Generic placeholder image

Current Analytical Chemistry

Editor-in-Chief

ISSN (Print): 1573-4110
ISSN (Online): 1875-6727

Mini-Review Article

Electrochemical Analysis of Narcotic Drugs Using Nanomaterials Modified Electrodes – A Review

Author(s): Ramila Devi Nagarajan, J. Kavitha, Raji Atchudan, Sandeep Arya and Ashok K. Sundramoorthy*

Volume 19, Issue 6, 2023

Published on: 19 July, 2023

Page: [440 - 447] Pages: 8

DOI: 10.2174/1573411019666230622153225

Price: $65

Abstract

The usage of abused illicit drugs remains an increasing challenge for drug regulatory authorities and therefore, it is important to develop advanced sensor technology that able to identify and determine drugs concentration in seized samples, biological fluids and food samples. The World Health Organization (WHO) recommends the usage of narcotic drugs legally for the medical treatments. Thus, many reports indicated that the higher dosage level led to drug addiction and mental disorders in humans. The United States record showed about 0.46 million cases of deaths due to the overdose of opioids-related drugs every year. This review discusses the electrochemical analysis (DPV, CV, EIS spectra, etc.) of various narcotic drugs using electrochemical transducers made of nanomaterials such as gold nanoparticles, single-walled carbon nanotubes, Zn2SnO4/graphene nanocomposite, cysteamine functionalized gold nanoparticle conjugated with an aptamer, etc. There were many challenges reported during the electroanalysis of narcotic drugs. Some of the wearable devices were also made for the sensing of narcotic drugs. Specifically, electro-analysis of nicotine, morphine, codeine and cathonine using 2D nanomaterials and their nanocomposites-based electrochemical sensors fabricated on flexible substrates were discussed. In particular, the linear range of detection, limit of detection (LOD), interference and real-world sample analysis were highlighted. It was concluded that wearable sensors could be used for the monitoring of illicit drugs and their derivatives in day-to-day life.

Keywords: Narcotic drug analysis, electrochemical sensors, nanomaterials, nicotine detection, cathonine, sensors.

Graphical Abstract
[1]
Sadak, O.; Wang, W.; Guan, J.; Sundramoorthy, A.K.; Gunasekaran, S. MnO 2 Nanoflowers lercapacitors. ACS Appl. Nano Mater., 2019, 2(7), 4386-4394.
[http://dx.doi.org/10.1021/acsanm.9b00797]
[2]
Nagarajan, R. D.; Sundramoorthy, A. K. Recent Trends in Fabrication and Applications of Wearable Bioelectronics for Early-Stage Disease Monitoring and Diagnosis In: Rai, M., Reshtilov, A., Plekhanova, Y., Ingle, A.P. (eds) Macro, Micro, and Nano-Biosensors. Springer, Cham. 2021, 357-381.
[3]
Pourmadadi, M.; Rahmani, E.; Shamsabadipour, A.; Samadi, A.; Esmaeili, J.; Arshad, R.; Rahdar, A.; Tavangarian, F.; Pandey, S. Novel carboxymethyl cellulose based nanocomposite: A promising biomaterial for biomedical applications. Process Biochem., 2023, 130, 211-226.
[http://dx.doi.org/10.1016/j.procbio.2023.03.033]
[4]
Pourmadadi, M.; Shamsabadipour, A.; Aslani, A.; Eshaghi, M.M.; Rahdar, A.; Pandey, S. Development of Polyvinylpyrrolidone-Based nanomaterials for biosensors applications: A review. Inorg. Chem. Commun., 2023, 152110714.
[http://dx.doi.org/10.1016/j.inoche.2023.110714]
[5]
Arshad, R.; Salman Arshad, M.; Rahdar, A.; Hassan, D.; Behzadmehr, R.; Ghotekar, S.; Medina, D.I.; Pandey, S. Nanomaterials as an advanced nano-tool for the Doxorubicin delivery/Co-Delivery—A comprehensive review. J. Drug Deliv. Sci. Technol., 2023, 83, 104432.
[http://dx.doi.org/10.1016/j.jddst.2023.104432]
[6]
Pourmadadi, M.; Mahdi Eshaghi, M.; Ostovar, S.; Mohammadi, Z.; Sharma, R.K.; Paiva-Santos, A.C.; Rahmani, E.; Rahdar, A.; Pandey, S. Innovative nanomaterials for cancer diagnosis, imaging, and therapy: Drug delivery applications. J. Drug Deliv. Sci. Technol., 2023, 82, 104357.
[http://dx.doi.org/10.1016/j.jddst.2023.104357]
[7]
Sundramoorthy, A.K.; Atchudan, R. Analysis of circulating tumor cells (CTCs) using biosensors made of conducting polymer, poly(3,4-ethylenedioxythiophene), with antifouling properties in human blood. Oral Oncol., 2022, 134, 106138.
[http://dx.doi.org/10.1016/j.oraloncology.2022.106138] [PMID: 36182723]
[8]
Sundramoorthy, A.K.; Atchudan, R.; Arya, S. Utilization of Raman spectroscopy in biochemical fingerprint analysis for oral cancer screening and diagnosis. Oral Oncol., 2022, 135, 106192.
[http://dx.doi.org/10.1016/j.oraloncology.2022.106192] [PMID: 36270203]
[9]
Truta, F.; Florea, A.; Cernat, A.; Tertis, M.; Hosu, O.; de Wael, K.; Cristea, C. Tackling the problem of sensing commonly abused drugs through nanomaterials and (Bio)recognition approaches. Front Chem., 2020, 8, 561638.
[10]
Saraji, M.; Boroujeni, M.K. Analysis of narcotic drugs in biological samples using hollow fiber liquid–phase microextraction and gas chromatography with nitrogen phosphorus detection. Mikrochim. Acta, 2011, 174(1-2), 159-166.
[http://dx.doi.org/10.1007/s00604-011-0612-5]
[11]
AL-Salman. H. N. K. Analytical Methods for Diagnosis a Mixture of Narcotic Substances in Seized Materials. Int. J. Green Pharm., 2018, 12(3), 216.
[12]
Magesh, V.; Sundramoorthy, A.K.; Ganapathy, D. Recent advances on synthesis and potential applications of carbon quantum dots. Front. Mater., 2022, 9, 906838.
[http://dx.doi.org/10.3389/fmats.2022.906838]
[13]
Murugan, P.; Sundramoorthy, A.K.; Nagarajan, R.D.; Atchudan, R.; Shanmugam, R.; Ganapathy, D.; Arya, S.; Alothman, A.A.; Ouladsmane, M. Electrochemical detection of h2o2 on graphene nanoribbons/cobalt oxide nanorods-modified electrode. J. Nanomater., 2022, 2022, 1-10.
[http://dx.doi.org/10.1155/2022/9866111]
[14]
Raj, S.M.M.; Sundramoorthy, A.K.; Atchudan, R.; Ganapathy, D.; Khosla, A. Review-Recent trends on the synthesis and different characterization tools for mxenes and their emerging applications. J. Electrochem. Soc., 2022, 169(7), 077501.
[http://dx.doi.org/10.1149/1945-7111/ac7bac]
[15]
Murugan, P.; Nagarajan, R.D.; Sundramoorthy, A.K.; Ganapathy, D.; Atchudan, R.; Nallaswamy, D.; Khosla, A. Electrochemical detection of H 2 O 2 using an activated glassy carbon electrode. ECS Sensors Plus, 2022, 1(3), 034401.
[http://dx.doi.org/10.1149/2754-2726/ac7c78]
[16]
Gandhi, S.; Suman, P.; Kumar, A.; Sharma, P.; Capalash, N.; Suri, C.R. Recent advances in immunosensor for narcotic drug detection. Bioimpacts, 2016, 5(4), 207-213.
[http://dx.doi.org/10.15171/bi.2015.30] [PMID: 26929925]
[17]
Umapathi, R.; Venkateswara Raju, C.; Majid Ghoreishian, S.; Mohana Rani, G.; Kumar, K.; Oh, M.H.; Pil Park, J.; Suk Huh, Y. Recent advances in the use of graphitic carbon nitride-based composites for the electrochemical detection of hazardous contaminants. Coord. Chem. Rev., 2022, 470, 214708.
[http://dx.doi.org/10.1016/j.ccr.2022.214708]
[18]
Venkateswara Raju, C.; Hwan Cho, C.; Mohana Rani, G.; Manju, V.; Umapathi, R.; Suk Huh, Y.; Pil Park, J. Emerging insights into the use of carbon-based nanomaterials for the electrochemical detection of heavy metal ions. Coord. Chem. Rev., 2023, 476, 214920.
[http://dx.doi.org/10.1016/j.ccr.2022.214920]
[19]
Umapathi, R.; Park, B.; Sonwal, S.; Rani, G.M.; Cho, Y.; Huh, Y.S. Advances in optical-sensing strategies for the on-site detection of pesticides in agricultural foods. Trends Food Sci. Technol., 2022, 119, 69-89.
[http://dx.doi.org/10.1016/j.tifs.2021.11.018]
[20]
Zhang, C.; Han, Y.; Lin, L.; Deng, N.; Chen, B.; Liu, Y. Development of quantum dots-labeled antibody fluorescence immunoassays for the detection of morphine. J. Agric. Food Chem., 2017, 65(6), 1290-1295.
[http://dx.doi.org/10.1021/acs.jafc.6b05305] [PMID: 28132500]
[21]
Elbardisy, H.M.; Foster, C.W.; Cumba, L.; Antonides, L.H.; Gilbert, N.; Schofield, C.J.; Belal, T.S.; Talaat, W.; Sutcliffe, O.B.; Daabees, H.G.; Banks, C.E. Analytical determination of heroin, fentanyl and fentalogues using high-performance liquid chromatography with diode array and amperometric detection. Anal. Methods, 2019, 11(8), 1053-1063.
[http://dx.doi.org/10.1039/C9AY00009G]
[22]
Naghian, E.; Marzi Khosrowshahi, E.; Sohouli, E.; Ahmadi, F.; Rahimi-Nasrabadi, M.; Safarifard, V. A new electrochemical sensor for the detection of fentanyl lethal drug by a screen-printed carbon electrode modified with the open-ended channels of Zn(II)-MOF. New J. Chem., 2020, 44(22), 9271-9277.
[http://dx.doi.org/10.1039/D0NJ01322F]
[23]
Mynttinen, E.; Wester, N.; Lilius, T.; Kalso, E.; Mikladal, B.; Varjos, I.; Sainio, S.; Jiang, H.; Kauppinen, E.I.; Koskinen, J.; Laurila, T. Electrochemical detection of oxycodone and its main metabolites with nafion-coated single-walled carbon nanotube electrodes. Anal. Chem., 2020, 92(12), 8218-8227.
[http://dx.doi.org/10.1021/acs.analchem.0c00450] [PMID: 32412733]
[24]
Bahram, M.; Madrakian, T.; Alizadeh, S. Simultaneous colorimetric determination of morphine and ibuprofen based on the aggregation of gold nanoparticles using partial least square. J. Pharm. Anal., 2017, 7(6), 411-416.
[http://dx.doi.org/10.1016/j.jpha.2017.03.001] [PMID: 29404068]
[25]
Sridharan, G.; Babu, K.L.; Ganapathy, D.; Atchudan, R.; Arya, S.; Sundramoorthy, A.K. Determination of nicotine in human saliva using electrochemical sensor modified with green synthesized silver nanoparticles using phyllanthus reticulatus fruit extract. Crystals, 2023, 13(4), 589.
[http://dx.doi.org/10.3390/cryst13040589]
[26]
Magesh, V.; Sundramoorthy, A.K.; Ganapathy, D.; Atchudan, R.; Arya, S.; Alshgari, R.A.; Aljuwayid, A.M. Palladium Hydroxide (Pearlman’s Catalyst) Doped MXene (Ti3C2Tx) Composite Modified Electrode for selective detection of nicotine in human sweat. Biosensors, 2022, 13(1), 54.
[http://dx.doi.org/10.3390/bios13010054] [PMID: 36671889]
[27]
Rajendran, J.; Sundramoorthy, A.K.; Ganapathy, D.; Atchudan, R.; Habila, M.A.; Nallaswamy, D. 2D MXene/graphene nanocomposite preparation and its electrochemical performance towards the identification of nicotine level in human saliva. J. Hazard. Mater., 2022, 440, 129705.
[http://dx.doi.org/10.1016/j.jhazmat.2022.129705] [PMID: 35963090]
[28]
Rajendran, J.; Reshetilov, A.N.; Sundramoorthy, A.K. An electrochemically exfoliated graphene/poly(3,4-ethylenedioxythiophene) nanocomposite-based electrochemical sensor for the detection of nicotine. Materials Advances, 2021, 2(10), 3336-3345.
[http://dx.doi.org/10.1039/D0MA00974A]
[29]
Jing, Y.; Ning, S.; Guan, Y.; Cao, M.; Li, J.; Zhu, L.; Zhang, Q.; Cheng, C.; Deng, Y. Electrochemical determination of nicotine in tobacco products based on biosynthesized gold nanoparticles. Front Chem., 2020, 8, 922.
[30]
Mehmeti, E.; Kilic, T.; Laur, C.; Carrara, S. Electrochemical determination of nicotine in smokers’ sweat. Microchem. J., 2020, 158, 105155.
[http://dx.doi.org/10.1016/j.microc.2020.105155]
[31]
Amr, A.E.G.E.; Kamel, A.H.; Almehizia, A.A.; Sayed, A.Y.A.; Elsayed, E.A.; Abd-Rabboh, H.S.M. Paper-based potentiometric sensors for nicotine determination in smokers’ sweat. ACS Omega, 2021, 6(17), 11340-11347.
[http://dx.doi.org/10.1021/acsomega.1c00301] [PMID: 34056289]
[32]
Abraham, P. R. S, P. Vijayan, N. V, K. Sreevalsan and V. Anithakumary. J. Electrochem. Soc., 2020, 167, 37559.
[http://dx.doi.org/10.1149/1945-7111/ab6cf6]
[33]
Hsu, H.C.; Chen, L.C.; Ho, K.C. Colorimetric detection of morphine in a molecularly imprinted polymer using an aqueous mixture of Fe3+ and [Fe(CN)6]3−. Anal. Chim. Acta, 2004, 504(1), 141-147.
[http://dx.doi.org/10.1016/j.aca.2003.11.021]
[34]
Chan, K.W. Validation of a straightforward high performance liquid chromatographic method for morphine quantitation. Egypt. J. Forensic Sci., 2017, 7(1), 1-6.
[http://dx.doi.org/10.1186/s41935-017-0003-0] [PMID: 28781894]
[35]
John, N.; Anjali Devi, J. R S, A.; Babu, A.; Aswathy, A.; Sony, G. Fluorometric determination of morphine via its effect on the quenching of fluorescein by gold nanoparticles through a surface energy transfer process. Microchim. Acta, 2018, 185(12), 1-10.
[http://dx.doi.org/10.1007/s00604-018-3050-9]
[36]
Verrinder, E.; Wester, N.; Leppänen, E.; Lilius, T.; Kalso, E.; Mikladal, B.; Varjos, I.; Koskinen, J.; Laurila, T. Electrochemical Detection of Morphine in Untreated Human Capillary Whole Blood. ACS Omega, 2021, 6(17), 11563-11569.
[http://dx.doi.org/10.1021/acsomega.1c00773] [PMID: 34056312]
[37]
Wester, N.; Mynttinen, E.; Etula, J.; Lilius, T.; Kalso, E.; Kauppinen, E.I.; Laurila, T.; Koskinen, J. Simultaneous detection of morphine and codeine in the presence of ascorbic acid and uric acid and in human plasma at nafion single-walled carbon nanotube thin-film electrode. ACS Omega, 2019, 4(18), 17726-17734.
[http://dx.doi.org/10.1021/acsomega.9b02147] [PMID: 31681878]
[38]
Bagheri, H.; Khoshsafar, H.; Afkhami, A.; Amidi, S. Sensitive and simple simultaneous determination of morphine and codeine using a Zn2SnO4 nanoparticle/graphene composite modified electrochemical sensor. New J. Chem., 2016, 40(8), 7102-7112.
[http://dx.doi.org/10.1039/C6NJ00505E]
[39]
Ognjanović M.; Nikolić K.; Bošković M.; Pastor, F.; Popov, N.; Marciuš, M.; Krehula, S.; Antić B.; Stanković D.M. Electrochemical determination of morphine in urine samples by tailoring FeWO4/CPE sensor. Biosensors (Basel), 2022, 12(11), 932.
[http://dx.doi.org/10.3390/bios12110932] [PMID: 36354441]
[40]
Pratiwi, R.; Noviana, E.; Fauziati, R.; Carrão, D.B.; Gandhi, F.A.; Majid, M.A.; Saputri, F.A. A review of analytical methods for codeine determination. Molecules, 2021, 26(4), 800.
[http://dx.doi.org/10.3390/molecules26040800] [PMID: 33557168]
[41]
Roushani, M.; Shahdost-fard, F. Fabrication of an electrochemical nanoaptasensor based on AuNPs for ultrasensitive determination of cocaine in serum sample. Mater. Sci. Eng. C, 2016, 61, 599-607.
[http://dx.doi.org/10.1016/j.msec.2016.01.002]
[42]
Pirasteh, M.; Momeni Isfahani, T.; Pourghobadi, Z. Electrochemical codeine sensor based on carbon paste electrode/HKUST-1. Mater. Res. Express, 2022, 9(9), 095008.
[http://dx.doi.org/10.1088/2053-1591/ac9457]
[43]
Florea, A.; Cowen, T.; Piletsky, S.; De Wael, K. Electrochemical sensing of cocaine in real samples based on electrodeposited biomimetic affinity ligands. Analyst (Lond.), 2019, 144(15), 4639-4646.
[http://dx.doi.org/10.1039/C9AN00618D]
[44]
Asturias-Arribas, L.; Alonso-Lomillo, M.A.; Domínguez-Renedo, O.; Arcos-Martínez, M.J. Sensitive and selective cocaine electrochemical detection using disposable sensors. Anal. Chim. Acta, 2014, 834, 30-36.
[http://dx.doi.org/10.1016/j.aca.2014.05.012] [PMID: 24928242]
[45]
Lima, C.D.; Couto, R.A.S.; Arantes, L.C.; Marinho, P.A.; Pimentel, D.M.; Quinaz, M.B.; da Silva, R.A.B.; Richter, E.M.; Barbosa, S.L.; dos Santos, W.T.P. Electrochemical detection of the synthetic cathinone 3,4-methylenedioxypyrovalerone using carbon screen-printed electrodes: A fast, simple and sensitive screening method for forensic samples. Electrochim. Acta, 2020, 354, 136728.
[http://dx.doi.org/10.1016/j.electacta.2020.136728]
[46]
Tan, F.; Smith, J.P.; Sutcliffe, O.B.; Banks, C.E. Regal electrochemistry: Sensing of the synthetic cathinone class of new psychoactive substances (NPSs). Anal. Methods, 2015, 7(16), 6470-6474.
[http://dx.doi.org/10.1039/C5AY01820J]
[47]
De Rycke, E.; Trynda, A.; Jaworowicz, M.; Dubruel, P.; De Saeger, S.; Beloglazova, N. Capacitive sensing of an amphetamine drug precursor in aqueous samples: Application of novel molecularly imprinted polymers for benzyl methyl ketone detection. Biosens. Bioelectron., 2021, 172112773.
[http://dx.doi.org/10.1016/j.bios.2020.112773] [PMID: 33161291]
[48]
Li, H.; Hu, X.; Zhao, J.; Koh, K.; Chen, H. A label-free impedimetric sensor for the detection of an amphetamine-type derivative based on cucurbit[7]uril-mediated three-dimensional AuNPs. Electrochem. Commun., 2019, 100, 126-133.
[http://dx.doi.org/10.1016/j.elecom.2019.02.002]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy