Generic placeholder image

Current Bioactive Compounds

Editor-in-Chief

ISSN (Print): 1573-4072
ISSN (Online): 1875-6646

Research Article

Novel Anti-diabesity Peptide Alkaloids from Allophylus africanus P. Beauv

Author(s): Olaoye Solomon Balogun*, Shu Liu, Zheng Zhong and Zhiqiang Liu

Volume 19, Issue 5, 2023

Published on: 27 December, 2022

Article ID: e300922209337 Pages: 15

DOI: 10.2174/1573407218666220930095418

Price: $65

Abstract

Aim: The aim of the study was to characterize and investigate the mechanism of action of anti-hyperglycemic and anti-hyperlipidemic constitutents of Allophylus africanus.

Background: Allophylus africanus P. Beauv is a medicinal plant commonly used in sub-Sahara Africa for the treatment of metabolic disorders and infectious diseases.

Objective: The objective of the study was to isolate and characterize anti-hyperglycemic and antihyperlipidemic chemical constituents from Allophylus africanus, and to investigate the mechanism of their enzymatic inhibitions.

Methods: The chemical constituents were isolated using various column chromatographic techniques. The anti-hyperlipidemic and anti-hyperglycemic properties of the chemical constituents were investigated by measuring their inhibitory effects on porcine pancreatic lipase and α- glucosidase enzymes. Fluorescence quenching constants obtained from Stern−Volmer plots were used to determine the mechanisms of inhibitory action.

Results: Twelve compounds, of which three were new peptide alkaloids, ethylamino asperphenamate (10), allophylane (11) and allophyline (12), were isolated. The new peptide alkaloids and asperphenamate (9) inhibited porcine pancreatic lipase in a dose-dependent manner with IC50 < 90 μM. Also, 9, 12, stigmasta-5, 22-dien-3-O-β-D-glucoside (3) and eudesmenol (5) inhibited α- glucosidase enzymes with IC50 < 165 μM, which was lower than that of standard drug, acarbose (432.16 ± 6.52 μM). From the Stern-Volmer plots, 9 and 10 indicated a static quenching, while 11 and 12 suggested the occurrence of both static and dynamic quenching mechanisms on porcine pancreatic lipase. On α-glucosidase, only 12 exhibited a concurrent static and dynamic quenching mechanism.

Conclusion: The anti-diabesity compounds obtained from A. africanus established its potential for the treatment of metabolic disorders. Among the isolated compounds, three have been reported for the first time in nature while others have been reported for the first time in the plant.

Keywords: Allophylus africanus, fluorescence quenching, anti-hyperglycemic, anti-hyperlipidemic, Sapindaceae, cyclopeptide alkaloid.

Graphical Abstract
[1]
Gournelis, D.C.; Laskaris, G.G.; Verpoorte, R. Cyclopeptide alkaloids. Nat. Prod. Rep., 1997, 14(1), 75-82.
[http://dx.doi.org/10.1039/np9971400075] [PMID: 9121730]
[2]
El-Seedi, H.R.; Larsson, S.; Backlund, A. Chemosystematic value of cyclopeptide alkaloids from Heisteria nitida (Olacaceae). Biochem. Syst. Ecol., 2005, 33(8), 831-839.
[http://dx.doi.org/10.1016/j.bse.2004.12.023]
[3]
Rahalison, L.; Hamburger, M.; Hostettmann, K.; Monod, M.; Frenk, E. A bioautographic agar overlay method for the detection of antifungal compounds from higher plants. Phytochem. Anal., 1991, 2(5), 199-203.
[http://dx.doi.org/10.1002/pca.2800020503]
[4]
Suh, D.Y.; Kim, Y.C.; Kang, Y.H.; Han, Y.N.; Han, B.H. Metabolic cleavage of frangufoline in rodents: In vitro and in vivo study. J. Nat. Prod., 1997, 60(3), 265-269.
[http://dx.doi.org/10.1021/np9606613] [PMID: 9090868]
[5]
Kaga, A.; Ishimoto, M. Genetic localization of a bruchid resistance gene and its relationship to insecticidal cyclopeptide alkaloids, the vignatic acids, in mungbean (Vigna radiata L. Wilczek). Mol. Gen. Genet., 1998, 258(4), 378-384.
[http://dx.doi.org/10.1007/s004380050744] [PMID: 9648742]
[6]
Hwang, K.H.; Han, Y.N.; Han, B.H. Inhibition of calmodulin-dependent Calcium-ATPase and phosphodiesterase by various cyclopeptides and peptide alkaloids from the zizyphus species. Arch. Pharm. Res., 2001, 24(3), 202-206.
[http://dx.doi.org/10.1007/BF02978257] [PMID: 11440077]
[7]
Suksamrarn, S.; Suwannapoch, N.; Aunchai, N.; Kuno, M.; Ratananukul, P.; Haritakun, R.; Jansakul, C.; Ruchirawat, S.; Ziziphine, N.; Ziziphine, N. O, P and Q, new antiplasmodial cyclopeptide alkaloids from Ziziphus oenoplia var. brunoniana. Tetrahedron, 2005, 61(5), 1175-1180.
[http://dx.doi.org/10.1016/j.tet.2004.11.053]
[8]
Tan, N.H.; Zhou, J. Plant cyclopeptides. Chem. Rev., 2006, 106(3), 840-895.
[http://dx.doi.org/10.1021/cr040699h] [PMID: 16522011]
[9]
Oladosu, A.I.; Balogun, O.S.; Liu, Z. Chemical constituents of Allophylus africanus P. Beauv. Chinese J. Nat. Med., 2015, 13(2), 133-141.
[10]
Ferreres, F.; Gomes, N.G.M.; Valentão, P.; Pereira, D.M.; Gil-Izquierdo, A.; Araújo, L.; Silva, T.C.; Andrade, P.B. Leaves and stem bark from Allophylus africanus P. Beauv.: An approach to anti-inflammatory properties and characterization of their flavonoid profile. Food Chem. Toxicol., 2018, 118, 430-438.
[http://dx.doi.org/10.1016/j.fct.2018.05.045] [PMID: 29787847]
[11]
Balogun, O.S.; Oladosu, I.A.; Liu, Z. Fatty acid profile and in vitro biological activities of Allophylus africanus (P. Beauv). J. Herbs Spices Med. Plants, 2016, 22(3), 238-246.
[http://dx.doi.org/10.1080/10496475.2016.1193587]
[12]
Musalmah, M.; Elkkairee, M.R.; Lau, C.M.; Wan Ngah, W.Z. Effect of latex quebrachitol and L-chiro-inositol on blood glucose levels in normal and alloxan-induced diabetic rats. Malaysia J Biochem and Mol Bio, 2001, 6, 7-11.
[13]
Díaz, M.; González, A.; Castro-Gamboa, I.; Gonzalez, D.; Rossini, C. First record of l-quebrachitol in Allophylus edulis (Sapindaceae). Carbohydr. Res., 2008, 343(15), 2699-2700.
[http://dx.doi.org/10.1016/j.carres.2008.07.014] [PMID: 18715552]
[14]
Lebovitz, H.E. Postprandial hyperglycaemic state: Importance and consequences. Diabetes Res. Clin. Pract., 1998, 40, S27-S28.
[PMID: 9740499]
[15]
Yao, Y.; Cheng, X.; Wang, L.; Wang, S.; Ren, G. A determination of potential α-glucosidase inhibitors from Azuki Beans (Vigna angularis). Int. J. Mol. Sci., 2011, 12(10), 6445-6451.
[http://dx.doi.org/10.3390/ijms12106445] [PMID: 22072898]
[16]
Billington, C.J.; Epstein, L.H.; Goodwin, N.J. Overweight, obesity, and health risk. Arch. Intern. Med., 2000, 160(7), 898-904.
[http://dx.doi.org/10.1001/archinte.160.7.898] [PMID: 10761953]
[17]
Zhang, J.; Xiao, L.; Yang, Y.; Wang, Z.; Li, G. Lignin binding to pancreatic lipase and its influence on enzymatic activity. Food Chem., 2014, 149, 99-106.
[http://dx.doi.org/10.1016/j.foodchem.2013.10.067] [PMID: 24295682]
[18]
Atefehalsadat, S.; Mohammed, A.A.; Mustafa, A.A.; Sanaz, K.; Zahurin, M. Medicinal plants and their inhibitory activities against pancreatic lipase: A review. Evidence-Based Compl. Alt. Med., 2015, 2015973143
[http://dx.doi.org/10.1155/2015/973143]
[19]
Danis, O.; Ogan, A.; Anbar, D.; Dursun, B.Y.; Demir, S. Inhibition of pancreatic lipase by culinary plant extracts. Int. J. Plant Biol. Res., 2015, 3(2), 1038.
[20]
McDougall, G.J.; Kulkarni, N.N.; Stewart, D. Berry polyphenols inhibit pancreatic lipase activity in vitro. Food Chem., 2009, 115(1), 193-199.
[http://dx.doi.org/10.1016/j.foodchem.2008.11.093]
[21]
Zhu, Y.T.; Jia, Y.W.; Liu, Y.M.; Liang, J.; Ding, L.S.; Liao, X. Lipase ligands in Nelumbo nucifera leaves and study of their binding mechanism. J. Agric. Food Chem., 2014, 62(44), 10679-10686.
[http://dx.doi.org/10.1021/jf503687e] [PMID: 25328123]
[22]
Avato, P.; Rosito, I.; Papadia, P.; Fanizzi, F.P. Cyanolipid-rich seed oils from Allophylus natalensis and A. dregeanus. Lipids, 2005, 40(10), 1051-1056.
[http://dx.doi.org/10.1007/s11745-005-1468-z] [PMID: 16382577]
[23]
Rastogi, R.P.; Mehrotra, B.N. Compendium of Indian Medicinal Plants; Publication and Information Directorate; Council of Scientific & Industrial Research: India, 1993.
[24]
Rastogi, R.P.; Mehrotra, B.N. Compendium of Indian medicinal plants; Publication and information directorate: New Delhi, India; , 1990.
[25]
Zhang, X.Y.; Cai, X.H.; Luo, X.D. Chemical constituents of Allophylus longipes. Chin. J. Nat. Med., 2012, 10(1), 36-39.
[http://dx.doi.org/10.1016/S1875-5364(12)60008-9] [PMID: 23302528]
[26]
Rai, N.P.; Adhikari, B.B.; Paudel, A.; Masuda, K.; Mckelvey, R.D.; Manandhar, M.D. Phytochemical constituents of the flowers of < i > Sarcococca coriacea </i > of Nepalese origin. J. Nepal Chem. Soc., 1970, 21, 1-7.
[http://dx.doi.org/10.3126/jncs.v21i0.214]
[27]
Khatun, M.; Billah, M.; Quader, M.A. Sterols and sterol glucoside from Phyllanthus Species. Dhaka Univ. J. Sci., 2012, 60(1), 5-10.
[http://dx.doi.org/10.3329/dujs.v60i1.10327]
[28]
Watchara, S.; Schevenels, F.T.; Lekphrom, R.; Kanokmedhakul, S. A new tocotrienol from the roots and branches of Allophylus cobbe (L.) Raeusch (Sapindaceae). Nat. Prod. Res., 2020, 34(7), 988-994.
[http://dx.doi.org/10.1080/14786419.2018.1547298] [PMID: 30663333]
[29]
Ito, A.; Chai, H.B.; Kardono, L.B.S.; Setowati, F.M.; Afriastini, J.J.; Riswan, S.; Farnsworth, N.R.; Cordell, G.A.; Pezzuto, J.M.; Swanson, S.M.; Kinghorn, A.D.; Kinghorn, A.D. Saponins from the Bark of Nephelium m aingayi. J. Nat. Prod., 2004, 67(2), 201-205.
[http://dx.doi.org/10.1021/np030389e] [PMID: 14987059]
[30]
Clark, A.M.; Hufford, C.D.; Robertson, L.W. Two metabolites from Aspergillus flavipes. Lloydia, 1977, 40(2), 146-151.
[PMID: 875642]
[31]
McCorkindale, N.J.; Baxter, R.L.; Roy, T.P.; Shields, H.S.; Stewart, R.M.; Hutchinson, S.A. Synthesis and chemistry of N-benzoyl-O- [N′-benzoyl-l-phenylalanyl]-l-phenylalaninol, the major mycelial metabolite of penicillium canadense. Tetrahedron, 1978, 34(18), 2791-2795.
[http://dx.doi.org/10.1016/0040-4020(78)88421-X]
[32]
Bird, B.A.; Campbell, I.M. Disposition of mycophenolic acid, brevianamide A, asperphenamate, and ergosterol in solid cultures of Penicillum brevicompactum. Appl. Environ. Microbiol., 1982, 43(2), 345-348.
[http://dx.doi.org/10.1128/aem.43.2.345-348.1982] [PMID: 16345939]
[33]
Nozawa, K.; Udagawad, S.I.; Nakajima, S.; Kawai, K.I. A dioxopiperazine derivative from Penicillium megasporum. Phytochemistry, 1989, 28(3), 929-931.
[http://dx.doi.org/10.1016/0031-9422(89)80145-1]
[34]
Banerji, A.; Ray, R. Aurantiamides: A new class of modified dipeptides from Piper aurantiacum. Phytochemistry, 1981, 20(9), 2217-2220.
[http://dx.doi.org/10.1016/0031-9422(81)80116-1]
[35]
Poi, R.; Adityachoudhury, N. Occurrence of two rare amides in Medicago polymorpha. Indian J. Chem. Sect. B, 1986, 25, 1245-1246.
[36]
Hashim, N.M.; Rahmani, M.; Shamaun, S.S.; Ee, G.C.L.; Sukari, M.A.; Ali, A.M.; Go, R. Dipeptide and xanthones from Artocarpus kemando Miq. J. Med. Plants Res., 2011, 5, 4224-4230.
[37]
Catalán, C.A.N.; de Heluani, C.S.; Kotowicz, C.; Gedris, T.E.; Herz, W. A linear sesterterpene, two squalene derivatives and two peptide derivatives from Croton hieronymi. Phytochemistry, 2003, 64(2), 625-629.
[http://dx.doi.org/10.1016/S0031-9422(03)00202-4] [PMID: 12943786]
[38]
El-Seedi, H.R.; Zahra, M.H.; Goransson, U.; Verpoorte, R. Cyclopeptide alkaloids. Phytochem. Rev., 2007, 6(1), 143-165.
[http://dx.doi.org/10.1007/s11101-006-9029-x]
[39]
Jang, D.S.; Lee, G.Y.; Kim, J.; Lee, Y.M.; Kim, J.M.; Kim, Y.S.; Kim, J.S. A new pancreatic lipase inhibitor isolated from the roots of Actinidia arguta. Arch. Pharm. Res., 2008, 31(5), 666-670.
[http://dx.doi.org/10.1007/s12272-001-1210-9] [PMID: 18481026]
[40]
Lakowicz, J.R.; Masters, BR. Principles of fluorescence spectroscopy. J. Biomed. Optics, 2008, 13(2), 9901.
[41]
Wu, X.; He, W.; Zhang, H.; Li, Y.; Liu, Z.; He, Z. Acteoside: A lipase inhibitor from the Chinese tea Ligustrum purpurascens kudingcha. Food Chem., 2014, 142, 306-310.
[http://dx.doi.org/10.1016/j.foodchem.2013.07.071] [PMID: 24001846]
[42]
Shi, D.; Chen, C.; Zhao, S.; Ge, F.; Liu, D.; Song, H. Walnut polyphenols inhibit pancreatic lipase activity in vitro and have hypolipidemic effect on high-fat diet-induced obese mice. J. Food Nutr. Res. (Newark), 2014, 2(10), 757-763.
[http://dx.doi.org/10.12691/jfnr-2-10-16]
[43]
Peng, X.; Zhang, G.; Liao, Y.; Gong, D. Inhibitory kinetics and mechanism of kaempferol on α-glucosidase. Food Chem., 2016, 190, 207-215.
[http://dx.doi.org/10.1016/j.foodchem.2015.05.088] [PMID: 26212963]
[44]
Shahabadi, N.; Maghsudi, M.; Kiani, Z.; Pourfoulad, M. Multispectroscopic studies on the interaction of 2-tert-butylhydroquinone (TBHQ), a food additive, with bovine serum albumin. Food Chem., 2011, 124(3), 1063-1068.
[http://dx.doi.org/10.1016/j.foodchem.2010.07.079]
[45]
Bhogale, A.; Patel, N.; Sarpotdar, P.; Mariam, J.; Dongre, P.M.; Miotello, A.; Kothari, D.C. Systematic investigation on the interaction of bovine serum albumin with ZnO nanoparticles using fluorescence spectroscopy. Colloids Surf. B Biointerfaces, 2013, 102, 257-264.
[http://dx.doi.org/10.1016/j.colsurfb.2012.08.023] [PMID: 23010116]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy