Generic placeholder image

Current Analytical Chemistry

Editor-in-Chief

ISSN (Print): 1573-4110
ISSN (Online): 1875-6727

Research Article

Synthesis and Chiral Separation of Some New Derivatives of Imidazo [1, 2- a] Pyridine

Author(s): Cheham Bouler Bag Oum Keltoum*, Zaid Mohamed El Amin, Belboukhari Nasser, Sekkoum Khaled and Aboul-Enein Hassan

Volume 19, Issue 6, 2023

Published on: 19 July, 2023

Page: [482 - 488] Pages: 7

DOI: 10.2174/1573411019666230626162832

Price: $65

Abstract

Introduction: Mannich base is the result of the three-part chemical reaction known as the Mannich reaction, which includes the amino alkylation of an acidic proton adjacent to a carbonyl group by formaldehyde and either a primary or secondary amine.

Method: In a 1L flask, dissolve 28.2 g (0.3 mol) of 2-aminopyridine, and 400 mL of ethanol, then add 32.6 g (0.3 mol) of chloroacetone and put 30 drops of acetic acid. The organic phases are combined and dried with Magnesium sulfate. After solvent evaporation, we have recovered our product which is a 2- methylimidazo [1, 2-a] pyridine product.

Result: A C-18 bonded stationary phase provided one significant peak for all of the compounds under examination providing solid proof of the compound purity. This was used to demonstrate the purity of the compounds. Then, the potential enantiomers of these chiral compounds were obtained using the four CSPs.

Conclusion: In this study, several novel Mannich bases were prepared. These bases had rendement ranging from 76 to 94.73, and their chiral separation was discussed utilizing four polysaccharide-based CSPs: ChiralpakAS, Chiralcel OD, Chirapak®AS-3R, and Chiralcel OJ.

Keywords: Pyridine, mannich bases, condensation, chirality, HPLC, polysaccharides based chiral stationary phases.

Graphical Abstract
[1]
Nordqvist, A.; Nilsson, M.T.; Lagerlund, O.; Muthas, D.; Gising, J.; Yahiaoui, S.; Odell, L.R.; Srinivasa, B.R.; Larhed, M.; Mowbray, S.L.; Karlén, A. Synthesis, biological evaluation and X-ray crystallographic studies of imidazo[1,2-a]pyridine-based Mycobacterium tuberculosis glutamine synthetase inhibitors. MedChemComm, 2012, 3(5), 620-626.
[http://dx.doi.org/10.1039/c2md00310d]
[2]
Al-Tel, T.H.; Al-Qawasmeh, R.A. Post Groebke–Blackburn multicomponent protocol: Synthesis of new polyfunctional imidazo[1,2-a]pyridine and imidazo[1,2-a]pyrimidine derivatives as potential antimicrobial agents. Eur. J. Med. Chem., 2010, 45(12), 5848-5855.
[http://dx.doi.org/10.1016/j.ejmech.2010.09.049] [PMID: 20934788]
[3]
Moraski, G.C.; Markley, L.D.; Hipskind, P.A.; Boshoff, H.; Cho, S.; Franzblau, S.G.; Miller, M.J. Advent of imidazo[1,2-a]pyridine-3-carboxamides with potent multi- and extended drug resistant antituberculosis activity. ACS Med. Chem. Lett., 2011, 2(6), 466-470.
[http://dx.doi.org/10.1021/ml200036r] [PMID: 21691438]
[4]
Hieke, M.; Rödl, C.B.; Wisniewska, J.M.; la Buscató, E.; Stark, H.; Schubert-Zsilavecz, M.; Steinhilber, D.; Hofmann, B.; Proschak, E. SAR-study on a new class of imidazo[1,2-a]pyridine-based inhibitors of 5-lipoxygenase. Bioorg. Med. Chem. Lett., 2012, 22(5), 1969-1975.
[http://dx.doi.org/10.1016/j.bmcl.2012.01.038] [PMID: 22326163]
[5]
Dahan-Farkas, N.; Langley, C.; Rousseau, A.L.; Yadav, D.B.; Davids, H.; de Koning, C.B. 6-Substituted imidazo[1,2-a]pyridines: Synthesis and biological activity against colon cancer cell lines HT-29 and Caco-2. Eur. J. Med. Chem., 2011, 46(9), 4573-4583.
[http://dx.doi.org/10.1016/j.ejmech.2011.07.036] [PMID: 21843907]
[6]
López-Martínez, M.; Salgado-Zamora, H.; Campos-Aldrete, M.E.; Trujillo-Ferrara, J.G.; Correa-Basurto, J.; Mexica-Ochoa, C. Effect of the lipophilic parameter (log P) on the anti-parasitic activity of imidazo[1,2-a]pyridine derivatives. Med. Chem. Res., 2012, 21(4), 415-420.
[http://dx.doi.org/10.1007/s00044-010-9547-3]
[7]
Berson, A.; Descatoire, V.; Sutton, A.; Fau, D.; Maulny, B.; Vadrot, N.; Feldmann, G.; Berthon, B.; Tordjmann, T.; Pessayre, D. Toxicity of alpidem, a peripheral benzodiazepine receptor ligand, but not zolpidem, in rat hepatocytes: Role of mitochondrial permeability transition and metabolic activation. J. Pharmacol. Exp. Ther., 2001, 299(2), 793-800.
[PMID: 11602696]
[8]
Joule, J.A.; Mills, K. Heterocyclic Chemistry; 5th ed; WILEY: UK, 2010, p. 373.;
(b) Scriven, E.; Katritzky, A.R. Elsevier Scienc: Amsterdam , 2008. p. Comprehensive Heterocyclic Chemistry III, 1st ed; Elsevier Science: Amsterdam, 2008, p. 12500.
[9]
(a) Enguehard-Gueiffier, C.; Gueiffier, A. Recent progress in the pharmacology of imidazo[1,2-a]pyridines. Mini Rev. Med. Chem., 2007, 7, 888.;
(b) Nair, D.K.; Mobin, S.M.; Namboothiri, I.N.N. Synthesis of imidazopyridines from the Morita-Baylis-Hillman acetates of nitroalkenes and convenient access to Alpidem and Zolpidem. Org. Lett., 2012, 14(17), 4580-4583.
[http://dx.doi.org/10.1021/ol3020418] [PMID: 22920993]
[10]
(a) Swaninston, H.T.; Keating, G.M. Zolpidem: Review of its use in the management of insomnia. CNS Drugs, 2005, 19, 65.
[http://dx.doi.org/10.2165/00023210-200519010-00008] [PMID: 15651908];
(b) Almirante, L.; Polo, L.; Mugnaini, A.; Provinciali, E.; Rugarli, P.; Biancotti, A.; Gamba, A.; Murmann, W. Derivatives of imidazole. I. synthesis and reactions of imidazo[1,2-α]pyridines with analgesic, antiinflammatory, antipyretic, and anticonvulsant activity. J. Med. Chem., 1965, 8(3), 305-312.
[http://dx.doi.org/10.1021/jm00327a007] [PMID: 14329509];
(c) Ueda, T.; Mizushige, K. The effects of olprinone, a phosphodiesterase 3 inhibitor, on systemic and cerebral circulation. Curr. Vasc. Pharmacol., 2006, 4(1), 1-7.
[http://dx.doi.org/10.2174/157016106775203072] [PMID: 16472171]
[11]
(a) Rival, Y.; Grassy, G.; Michel, G. Synthesis and antibacterial activity of some imidazo[1,2-a]pyrimidine derivatives. Chem. Pharm. Bull., 1992, 40(5), 1170-1176.
[http://dx.doi.org/10.1248/cpb.40.1170] [PMID: 1394630];
(b) Revankar, G.R.; Matthews, T.R.; Robins, R.K. Synthesis and antimicrobial activity of certain imidazo[1,2-a]pyrimidines. J. Med. Chem., 1975, 18(12), 1253-1255.
[http://dx.doi.org/10.1021/jm00246a018] [PMID: 811799]
[12]
(a) Elhakmoui, A.; Gueiffier, A.; Milhavet, J.C.; Blache, Y.; Chapat, J.P. Synthesis and antiviral activity of 3-substituted imidazo[1,2-a]pyridines. Bioorg. Med. Chem. Lett., 1994, 4, 1937.
[http://dx.doi.org/10.1016/S0960-894X(01)80538-2];
(b) Gueiffier, A.; Lhassani, M.; Elhakmaoui, A.; Snoeck, R.; Andrei, G.; Chavignon, O.; Teulade, J.C.; Kerbal, A.; Essassi, E.M.; Debouzy, J.C.; Witvrouw, M.; Blache, Y.; Balzarini, J.; De Clercq, E.; Chapat, J.P. Synthesis of acyclo-C-nucleosides in the imidazo[ 1,2-a]pyridine and pyrimidine series as antiviral agents. J. Med. Chem., 1996, 39(14), 2856-2859.
[http://dx.doi.org/10.1021/jm9507901] [PMID: 8709116];
(c) Lhassani, M.; Chavignon, O.; Chezal, J.M.; Teulade, J.C.; Chapat, J.P.; Snoeck, R.; Andrei, G.; Balzarini, J.; De Clercq, E.; Gueiffier, A. Synthesis and antiviral activity of imidazo[1,2- a]pyridines. Eur. J. Med. Chem., 1999, 34(3), 271-274.
[http://dx.doi.org/10.1016/S0223-5234(99)80061-0];
(d) Hamdouchi, C.; de Blas, J.; del Prado, M.; Gruber, J.; Heinz, B.A.; Vance, L. 2-Amino-3-substituted-6-[(E)-1-phenyl-2-(Nmethylcarbamoyl) vinyl]imid azo[1,2-a]pyridines as a novel class of inhibitors of human rhinovirus: Stereospecific synthesis and antiviral activity. J. Med. Chem., 1999, 42(1), 50-59.
[http://dx.doi.org/10.1021/jm9810405] [PMID: 9888832];
(e) Gudmundsson, K.S.; Williams, J.D.; Drach, J.C.; Townsend, L.B. Synthesis and antiviral activity of novel erythrofuranosyl imidazo[ 1,2-a]pyridine C-nucleosides constructed via palladium coupling of iodoimidazo[1,2-a]pyridines and dihydrofuran. J. Med. Chem., 2003, 46(8), 1449-1455.
[http://dx.doi.org/10.1021/jm020339r] [PMID: 12672244]
[13]
Scribber, A.; Dennis, R.; Lee, S.; Ouvry, G.; Perrey, D.; Fisher, M.; Wyatt, M.; Liberator, P.; Gurnett, A.; Brown, C.; Mathew, J.; Thomson, D.; Schmatz, D.; Biftu, T. Synthesis and biological activity of imidazopyridine anticoccidial agents: Part II. Eur. J. Med. Chem., 2008, 43, 1123.
[http://dx.doi.org/10.1016/j.ejmech.2007.09.013] [PMID: 17981367]
[14]
Feng, S.; Hong, D.; Wang, B.; Zheng, X.; Miao, K.; Wang, L.; Yun, H.; Gao, L.; Zhao, S.; Shen, H.C. Discovery of imidazopyridine derivatives as highly potent respiratory syncytial virus fusion inhibitors. ACS Med. Chem. Lett., 2015, 6(3), 359-362.
[http://dx.doi.org/10.1021/acsmedchemlett.5b00008] [PMID: 25941547]
[15]
(a) Kamal, A.; Reddy, J.S.; Ramaiah, M.J.; Dastagiri, D.; Bharathi, E.V.; Prem Sagar, M.V.; Pushpavalli, S.N.C.V.L.; Ray, P.; Pal- Bhadra, M. Design, synthesis and biological evaluation of imidazopyridine/ pyrimidine-chalcone derivatives as potential anticancer agents. MedChemComm, 2010, 1(5), 355.
[http://dx.doi.org/10.1039/c0md00116c];
(b) Vilchis-Reyes, M.A.; Zentella, A.; Martínez-Urbina, M.A.; Guzmán, Á.; Vargas, O.; Ramírez Apan, M.T.; Ventura Gallegos, J.L.; Díaz, E. Synthesis and cytotoxic activity of 2- methylimidazo[1,2-a]pyridine- and quinoline-substituted 2- aminopyrimidine derivatives. Eur. J. Med. Chem., 2010, 45(1), 379-386.
[http://dx.doi.org/10.1016/j.ejmech.2009.10.002] [PMID: 19879023];
(c) Vilchis-Reyes, M.A.; Zen-tella, A.; Martinez-Urbina, M.A.; Guzman, A.; Vargas, O.; Apan, M.T.R.; Gallegos, J.L.V.; Diaz, E. Synthesis and cytotoxic activity of 2-methylimidazo[1,2- a]pyridine- and quinoline-substituted 2-aminopyrimidine derivatives. Europ. J. Med. Chem., 2010, 45(1), 379-386.;
(d) Kim, Y.B.; Kang, C.W.; Ranatunga, S.; Yang, H.; Sebti, S.M.; Del Valle, J.R. Imidazo[1,2- a ]pyridine-based peptidomimetics as inhibitors of Akt. Bioorg. Med. Chem. Lett., 2014, 24(19), 4650-4653.
[http://dx.doi.org/10.1016/j.bmcl.2014.08.040] [PMID: 25205195]
[16]
Lee, J-H.; Park, S.Y.; Park, A.; Yum, E.K. Diversification of imidazo[1,2-a]pyridines under microwave–assisted palladium-catalyzed suzuki reaction. J. Korean Chem. Soc., 2017, 61(5), 299.
[17]
Zaid, M.E.A.; Belboukhari, N.; Sekkoum, K.; Ibtissam, B.; Enein, H.Y.A. Synthesis and chiral separation of Some 4-thioflavones. J. Chromatogr. Sci., 2021, 59(9), 856-862.
[http://dx.doi.org/10.1093/chromsci/bmab007] [PMID: 33558896]
[18]
Zaid, M.E.A.; Belboukhari, N.; Sekkoum, K.; Ramos, J.C.M.; Aboul-Enein, H.Y. Analysis of different factors affecting a liquid chromatographic chiral separation of some imino-hesperetin compounds. SN Applied Sci., 2019, 1(11), 1-10.
[19]
Hassan, R.M.; Saleh, O.A.; El-Azzouny, A.A.; Aboul-Enein, H.Y.; Fouad, M.A. Experimental design optimization of simultaneous enantiomeric separation of atenolol and chlorthalidone binary mixture by high‐performance liquid chromatography using polysaccharide‐based stationary phases. Chirality, 2021, 33(7), 397-408.
[http://dx.doi.org/10.1002/chir.23315] [PMID: 33964031]
[20]
Calderón, C.; Lämmerhofer, M. Enantioselective metabolomics by liquid chromatography-mass spectrometry. J. Pharm. Biomed. Anal., 2022, 207, 114430.
[PMID: 34757254]
[21]
Liu, Y.; Wang, X.; Yu, J.; Guo, X. Chiral separation and molecular simulation study of six antihistamine agents on a coated cellulose tri‐(3,5‐dimethylphenycarbamate) column (Chiralcel OD‐RH) and its recognition mechanisms. Electrophoresis, 2021, 42(14-15), 1461-1472.
[http://dx.doi.org/10.1002/elps.202100033] [PMID: 33905565]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy