222751]
[218]
Mohammed Fayaz, A.; Balaji, K.; Girilal, M.; Kalaichelvan, P.T.; Venkatesan, R. Mycobased synthesis of silver nanoparticles and their incorporation into sodium alginate films for vegetable and fruit preservation. J. Agric. Food Chem., 2009, 57(14), 6246-6252.
[http://dx.doi.org/10.1021/jf900337h] [PMID: 19552418]
[219]
Soni, N.; Prakash, S. Synthesis of gold nanoparticles by the fungus Aspergillus niger and its efficacy against mosquito larvae. Parasitol. Res., 2012, 2, 1-7.
[220]
Awwad, A.M.; Salem, N.M.; Abdeen, A.O. Green synthesis of silver nanoparticles using carob leaf extract and its antibacterial activity. Int. J. Ind. Chem., 2013, 4, 1-6.
[221]
Barabadi, H.; Honary, S.; Ebrahimi, P.; Mohammadi, M.A.; Alizadeh, A.; Naghibi, F. Microbial mediated preparation, characterization and optimization of gold nanoparticles. Braz. J. Microbiol., 2014, 45(4), 1493-1501.
[http://dx.doi.org/10.1590/S1517-83822014000400046] [PMID: 25763059]
[222]
Chandrappa, C.P.; Govindappa, M.; Chandrasekar, N.; Sarkar, S.; Ooha, S.; Channabasava, R. Endophytic synthesis of silver chloride nanoparticles from Penicillium sp. of Calophyllum apetalum. Adv. Nat. Sci.: Nanosci. Nanotechnol., 2016, 7(2), 025016.
[http://dx.doi.org/10.1088/2043-6262/7/2/025016]
[223]
Banerjee, K.; Ravishankar Rai, V. A review on mycosynthesis, mechanism, and characterization of silver and gold nanoparticles. Bionanoscience, 2018, 8(1), 17-31.
[http://dx.doi.org/10.1007/s12668-017-0437-8]
[224]
Akbari, B.; Tavandashti, M.P.; Zandrahimi, M. Particle size characterization of nanoparticles–a practical approach. Iran. J. Mater. Sci., 2011, 8(2), 48-56.
[225]
Sharma, N.; Pinnaka, A.K.; Raje, M.; Fnu, A.; Bhattacharyya, M.S.; Choudhury, A.R. Exploitation of marine bacteria for production of gold nanoparticles. Microb. Cell Fact., 2012, 11(1), 86.
[http://dx.doi.org/10.1186/1475-2859-11-86] [PMID: 22715848]
[226]
Tripathi, N.; Goshisht, M.K. Recent advances and mechanistic insights into antibacterial activity, antibiofilm activity, and cytotoxicity of silver nanoparticles. ACS Appl. Bio Mater., 2022, 5(4), 1391-1463.
[http://dx.doi.org/10.1021/acsabm.2c00014] [PMID: 35358388]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy