Generic placeholder image

Current Bioactive Compounds

Editor-in-Chief

ISSN (Print): 1573-4072
ISSN (Online): 1875-6646

Research Article

Phytochemical Screening and In vitro Antioxidant, Antibacterial, and Antihemolytic Activities of Putoria calabrica Leaf Extracts

Author(s): Nasreddine Mekhoukh, Nadia Chougui and Yuva Bellik*

Volume 19, Issue 2, 2023

Published on: 30 August, 2022

Article ID: e280422204171 Pages: 12

DOI: 10.2174/1573407218666220428102644

Price: $65

Abstract

Background: Putoria calabrica is a common Mediterranean plant used topically in folk medicine for medical purposes. The aim of this study is to evaluate the in vitro antioxidant, antibacterial, and antihemolytic properties of Putoria calabrica leaf extracts.

Methods: Total phenol content (TPC), total flavonoid content (TFC), and condensed tannins content (CTC) were determined spectrophotometrically. The antioxidant activity was tested using TAC, DPPH, ABTS, and FRAP assays. Agar diffusion method was used to determine the antimicrobial activity against Bacillus subtilis, Staphylococcus aureus, Escherichia coli, Pseudomonas aeruginosa, and Candida albicans. Anti-hemolytic activity was evaluated by the measurement of erythrocytes turbidity and extracellular hemoglobin concentration using the AAPH method.

Results: Methanol was the optimal solvent to extract the bioactive components with the highest extraction yield (30.11 ± 0.42%), TPC (142.11 ± 4.04 mg GAE/g dry extract) and TFC (29.16 ± 0.99 mg QrE/g dry extract). In terms of antioxidant activity, methanol extract was the most effective against ABTS free radical (IC50 = 5.02 ± 0.13 mg/ml) and FRAP (A0.5 = 2.91 ± 0.09 mg/ml). While, acetone extract showed the highest TAC (214.05 ± 8.74 mg GAE/g dry extract) and DPPH scavenging activity (IC50 = 1.94 ± 0.02 mg/ml). The strongest antimicrobial effect at a concentration of 10.24 mg/well was observed with acetone extract against P. aeruginosa (22.52 ± 0.60 mm) and C. albicans (17.33 ± 0.41 mm). While, methanol extract was the most active against S. aureus (17.31 ± 0.98 mm). Aqueous extract showed a good capacity to protect erythrocytes from oxidative damage by preventing their hemolysis and the oxidation of hemoglobin induced by AAPH.

Conclusion: P. calabrica leaves hold great importance as a source of therapeutic bioactive compounds.

Keywords: Putoria calabrica, phenolic compounds, antioxidant capacity, antimicrobial potency, antihemolytic activity, oxidative damage.

Graphical Abstract
[1]
Liguori, I.; Russo, G.; Curcio, F.; Bulli, G.; Aran, L.; Della-Morte, D.; Gargiulo, G.; Testa, G.; Cacciatore, F.; Bonaduce, D.; Abete, P. Oxidative stress, aging, and diseases. Clin. Interv. Aging, 2018, 13, 757-772.
[http://dx.doi.org/10.2147/CIA.S158513] [PMID: 29731617]
[2]
Salehi, B.; Azzini, E.; Zucca, P.; Varoni, E.M.; Kumar, N.V.A.; Dini, L.; Panzarini, E.; Rajkovic, J.; Fokou, P.V.T.; Peluso, I. Plant-derived bioactives and oxidative stress-related disorders: a key trend towards healthy aging and longevity promotion. Appl. Sci. (Basel), 2020, 10, 947.
[http://dx.doi.org/10.3390/app10030947]
[3]
Smaga, I.; Niedzielska, E.; Gawlik, M.; Moniczewski, A.; Krzek, J. Przegaliski, E.; Pera, J.; Filip, M. Oxidative stress as an etiological factor and a potential treatment target of psychiatric disorders. Part 2. Depression, anxiety, schizophrenia and autism. Pharmacol. Rep., 2015, 67(3), 569-580.
[http://dx.doi.org/10.1016/j.pharep.2014.12.015] [PMID: 25933971]
[4]
Tramutola, A.; Lanzillotta, C.; Perluigi, M.; Butterfield, D.A. Oxidative stress, protein modification and Alzheimer disease. Brain Res. Bull., 2017, 133, 88-96.
[http://dx.doi.org/10.1016/j.brainresbull.2016.06.005] [PMID: 27316747]
[5]
Poprac, P.; Jomova, K.; Simunkova, M.; Kollar, V.; Rhodes, C.; Valko, M. Targeting free radicals in oxidative stress-related human diseases. Trends in pharm. Sci., 2017, 38, 592-607.
[http://dx.doi.org/10.1016/j.tips.2017.04.005]
[6]
Shahidi, F.; Zhong, Y. Lipid oxidation and improving the oxidative stability. Eur. J. Lipid Sci. Technol., 2010, 112, 930-940.
[http://dx.doi.org/10.1039/b922183m]
[7]
Murcia, M.A.; Egea, I.; Romojaro, F.; Parras, P.; Jiménez, A.M.; Martínez-Tomé, M. Antioxidant evaluation in dessert spices compared with common food additives. Influence of irradiation procedure. J. Agric. Food Chem., 2004, 52(7), 1872-1881.
[http://dx.doi.org/10.1021/jf0303114] [PMID: 15053523]
[8]
De Jesus, J.; Ferreira, A.; Szilágyi, I.; Cavalheiro, E.J.F. Thermal behavior and polymorphism of the antioxidants: BHA, BHT and TBHQ. Fuel, 2020, 278118298
[http://dx.doi.org/10.1016/j.fuel.2020.118298]
[9]
Kahl, R. Synthetic antioxidants: biochemical actions and interference with radiation, toxic compounds, chemical mutagens and chemical carcinogens. Toxicology, 1984, 33(3-4), 185-228.
[http://dx.doi.org/10.1016/0300-483X(84)90038-6] [PMID: 6393452]
[10]
Ito, N.; Hirose, M.; Fukushima, S.; Tsuda, H.; Shirai, T.; Tatematsu, M. Studies on antioxidants: their carcinogenic and modifying effects on chemical carcinogenesis. Food Chem. Toxicol., 1986, 24(10-11), 1071-1082.
[http://dx.doi.org/10.1016/0278-6915(86)90291-7] [PMID: 3804112]
[11]
Vandghanooni, S.; Forouharmehr, A.; Eskandani, M.; Barzegari, A.; Kafil, V.; Kashanian, S.; Ezzati Nazhad Dolatabadi, J. Cytotoxicity and DNA fragmentation properties of butylated hydroxyanisole. DNA Cell Biol., 2013, 32(3), 98-103.
[http://dx.doi.org/10.1089/dna.2012.1946] [PMID: 23413972]
[12]
Tortosa, V.; Pietropaolo, V.; Brandi, V.; Macari, G.; Pasquadibisceglie, A.; Polticelli, F. Computational methods for the identification of molecular targets of toxic food additives. Butylated hydroxytoluene as a case study. Molecules, 2020, 25(9), 2229.
[http://dx.doi.org/10.3390/molecules25092229] [PMID: 32397407]
[13]
Bellik, Y.; Selles, S.M.A. In vitro synergistic antioxidant activity of honey-Mentha spicata combination. J. Food Measur Char., 2016, 11(1), 1-8.
[http://dx.doi.org/10.1007/s11694-016-9377-1]
[14]
Xu, D.P.; Li, Y.; Meng, X.; Zhou, T.; Zhou, Y.; Zheng, J.; Zhang, J.J.; Li, H.B. Natural antioxidants in foods and medicinal plants: Extraction, assessment and resources. Int. J. Mol. Sci., 2017, 18(1), 96.
[http://dx.doi.org/10.3390/ijms18010096] [PMID: 28067795]
[15]
Seragui, S.; Derraji, S.; Mahassin, F.; Cherrah, Y. Résistance bactérienne: Etat de lieu au Maroc. Maroc Med., 2013, 35(3), 199-205.
[http://dx.doi.org/10.48408/IMIST.PRSM/mm-v35i3.2939]
[16]
Daglia, M. Polyphenols as antimicrobial agents. Cur. Opinion in Biotech., 2011, 23(2), 1-8.
[http://dx.doi.org/10.1016/j.copbio.2011.08.007]
[17]
Arbos, K.A.; Claro, L.M.; Borges, L.; Santos, C.A.M.; Weffort-Santos, A.M. Human erythrocytes as a system for evaluating the antioxidant capacity of vegetable extracts. Nutr. Res., 2008, 28(7), 457-463.
[http://dx.doi.org/10.1016/j.nutres.2008.04.004] [PMID: 19083446]
[18]
Paiva-Martins, F.; Fernandes, J.; Rocha, S.; Nascimento, H.; Vitorino, R.; Amado, F.; Borges, F.; Belo, L.; Santos-Silva, A. Effects of olive oil polyphenols on erythrocyte oxidative damage. Mol. Nutr. Food Res., 2009, 53(5), 609-616.
[http://dx.doi.org/10.1002/mnfr.200800276] [PMID: 19340892]
[19]
Takhtajan, A. Diversity and classification of flowering plants; Columbia University Press: New York, 1996.
[20]
Frasier, C. Evolution and systematics of the angiosperm order gentianales with an in-depth focus on loganiaceae and its species-rich and toxic genus Strychnos. PhD thesis (Rutgers, The State University of New Jersey, New Brunswick, NJ), 2008.
[21]
Du, Y.; Wei, G.; Linhardt, R.J. The first total synthesis of calabricoside A, Elsevier, tetrahedron letters 2003, 44(36), 6887-6890.
[http://dx.doi.org/10.1016/S0040-4039(03)01706-4]
[22]
Tasdemir, D.; Dönmez, A.A. Calıs, I.; Rüedi, P. Evaluation of biological activity of Turkish plants.Rapid screening for the antimicrobial, antioxidant, and acetylcholinesterase inhibitory potential by TLC bioautographic methods. Pharm. Biol., 2004, 42(4-5), 374-383.
[http://dx.doi.org/10.1080/13880200490519695]
[23]
Calis, I.; Heilmann, J.; Tasdemir, D.; Linden, A.; Ireland, C.M.O.; Sticher, O. Flavonoid, iridoid, and lignan glycosides from Putoria calabrica. J. Nat. Prod., 2001, 64(7), 961-964.
[http://dx.doi.org/10.1021/np000614h] [PMID: 11473436]
[24]
Yaye, Y.G. KRA, A.K.M., Ackah J.A.A.B.; Djaman, A.J. Evaluation de l’activité antifongique et essai de purification des principes actifs des extraits de Terminaliamantaly (h. perrier), une combrétacée, sur la croissance in vitro de Candida albicans. Bull. Soc. R. Sci. Liege, 2011, 80, 953-964.
[25]
Singleton, V.L.; Rossi, J.A. Colorimetry of total phenolics with phosphomolybdic phosphotungstic acid reagents. Am. J. Enol. Vitic., 1965, 16, 144-158.
[26]
Jain, D.P.; Pancholi, S.S.; Patel, R. Synergistic antioxidant activity of green tea with some herbs. J. Adv. Pharm. Technol. Res., 2011, 2(3), 177-183.
[http://dx.doi.org/10.4103/2231-4040.85538] [PMID: 22171315]
[27]
Oyedemi, S.O.; Afolayan, A. In vitro and in vivo antioxidant activity of aqueous leaves extract of Leonotis (L.) R. Int. J. Pharmacol., 2011, 7(2), 248-256.
[http://dx.doi.org/10.3923/ijp.2011.248.256]
[28]
Prieto, P.; Pineda, M.; Aguilar, M. Spectrophotometric quantitation of antioxidant capacity through the formation of a phosphomolybdenum complex: specific application to the determination of vitamin E. Anal. Biochem., 1999, 269(2), 337-341.
[http://dx.doi.org/10.1006/abio.1999.4019] [PMID: 10222007]
[29]
Burits, M.; Bucar, F. Antioxidant activity of Nigella sativa essential oil. Phytother. Res., 2000, 5(14), 323-328.
[http://dx.doi.org/10.1002/1099-1573]
[30]
Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic. Biol. Med., 1999, 26(9-10), 1231-1237.
[http://dx.doi.org/10.1016/S0891-5849(98)00315-3] [PMID: 10381194]
[31]
Oyaizu, M. Studies on products of browning reaction: antioxidative activities of products of browning reaction prepared from glucosamine. Jpn. J. Nutr., 1986, 44(6), 307-315.
[http://dx.doi.org/10.5264/eiyogakuzashi.44.307]
[32]
Daoud, A.; Malika, D.; Bakari, S.; Hfaiedh, N.; Mnafgui, K.; Kadri, A. Assessment of polyphenol composition, antioxidant and antimicrobial properties of various extracts of date palm pollen (DPP) from two Tunisian cultivars. Arab. J. Chem., 2019, 12(8), 3075-3086.
[http://dx.doi.org/10.1016/j.arabjc.2015.07.014]
[33]
Min, B.R.; Pinchak, W.E.; Merkel, R.; Walker, S.; Tomita, G.; Anderson, R.C. Comparative antimicrobial activity of tannins extracts from perennial plants on mastitis pathogens. Sci. Res. Essays, 2008, 3(2), 66-73.
[34]
Rodriguez- Vaquero, M.J.; Alberto, M.R.; Manca, De amp.; Nadra, M.C. Antibacterial effect of phenolic compounds from different wines. Food Control, 2007, 18(2), 93-101.
[http://dx.doi.org/10.1016/j.foodcont.2005.08.010]
[35]
Salama, H.M.H.; Marraiki, N. Antimicrobial activity and phytochemical analyses of Polygonum aviculare L. (Polygonaceae), naturally growing in Egypt. Saudi J. Biol. Sci., 2010, 17(1), 57-63.
[http://dx.doi.org/10.1016/j.sjbs.2009.12.009] [PMID: 23961059]
[36]
Bellik, Y.; Iguer-Ouada, M. Concurrent measurement of cellular turbidity and hemoglobin to evaluate the antioxidant activity of plants. Food Chem., 2016, 190, 468-473.
[http://dx.doi.org/10.1016/j.foodchem.2015.05.126] [PMID: 26212998]
[37]
Do, Q.D.; Angkawijaya, A.E.; Tran-Nguyen, P.L.; Huynh, L.H.; Soetaredjo, F.E.; Ismadji, S.; Ju, Y.H. Effect of extraction solvent on total phenol content, total flavonoid content, and antioxidant activity of Limnophila aromatica. J. Food Drug Anal., 2014, 22(3), 296-302.
[http://dx.doi.org/10.1016/j.jfda.2013.11.001] [PMID: 28911418]
[38]
Truong, D-H.; Nguyen, D.H.; Ta, N.T.A.; Bui, A.V.; Do, T.H.; Nguyen, H.C. Ta, N.T.A.; Bui, A.V.; Do, T.H.; Nguyen, H.C. Evaluation of the use of different solvents for phytochemical constituents, antioxidants, and in vitro anti-inflammatory activities of Severinia buxifolia. J. Food Qual., 2019, 2019, 1-9.
[http://dx.doi.org/10.1155/2019/8178294]
[39]
Pandey, K.B.; Rizvi, S.I. Protective effect of resveratrol on markers of oxidative stress in human erythrocytes subjected to in vitro oxidative insult. Phytother. Res., 2010, 24(S1)(Suppl. 1), S11-S14.
[http://dx.doi.org/10.1002/ptr.2853] [PMID: 19441064]
[40]
Sultana, B.; Anwar, F.; Ashraf, M. Effect of extraction solvent/technique on the antioxidant activity of selected medicinal plant extracts. Molecules, 2009, 14(6), 2167-2180.
[http://dx.doi.org/10.3390/molecules14062167] [PMID: 19553890]
[41]
Ojha, S.; Raj, A.; Roy, S.; Roy, S. Extraction of total phenolics, flavonoid and tannins from Paeteriafoetida L. leaves and their relation with antioxidant activity. Pharmacogn. J., 2018, 10(3), 970-977.
[http://dx.doi.org/10.5530/pj.2018.3.88]
[42]
Sristisri, U. Screening of phytochemicals, nutritional status, antioxidant and antimicrobial activity of Paederiafoetida Linn. J. Pharm. Res., 2013, 7(1), 139-141.
[http://dx.doi.org/10.1016/j.jopr.2013.01.015]
[43]
Addai, Z.R.; Abdullah, A.; Mutalib, S.A. Effect of extraction solvents on the phenolic content and antioxidant properties of two papaya cultivars. J. Med. Plants Res., 2013, 7, 3354-3359.
[http://dx.doi.org/10.5897/JMPR2013.5116]
[44]
Pinelo, M.; Rubilar, M.; Jerez, M.; Sineiro, J.; Nunez, M.J. Effect of solvent, temperature, and solvent-to-solid ratio on the total phenolic content and antiradical activity of extracts from different components of grape pomace. J. Agric. Food Chem., 2005, 53, 2111-2117.
[http://dx.doi.org/10.1021/jf0488110]
[45]
Azwanida, N.N. A review on the extraction methods use in medicinal plants, principle, strength and limitation. Med. Aromat. Plants, 2015, 4(196), 2167-0412.
[http://dx.doi.org/10.4172/2167-0412.1000196]
[46]
Metivier, R.P.; Francis, F.J.; Clydesdale, F.M. Solvent extraction of anthocyanins from wine Pomace. J. Food Sci., 1980, 45(4), 1099-1100.
[http://dx.doi.org/10.1111/j.1365-2621.1980.tb07534.x]
[47]
Mahmoudi, S.; Khali, M.; Mahmoudi, N. Etudes de l’extraction des composés phénoliques de différentes parties de la fleur d’artichaut (Cyanarascolymus L). Nat. Tech, 2013, 09, 35-40.
[48]
Subhashree, S.; Gurudutta, P. Antioxidant and HPLC analysis of an Indian medicinal herb: Paederia foetida L. (Prasarini). Int. J. Life Sci., 2019, 7(2), 249-255.
[49]
Chavan, U.D.; Amarowicz, R. Effect of various solvent systems on extraction of phenolics, tannins and sugars from beach pea (Lathyrusmaritimus L.). Int. Food Res. J., 2013, 20(3), 1139-1144.
[50]
Ozyürek, M.; Güngör, N.; Baki, S.; Güçlü, K.; Apak, R. Development of a silver nanoparticle-based method for the antioxidant capacity measurement of polyphenols. Anal. Chem., 2012, 84(18), 8052-8059.
[http://dx.doi.org/10.1021/ac301925b] [PMID: 22897622]
[51]
Cali I.; Tasdemir, D.; Ireland, C.M.; Sticher, O. Lucidin type anthraquinone glycosides from Putoria calabrica. Chem. Pharm. Bull. (Tokyo), 2002, 50(5), 701-702.
[http://dx.doi.org/10.1248/cpb.50.701] [PMID: 12036036]
[52]
Li, H.B.; Wong, C.C.; Cheng, K.W.; Chen, F. Antioxidant properties in vitro and total phenolic contents in methanol extracts from medicinal plants,” LWT. Food. Lebensm. Wiss. Technol., 2008, 41(3), 385-390.
[http://dx.doi.org/10.1016/j.lwt.2007.03.011]
[53]
Vinson, J.A.; Hao, Y.; Zubic, S.K. Phenol antioxidant quantity and quality in foods: vegetables. J. Agric. Food Chem., 1998, 46(9), 3630-3634.
[http://dx.doi.org/10.1021/jf980295o]
[54]
Mohamed, A.A.; Ali, S.I.; El-Baz, F.K. Antioxidant and antibacterial activities of crude extracts and essential oils of Syzygium cumini leaves. PLoS One, 2013, 8(4)e60269
[http://dx.doi.org/10.1371/journal.pone.0060269] [PMID: 23593183]
[55]
Marmonier, A.A. Introduction aux techniques d’étude des antibiotiques; Bactériologie Médicale, Techniques Usuelles, 1990, pp. 227-236.
[56]
Davidson, P.M.; Branen, A.L. Food antimicrobials – an introduction (2005). In: Antimicrobial in Food; Davidson, P.M.; Sofos, J. N.; Branen, A.L., Eds.; CRC Press, Taylor and Francis Group: Boca Ratón, Fl, EstadosUnidos , 2005; pp. 1-9.
[http://dx.doi.org/10.1201/9781420028737]
[57]
Araki, K.; Rifkind, J.M. The rate of osmotic hemolysis: a relationship with membrane bilayer fluidity. Biochim. Biophys. Acta, 1981, 645(1), 81-90.
[http://dx.doi.org/10.1016/0005-2736(81)90514-9] [PMID: 6266477]
[58]
Tsuchiya, M.; Asada, A.; Kasahara, E.; Sato, E.F.; Shindo, M.; Inoue, M. Antioxidant protection of propofol and its recycling in erythrocyte membranes. Am. J. Respir. Crit. Care Med., 2002, 165(1), 54-60.
[http://dx.doi.org/10.1164/ajrccm.165.1.2010134] [PMID: 11779730]
[59]
Suzuki, Y.J.; Tsuchiya, M.; Wassall, S.R.; Choo, Y.M.; Govil, G.; Kagan, V.E.; Packer, L. Structural and dynamic membrane properties of alpha-tocopherol and alpha-tocotrienol: implication to the molecular mechanism of their antioxidant potency. Biochemistry, 1993, 32(40), 10692-10699.
[http://dx.doi.org/10.1021/bi00091a020] [PMID: 8399214]
[60]
Podmore, I.D.; Griffiths, H.R.; Herbert, K.E.; Mistry, N.; Mistry, P.; Lunec, J. Vitamin C exhibits pro-oxidant properties. Nature, 1998, 392(6676), 559.
[http://dx.doi.org/10.1038/33308] [PMID: 9560150]
[61]
Bellik, Y.; Iguer-Ouada, M. A useful method based on cell-free hemoglobin analysis for evaluating antioxidant activity. Anal. Methods, 2015, 7(12), 4934-4938.
[http://dx.doi.org/10.1039/C5AY00417A]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy