Generic placeholder image

Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1573-4064
ISSN (Online): 1875-6638

Review Article

Study of Structurally Diverse Currently Used and Recently Developed Antimycobacterial Drugs

Author(s): Mazen Mohammed Almehmadi, Osama Abdulaziz, Mustafa Halawi and Mohammad Asif*

Volume 19, Issue 7, 2023

Published on: 07 February, 2023

Page: [619 - 652] Pages: 34

DOI: 10.2174/1573406419666230111111153

Price: $65

Abstract

Despite major antimicrobial therapeutic advancements, widespread use and misuse of antimicrobial drugs have increased antimicrobial drug resistance, posing a severe danger to public health. In particular, the emergence of multidrug-resistant bacteria has provided considerable difficulty in the treatment of pathogenic infections. As a result, the creation of novel drugs to treat resistant bacteria is one of the most significant disciplines of antimicrobial research today. TB therapy has recently gained a lot of attention, in addition to developing novel and efficient antibacterial drugs to battle multidrug-resistant illnesses. The use of a different class of drugs, such as well-known drugs, their derivatives, and various new heterocyclic compounds like nitroimidazoles, imidazole analogues, triazoles, imidazopyridines, quinolines, purines, as well as thioactomycin, mefloquine, deazapteridines, benzothiadiazine and other molecules such as benzoxazines, diterpenoids, tryptanthin and phenazine and toluidine analogues followed by many other classes of compounds and their effects are also discussed. As a result, current and newly found antitubercular drugs and their toxicities and mode of action have been focused.

Keywords: Tuberculosis, multidrug-resistant, Mycobacterium tuberculosis, structurally diverse, recently developed drugs, antimicrobial.

Next »
Graphical Abstract
[1]
Natarajan, A.; Beena, P.M.; Devnikar, A.V.; Mali, S. A systemic review on tuberculosis. Indian J. Tuberc., 2020, 67(3), 295-311.
[http://dx.doi.org/10.1016/j.ijtb.2020.02.005] [PMID: 32825856]
[2]
Asif, M. Study of clinically used and recently developed antimycobacterial agents. Orient. Pharm. Exp. Med., 2012, 12(1), 15-34.
[http://dx.doi.org/10.1007/s13596-011-0020-8]
[3]
Asif, M. Study of currently used antimycobacterials, their analogoues and recently developed agents. IDrugs, 2012, 49(7), 5-19.
[4]
Asif, M. A review of antimycobacterial drugs in development. Mini Rev. Med. Chem., 2012, 12(13), 1404-1418.
[PMID: 22625412]
[5]
Okada, M.; Kobayashi, K. Recent progress in mycobacteriology. Kekkaku, 2007, 82(10), 783-799.
[PMID: 18018602]
[6]
Surendra, S.B.; Arya, A.; Sudhir, K.S.; Vinita, C.; Rama, P.T. Synthesis and antitubercular activity of 5-benzyl-3-phenyl dihydroisoxazole. Inter. J. Drug Design & Discov., 2010, 1(1), 11-18.
[7]
Omar, A.; Ahmed, M.A. Synthesis of Some New 3H-quinazolin-4-One Derivatives as Potential Antitubercular Agents. World Appl. Sci. J., 2008, 5(1), 94-99.
[8]
El Sayed, K.A.; Bartyzel, P.; Shen, X.; Perry, T.L.; Zjawiony, J.K.; Hamann, M.T. Marine natural products as antituberculosis agents. Tetrahedron, 2000, 56(7), 949-953.
[http://dx.doi.org/10.1016/S0040-4020(99)01093-5]
[9]
World Health Organization (WHO) Global Tuberculosis control epidemiology, strategy, financing. Geneva, Switzerland, 2009.
[10]
Health and Social Services. Basic facts about Tuberculosis: TB Control: ‒Yukon Communicable Disease Control, 2014.
[11]
Kompala, T.; Shenoi, S.V.; Friedland, G. Transmission of tuberculosis in resource-limited settings. Curr. HIV/AIDS Rep., 2013, 10(3), 264-272.
[http://dx.doi.org/10.1007/s11904-013-0164-x] [PMID: 23824469]
[12]
Sulis, G.; Roggi, A.; Matteelli, A.; Raviglione, M.C. Tuberculosis: epidemiology and control. Mediterr. J. Hematol. Infect. Dis., 2014, 6(1), e2014070.
[http://dx.doi.org/10.4084/mjhid.2014.070] [PMID: 25408856]
[13]
World Health Organization (WHO). Global tuberculosis report; Geneva, Switzerland, 2015.
[14]
Vynnycky, E.; Sumner, T.; Fielding, K.L.; Lewis, J.J.; Cox, A.P.; Hayes, R.J.; Corbett, E.L.; Churchyard, G.J.; Grant, A.D.; White, R.G. Tuberculosis control in South African gold mines: mathematical modeling of a trial of community-wide isoniazid preventive therapy. Am. J. Epidemiol., 2015, 181(8), 619-632.
[http://dx.doi.org/10.1093/aje/kwu320] [PMID: 25792607]
[15]
Acosta, C.D.; Dadu, A.; Ramsay, A.; Dara, M. Drug-resistant tuberculosis in Eastern Europe: challenges and ways forward. Public Health Action, 2014, 4(2), 3-12.
[http://dx.doi.org/10.5588/pha.14.0087] [PMID: 26393095]
[16]
Zignol, M.; Hosseini, M.S.; Wright, A.; Weezenbeek, C.L.; Nunn, P.; Watt, C.J.; Williams, B.G.; Dye, C. Global incidence of multidrug-resistant tuberculosis. J. Infect. Dis., 2006, 194(4), 479-485.
[http://dx.doi.org/10.1086/505877] [PMID: 16845631]
[17]
World Health Organization (WHO). Totally drug‒resistant tuberculosis: a WHO consultation on the diagnostic definition and treatment options; Geneva, Switzerland, 2012.
[18]
Centers for Disease Control and Prevention (CDC). Emergence of Mycobacterium tuberculosis with extensive resistance to second-line drugs--worldwide, 2000-2004. MMWR Morb. Mortal. Wkly. Rep., 2006, 55(11), 301-305.
[PMID: 16557213]
[19]
Masjedi, M.R.; Farnia, P.; Sorooch, S.; Pooramiri, M.V.; Mansoori, S.D.; Zarifi, A.Z. AkbarVelayati, A.; Hoffner, S. Extensively drug-resistant tuberculosis: 2 years of surveillance in Iran. Clin. Infect. Dis., 2006, 43(7), 841-847.
[http://dx.doi.org/10.1086/507542] [PMID: 16941364]
[20]
Migliori, G.B.; De Iaco, G.; Besozzi, G.; Centis, R.; Cirillo, D.M. First tuberculosis cases in Italy resistant to all tested drugs. Euro Surveill., 2007, 12(5), E070517.1.
[PMID: 17868596]
[21]
Udwadia, Z.F.; Amale, R.A.; Ajbani, K.K.; Rodrigues, C. Totally drug-resistant tuberculosis in India. Clin. Infect. Dis., 2012, 54(4), 579-581.
[http://dx.doi.org/10.1093/cid/cir889] [PMID: 22190562]
[22]
Klopper, M.; Warren, R.M.; Hayes, C.; Gey van Pittius, N.C.; Streicher, E.M.; Müller, B.; Sirgel, F.A.; Chabula-Nxiweni, M.; Hoosain, E.; Coetzee, G.; David van Helden, P.; Victor, T.C.; Trollip, A.P. Emergence and spread of extensively and totally drug-resistant tuberculosis, South Africa. Emerg. Infect. Dis., 2013, 19(3), 449-455.
[http://dx.doi.org/10.3201/eid1903.120246] [PMID: 23622714]
[23]
Velayati, A.A.; Masjedi, M.R.; Farnia, P.; Tabarsi, P.; Ghanavi, J. ZiaZarifi, A.H.; Hoffner, S.E. Emergence of new forms of totally drug-resistant tuberculosis bacilli: super extensively drug-resistant tuberculosis or totally drug-resistant strains in iran. Chest, 2009, 136(2), 420-425.
[http://dx.doi.org/10.1378/chest.08-2427] [PMID: 19349380]
[24]
Kaplan, G.; Post, F.A.; Moreira, A.L.; Wainwright, H.; Kreiswirth, B.N.; Tanverdi, M.; Mathema, B.; Ramaswamy, S.V.; Walther, G.; Steyn, L.M.; Barry, C.E., III; Bekker, L.G. Mycobacterium tuberculosis growth at the cavity surface: a microenvironment with failed immunity. Infect. Immun., 2003, 71(12), 7099-7108.
[http://dx.doi.org/10.1128/IAI.71.12.7099-7108.2003] [PMID: 14638800]
[25]
Connolly, L.E.; Edelstein, P.H.; Ramakrishnan, L. Why is long-term therapy required to cure tuberculosis? PLoS Med., 2007, 4(3), e120.
[http://dx.doi.org/10.1371/journal.pmed.0040120] [PMID: 17388672]
[26]
Hernández-Pando, R.; Jeyanathan, M.; Mengistu, G.; Aguilar, D.; Orozco, H.; Harboe, M.; Rook, G.A.W.; Bjune, G. Persistence of DNA from Mycobacterium tuberculosis in superficially normal lung tissue during latent infection. Lancet, 2000, 356(9248), 2133-2138.
[http://dx.doi.org/10.1016/S0140-6736(00)03493-0] [PMID: 11191539]
[27]
Kamal, A.; Azeeza, S.; Malik, M.S.; Shaik, A.A.; Rao, M.V. Efforts towards the development of new antitubercular agents: potential for thiolactomycin based compounds. J. Pharm. Pharm. Sci., 2008, 11(2), 56.
[http://dx.doi.org/10.18433/J36K5K] [PMID: 19203471]
[28]
Da Silva, A.; De Almeida, M.; De Souza, M.; Couri, M. Biological activity and synthetic metodologies for the preparation of fluoroquinolones, a class of potent antibacterial agents. Curr. Med. Chem., 2003, 10(1), 21-39.
[http://dx.doi.org/10.2174/0929867033368637] [PMID: 12570719]
[29]
Rieder, H.L.; Arnadottir, T.; Trébucq, A.; Enarson, D.A. Tuberculosis treatment: dangerous regimens? Int. J. Tuberc. Lung Dis., 2001, 5(1), 1-3.
[PMID: 11263509]
[30]
Shafii, B.; Amini, M.; Akbarzadeh, T.; Shafiee, A. Synthesis and antitubercular activity of N3,N5-Diaryl-4-(5-arylisoxazol-3-yl)-1,4-dihydropyridine-3,5-dicarboxamide. J. Sci., 2008, 19(4), 323-328.
[31]
Espinal, M.A. The global situation of MDR-TB. Tuberculosis (Edinb.), 2003, 83(1-3), 44-51.
[http://dx.doi.org/10.1016/S1472-9792(02)00058-6] [PMID: 12758188]
[32]
Telenti, A.; Iseman, M. Drug-resistant tuberculosis. Drugs, 2000, 59(2), 171-179.
[http://dx.doi.org/10.2165/00003495-200059020-00002] [PMID: 10730543]
[33]
Kamal, A.; Hari Babu, A.; Venkata Ramana, A.; Sinha, R.; Yadav, J.S.; Arora, S.K. Antitubercular agents. Part 1: Synthesis of phthalimido- and naphthalimido-linked phenazines as new prototype antitubercular agents. Bioorg. Med. Chem. Lett., 2005, 15(7), 1923-1926.
[http://dx.doi.org/10.1016/j.bmcl.2005.01.085] [PMID: 15780634]
[34]
Kamal, A.; Srinivasa Reddy, K.; Kaleem Ahmed, S.; Khan, M.N.A.; Sinha, R.K.; Yadav, J.S.; Arora, S.K. Anti-tubercular agents. Part 3. Benzothiadiazine as a novel scaffold for anti-Mycobacterium activity. Bioorg. Med. Chem., 2006, 14(3), 650-658.
[http://dx.doi.org/10.1016/j.bmc.2005.08.063] [PMID: 16203154]
[35]
Barry, C.E., III; Slayden, R.A.; Sampson, A.E.; Lee, R.E. Use of genomics and combinatorial chemistry in the development of new antimycobacterial drugs. Biochem. Pharmacol., 2000, 59(3), 221-231.
[http://dx.doi.org/10.1016/S0006-2952(99)00253-1] [PMID: 10609550]
[36]
Nagarajan, K.; Mazumder, A.; Ghosh, L.K. Evaluation of anti-tubercular activity directly from Versa TREK mycobottles using Wrightia tomentosa alcoholic extracts. Pharmacologyonline, 2008, 1, 486-496.
[37]
Bardou, F.; Raynaud, C.; Ramos, C.; Lanéelle, M.A.; Lanŕelle, G. Mechanism of isoniazid uptake in Mycobacterium tuberculosis. Microbiology (Reading), 1998, 144(9), 2539-2544.
[http://dx.doi.org/10.1099/00221287-144-9-2539] [PMID: 9782502]
[38]
Zhang, Y.; Heym, B.; Allen, B.; Young, D.; Cole, S. The catalase—peroxidase gene and isoniazid resistance of Mycobacterium tuberculosis. Nature, 1992, 358(6387), 591-593.
[http://dx.doi.org/10.1038/358591a0] [PMID: 1501713]
[39]
Suarez, J.; Ranguelova, K.; Jarzecki, A.A.; Manzerova, J.; Krymov, V.; Zhao, X.; Yu, S.; Metlitsky, L.; Gerfen, G.J.; Magliozzo, R.S. An oxyferrous heme/protein-based radical intermediate is catalytically competent in the catalase reaction of Mycobacterium tuberculosis catalase-peroxidase (KatG). J. Biol. Chem., 2009, 284(11), 7017-7029.
[http://dx.doi.org/10.1074/jbc.M808106200] [PMID: 19139099]
[40]
Rawat, R.; Whitty, A.; Tonge, P.J. The isoniazid-NAD adduct is a slow, tight-binding inhibitor of InhA, the Mycobacterium tuberculosis enoyl reductase: Adduct affinity and drug resistance. Proc. Natl. Acad. Sci. USA, 2003, 100(24), 13881-13886.
[http://dx.doi.org/10.1073/pnas.2235848100] [PMID: 14623976]
[41]
Timmins, G.S.; Master, S.; Rusnak, F.; Deretic, V. Nitric oxide generated from isoniazid activation by KatG: source of nitric oxide and activity against Mycobacterium tuberculosis. Antimicrob. Agents Chemother., 2004, 48(8), 3006-3009.
[http://dx.doi.org/10.1128/AAC.48.8.3006-3009.2004] [PMID: 15273113]
[42]
Palomino, J.; Martin, A. Drug Resistance Mechanisms in Mycobacterium tuberculosis. Antibiotics (Basel), 2014, 3(3), 317-340.
[http://dx.doi.org/10.3390/antibiotics3030317] [PMID: 27025748]
[43]
Blanchard, J.S. Molecular mechanisms of drug resistance in Mycobacterium tuberculosis. Annu. Rev. Biochem., 1996, 65(1), 215-239.
[http://dx.doi.org/10.1146/annurev.bi.65.070196.001243] [PMID: 8811179]
[44]
Wade, M.M.; Zhang, Y. Mechanisms of drug resistance in mycobacterium tuberculosis. Front. Biosci., 2004, 9(1-3), 975-994.
[http://dx.doi.org/10.2741/1289] [PMID: 14766424]
[45]
Palomino, J.; Martin, A. Tuberculosis clinical trial update and the current anti-tuberculosis drug portfolio. Curr. Med. Chem., 2013, 20(30), 3785-3796.
[http://dx.doi.org/10.2174/09298673113209990166] [PMID: 23862617]
[46]
Piccaro, G.; Pietraforte, D.; Giannoni, F.; Mustazzolu, A.; Fattorini, L. Rifampin induces hydroxyl radical formation in Mycobacterium tuberculosis. Antimicrob. Agents Chemother., 2014, 58(12), 7527-7533.
[http://dx.doi.org/10.1128/AAC.03169-14] [PMID: 25288092]
[47]
Mikušová, K.; Huang, H.; Yagi, T.; Holsters, M.; Vereecke, D.; D’Haeze, W.; Scherman, M.S.; Brennan, P.J.; McNeil, M.R.; Crick, D.C. Decaprenylphosphoryl arabinofuranose, the donor of the D-arabinofuranosyl residues of mycobacterial arabinan, is formed via a two-step epimerization of decaprenylphosphoryl ribose. J. Bacteriol., 2005, 187(23), 8020-8025.
[http://dx.doi.org/10.1128/JB.187.23.8020-8025.2005] [PMID: 16291675]
[48]
Wang, F.; Jain, P.; Gulten, G.; Liu, Z.; Feng, Y.; Ganesula, K.; Motiwala, A.S.; Ioerger, T.R.; Alland, D.; Vilchèze, C.; Jacobs, W.R., Jr; Sacchettini, J.C. Mycobacterium tuberculosis dihydrofolate reductase is not a target relevant to the antitubercular activity of isoniazid. Antimicrob. Agents Chemother., 2010, 54(9), 3776-3782.
[http://dx.doi.org/10.1128/AAC.00453-10] [PMID: 20566771]
[49]
Zhang, Y.; Yew, W.W. Mechanisms of drug resistance in Mycobacterium tuberculosis. Int. J. Tuberc. Lung Dis., 2009, 13(11), 1320-1330.
[PMID: 19861002]
[50]
Mikusová, K.; Slayden, R.A.; Besra, G.S.; Brennan, P.J. Biogenesis of the mycobacterial cell wall and the site of action of ethambutol. Antimicrob. Agents Chemother., 1995, 39(11), 2484-2489.
[http://dx.doi.org/10.1128/AAC.39.11.2484] [PMID: 8585730]
[51]
Scorpio, A.; Zhang, Y. Mutations in pncA, a gene encoding pyrazinamidase/nicotinamidase, cause resistance to the antituberculous drug pyrazinamide in tubercle bacillus. Nat. Med., 1996, 2(6), 662-667.
[http://dx.doi.org/10.1038/nm0696-662] [PMID: 8640557]
[52]
Zhang, Y.; Wade, M.M.; Scorpio, A.; Zhang, H.; Sun, Z. Mode of action of pyrazinamide: disruption of Mycobacterium tuberculosis membrane transport and energetics by pyrazinoic acid. J. Antimicrob. Chemother., 2003, 52(5), 790-795.
[http://dx.doi.org/10.1093/jac/dkg446] [PMID: 14563891]
[53]
Shi, D.; Li, L.; Zhao, Y.; Jia, Q.; Li, H.; Coulter, C.; Jin, Q.; Zhu, G. Characteristics of embB mutations in multidrug-resistant Mycobacterium tuberculosis isolates in Henan, China. J. Antimicrob. Chemother., 2011, 66(10), 2240-2247.
[http://dx.doi.org/10.1093/jac/dkr284] [PMID: 21778195]
[54]
Shi, W.; Chen, J.; Feng, J.; Cui, P.; Zhang, S.; Weng, X.; Zhang, W.; Zhang, Y. Aspartate decarboxylase (PanD) as a new target of pyrazinamide in Mycobacterium tuberculosis. Emerg. Microbes Infect., 2014, 3(8), e58.
[PMID: 26038753]
[55]
Zhang, S.; Chen, J.; Shi, W.; Cui, P.; Zhang, J.; Cho, S.; Zhang, W.; Zhang, Y. Mutation in clpC1 encoding an ATP-dependent ATPase involved in protein degradation is associated with pyrazinamide resistance in Mycobacterium tuberculosis. Emerg. Microbes Infect., 2017, 6(1), 1-2.
[http://dx.doi.org/10.1038/emi.2017.1] [PMID: 28196969]
[56]
Heifets, L.; Desmond, E. Clinical Mycobacteriology Laboratory. In: Tuberculosis and the tubercle bacillus; Cole, S.; Eisenach, K.; McMurray, D.; Jacobs, W., Jr, Eds.; ASM Press: Washington, DC, USA, 2005; pp. 9949-9970.
[57]
Sharma, D.; Lata, M.; Faheem, M.; Khan, A.; Joshi, B.; Venkatesan, K.; Shukla, S.; Bisht, D. Cloning, expression and correlation of Rv0148 to amikacin & kanamycin resistance. Curr. Proteomics, 2015, 12(2), 96-100.
[http://dx.doi.org/10.2174/157016461202150903113053]
[58]
Chakraborty, S.; Gruber, T.; Barry, C.E., III; Boshoff, H.I.; Rhee, K.Y. Para-aminosalicylic acid acts as an alternative substrate of folate metabolism in Mycobacterium tuberculosis. Science, 2013, 339(6115), 88-91.
[http://dx.doi.org/10.1126/science.1228980] [PMID: 23118010]
[59]
Zheng, J.; Rubin, E.J.; Bifani, P.; Mathys, V.; Lim, V.; Au, M.; Jang, J.; Nam, J.; Dick, T.; Walker, J.R.; Pethe, K.; Camacho, L.R. para-Aminosalicylic acid is a prodrug targeting dihydrofolate reductase in Mycobacterium tuberculosis. J. Biol. Chem., 2013, 288(32), 23447-23456.
[http://dx.doi.org/10.1074/jbc.M113.475798] [PMID: 23779105]
[60]
Carette, X.; Blondiaux, N.; Willery, E.; Hoos, S.; Lecat-Guillet, N.; Lens, Z.; Wohlkönig, A.; Wintjens, R.; Soror, S.H.; Frénois, F.; Dirié, B.; Villeret, V.; England, P.; Lippens, G.; Deprez, B.; Locht, C.; Willand, N.; Baulard, A.R. Structural activation of the transcriptional repressor EthR from Mycobacterium tuberculosis by single amino acid change mimicking natural and synthetic ligands. Nucleic Acids Res., 2012, 40(7), 3018-3030.
[http://dx.doi.org/10.1093/nar/gkr1113] [PMID: 22156370]
[61]
Quémard, A.; Lanéelle, G.; Lacave, C. Mycolic acid synthesis: a target for ethionamide in mycobacteria? Antimicrob. Agents Chemother., 1992, 36(6), 1316-1321.
[http://dx.doi.org/10.1128/AAC.36.6.1316] [PMID: 1416831]
[62]
Vannelli, T.A.; Dykman, A.; Ortiz de Montellano, P.R. The antituberculosis drug ethionamide is activated by a flavoprotein monooxygenase. J. Biol. Chem., 2002, 277(15), 12824-12829.
[http://dx.doi.org/10.1074/jbc.M110751200] [PMID: 11823459]
[63]
Grant, S.S.; Wellington, S.; Kawate, T.; Desjardins, C.A.; Silvis, M.R.; Wivagg, C.; Thompson, M.; Gordon, K.; Kazyanskaya, E.; Nietupski, R.; Haseley, N.; Iwase, N.; Earl, A.M.; Fitzgerald, M.; Hung, D.T. Baeyer-villiger monooxygenases EthA and MymA are required for activation of replicating and non-replicating mycobacterium tuberculosis inhibitors. Cell Chem. Biol., 2016, 23(6), 666-677.
[http://dx.doi.org/10.1016/j.chembiol.2016.05.011] [PMID: 27321573]
[64]
Mori, G.; Chiarelli, L.R.; Riccardi, G.; Pasca, M.R. New prodrugs against tuberculosis. Drug Discov. Today, 2017, 22(3), 519-525.
[http://dx.doi.org/10.1016/j.drudis.2016.09.006] [PMID: 27649942]
[65]
Zhang, Y. The magic bullets and tuberculosis drug targets. Annu. Rev. Pharmacol. Toxicol., 2005, 45(1), 529-564.
[http://dx.doi.org/10.1146/annurev.pharmtox.45.120403.100120] [PMID: 15822188]
[66]
Prosser, G.A.; de Carvalho, L.P.S. Reinterpreting the mechanism of inhibition of Mycobacterium tuberculosis D-alanine:D-alanine ligase by D-cycloserine. Biochemistry, 2013, 52(40), 7145-7149.
[http://dx.doi.org/10.1021/bi400839f] [PMID: 24033232]
[67]
Zhang, Y.; Yew, W-W. Mechanisms of drug resistance in Mycobacterium tuberculosis: update 2015. Int. J. Tuberc. Lung Dis., 2015, 19(11), 1276-1289.
[http://dx.doi.org/10.5588/ijtld.15.0389] [PMID: 26467578]
[68]
Pallo-Zimmerman, L.M.; Byron, J.K.; Graves, T.K. Fluoroquinolones: then and now. Compend. Contin. Educ. Vet., 2010, 32(7), E1-E9.
[PMID: 20957609]
[69]
Drlica, K.; Xu, C.; Wang, J.Y.; Burger, R.M.; Malik, M. Fluoroquinolone action in mycobacteria: similarity with effects in Escherichia coli and detection by cell lysate viscosity. Antimicrob. Agents Chemother., 1996, 40(7), 1594-1599.
[http://dx.doi.org/10.1128/AAC.40.7.1594] [PMID: 8807046]
[70]
Aubry, A.; Pan, X.S.; Fisher, L.M.; Jarlier, V.; Cambau, E. Mycobacterium tuberculosis DNA gyrase: interaction with quinolones and correlation with antimycobacterial drug activity. Antimicrob. Agents Chemother., 2004, 48(4), 1281-1288.
[http://dx.doi.org/10.1128/AAC.48.4.1281-1288.2004] [PMID: 15047530]
[71]
Alangaden, G.J.; Kreiswirth, B.N.; Aouad, A.; Khetarpal, M.; Igno, F.R.; Moghazeh, S.L.; Manavathu, E.K.; Lerner, S.A. Mechanism of resistance to amikacin and kanamycin in Mycobacterium tuberculosis. Antimicrob. Agents Chemother., 1998, 42(5), 1295-1297.
[http://dx.doi.org/10.1128/AAC.42.5.1295] [PMID: 9593173]
[72]
Suzuki, Y.; Katsukawa, C.; Tamaru, A.; Abe, C.; Makino, M.; Mizuguchi, Y.; Taniguchi, H. Detection of kanamycin-resistant Mycobacterium tuberculosis by identifying mutations in the 16S rRNA gene. J. Clin. Microbiol., 1998, 36(5), 1220-1225.
[http://dx.doi.org/10.1128/JCM.36.5.1220-1225.1998] [PMID: 9574680]
[73]
Stanley, R.E.; Blaha, G.; Grodzicki, R.L.; Strickler, M.D.; Steitz, T.A. The structures of the anti-tuberculosis antibiotics viomycin and capreomycin bound to the 70S ribosome. Nat. Struct. Mol. Biol., 2010, 17(3), 289-293.
[http://dx.doi.org/10.1038/nsmb.1755] [PMID: 20154709]
[74]
Williams, K.N.; Stover, C.K.; Zhu, T.; Tasneen, R.; Tyagi, S.; Grosset, J.H.; Nuermberger, E. Promising antituberculosis activity of the oxazolidinone PNU-100480 relative to that of linezolid in a murine model. Antimicrob. Agents Chemother., 2009, 53(4), 1314-1319.
[http://dx.doi.org/10.1128/AAC.01182-08] [PMID: 19075058]
[75]
Bartlett, J.G.; Dowell, S.F.; Mandell, L.A.; File, T.M., Jr; Musher, D.M.; Fine, M.J. Practice guidelines for the management of community-acquired pneumonia in adults. Clin. Infect. Dis., 2000, 31(2), 347-382.
[http://dx.doi.org/10.1086/313954] [PMID: 10987697]
[76]
Neu, H. Clinical use of the quinolones. Lancet, 1987, 330(8571), 1319-1322.
[http://dx.doi.org/10.1016/S0140-6736(87)91205-0] [PMID: 2890913]
[77]
Grosset, J.H. Treatment of tuberculosis in HIV infection. Tuber. Lung Dis., 1992, 73(6), 378-383.
[http://dx.doi.org/10.1016/0962-8479(92)90044-K] [PMID: 1337993]
[78]
Tsukamura, M.; Nakamura, E.; Yoshii, S.; Amano, H. Therapeutic effect of a new antibacterial substance ofloxacin (DL8280) on pulmonary tuberculosis. Am. Rev. Respir. Dis., 1985, 131(3), 352-356.
[PMID: 3856412]
[79]
Alangaden, G.J.; Manavathu, E.K.; Vakulenko, S.B.; Zvonok, N.M.; Lerner, S.A. Characterization of fluoroquinolone-resistant mutant strains of Mycobacterium tuberculosis selected in the laboratory and isolated from patients. Antimicrob. Agents Chemother., 1995, 39(8), 1700-1703.
[http://dx.doi.org/10.1128/AAC.39.8.1700] [PMID: 7486904]
[80]
Ginsburg, A.S.; Grosset, J.H.; Bishai, W.R. Fluoroquinolones, tuberculosis, and resistance. Lancet Infect. Dis., 2003, 3(7), 432-442.
[http://dx.doi.org/10.1016/S1473-3099(03)00671-6] [PMID: 12837348]
[81]
Ruiz-Serrano, M.J.; Alcalá, L.; Martínez, L.; Díaz, M.; Marín, M.; González-Abad, M.J.; Bouza, E. In vitro activities of six fluoroquinolones against 250 clinical isolates of Mycobacterium tuberculosis susceptible or resistant to first-line antituberculosis drugs. Antimicrob. Agents Chemother., 2000, 44(9), 2567-2568.
[http://dx.doi.org/10.1128/AAC.44.9.2567-2568.2000] [PMID: 10952620]
[82]
Ginsburg, A.S.; Hooper, N.; Parrish, N.; Dooley, K.E.; Dorman, S.E.; Booth, J.; Diener-West, M.; Merz, W.G.; Bishai, W.R.; Sterling, T.R. Fluoroquinolone resistance in patients with newly diagnosed tuberculosis. Clin. Infect. Dis., 2003, 37(11), 1448-1452.
[http://dx.doi.org/10.1086/379328] [PMID: 14614666]
[83]
Alangaden, G.J.; Lerner, S.A. The clinical use of fluoroquinolones for the treatment of mycobacterial diseases. Clin. Infect. Dis., 1997, 25(5), 1213-1221.
[http://dx.doi.org/10.1086/516116] [PMID: 9402384]
[84]
Rodríguez, J.C.; Ruiz, M.; Climent, A.; Royo, G. In vitro activity of four fluoroquinolones against Mycobacterium tuberculosis. Int. J. Antimicrob. Agents, 2001, 17(3), 229-231.
[http://dx.doi.org/10.1016/S0924-8579(00)00337-X] [PMID: 11282270]
[85]
Sulochana, S.; Rahman, F.; Paramasivan, C.N. In vitro activity of fluoroquinolones against Mycobacterium tuberculosis. J. Chemother., 2005, 17(2), 169-173.
[http://dx.doi.org/10.1179/joc.2005.17.2.169] [PMID: 15920901]
[86]
Yew, W.W.; Kwan, S.Y.L.; Ma, W.K.; Lui, K.S.; Suen, H.C. Ofloxacin therapy of Mycobaeterium fortuitum infection: further experience. J. Antimicrob. Chemother., 1990, 25(5), 880-881.
[http://dx.doi.org/10.1093/jac/25.5.880] [PMID: 2373673]
[87]
Alvirez-Freites, E.J.; Carter, J.L.; Cynamon, M.H. In vitro and in vivo activities of gatifloxacin against Mycobacterium tuberculosis. Antimicrob. Agents Chemother., 2002, 46(4), 1022-1025.
[http://dx.doi.org/10.1128/AAC.46.4.1022-1025.2002] [PMID: 11897584]
[88]
Paramasivan, C.N.; Sulochana, S.; Kubendiran, G.; Venkatesan, P.; Mitchison, D.A. Bactericidal action of gatifloxacin, rifampin, and isoniazid on logarithmic- and stationary-phase cultures of Mycobacterium tuberculosis. Antimicrob. Agents Chemother., 2005, 49(2), 627-631.
[http://dx.doi.org/10.1128/AAC.49.2.627-631.2005] [PMID: 15673743]
[89]
Hu, Y.; Coates, A.R.M.; Mitchison, D.A. Sterilizing activities of fluoroquinolones against rifampin-tolerant populations of Mycobacterium tuberculosis. Antimicrob. Agents Chemother., 2003, 47(2), 653-657.
[http://dx.doi.org/10.1128/AAC.47.2.653-657.2003] [PMID: 12543673]
[90]
Lenaerts, A.J.; Gruppo, V.; Marietta, K.S.; Johnson, C.M.; Driscoll, D.K.; Tompkins, N.M.; Rose, J.D.; Reynolds, R.C.; Orme, I.M. Preclinical testing of the nitroimidazopyran PA-824 for activity against Mycobacterium tuberculosis in a series of in vitro and in vivo models. Antimicrob. Agents Chemother., 2005, 49(6), 2294-2301.
[http://dx.doi.org/10.1128/AAC.49.6.2294-2301.2005] [PMID: 15917524]
[91]
Cynamon, M.H.; Sklaney, M. Gatifloxacin and ethionamide as the foundation for therapy of tuberculosis. Antimicrob. Agents Chemother., 2003, 47(8), 2442-2444.
[http://dx.doi.org/10.1128/AAC.47.8.2442-2444.2003] [PMID: 12878502]
[92]
Miyazaki, E.; Miyazaki, M.; Chen, J.M.; Chaisson, R.E.; Bishai, W.R. Moxifloxacin (BAY12-8039), a new 8-methoxyquinolone, is active in a mouse model of tuberculosis. Antimicrob. Agents Chemother., 1999, 43(1), 85-89.
[http://dx.doi.org/10.1128/AAC.43.1.85] [PMID: 9869570]
[93]
Nuermberger, E.L.; Yoshimatsu, T.; Tyagi, S.; O’Brien, R.J.; Vernon, A.N.; Chaisson, R.E.; Bishai, W.R.; Grosset, J.H. Moxifloxacin-containing regimen greatly reduces time to culture conversion in murine tuberculosis. Am. J. Respir. Crit. Care Med., 2004, 169(3), 421-426.
[http://dx.doi.org/10.1164/rccm.200310-1380OC] [PMID: 14578218]
[94]
Nuermberger, E.L.; Yoshimatsu, T.; Tyagi, S.; Williams, K.; Rosenthal, I.; O’Brien, R.J.; Vernon, A.A.; Chaisson, R.E.; Bishai, W.R.; Grosset, J.H. Moxifloxacin-containing regimens of reduced duration produce a stable cure in murine tuberculosis. Am. J. Respir. Crit. Care Med., 2004, 170(10), 1131-1134.
[http://dx.doi.org/10.1164/rccm.200407-885OC] [PMID: 15306535]
[95]
Grosset, J.; Truffot-Pernot, C.; Lacroix, C.; Ji, B. Antagonism between isoniazid and the combination pyrazinamide-rifampin against tuberculosis infection in mice. Antimicrob. Agents Chemother., 1992, 36(3), 548-551.
[http://dx.doi.org/10.1128/AAC.36.3.548] [PMID: 1622164]
[96]
Ginsburg, A.S.; Sun, R.; Calamita, H.; Scott, C.P.; Bishai, W.R.; Grosset, J.H. Emergence of fluoroquinolone resistance in Mycobacterium tuberculosis during continuously dosed moxifloxacin monotherapy in a mouse model. Antimicrob. Agents Chemother., 2005, 49(9), 3977-3979.
[http://dx.doi.org/10.1128/AAC.49.9.3977-3979.2005] [PMID: 16127087]
[97]
Burman, W.J.; Goldberg, S.; Johnson, J.L.; Muzanye, G.; Engle, M.; Mosher, A.W.; Choudhri, S.; Daley, C.L.; Munsiff, S.S.; Zhao, Z.; Vernon, A.; Chaisson, R.E. Moxifloxacin versus ethambutol in the first 2 months of treatment for pulmonary tuberculosis. Am. J. Respir. Crit. Care Med., 2006, 174(3), 331-338.
[http://dx.doi.org/10.1164/rccm.200603-360OC] [PMID: 16675781]
[98]
Oleksijew, A.; Meulbroek, J.; Ewing, P.; Jarvis, K.; Mitten, M.; Paige, L.; Tovcimak, A.; Nukkula, M.; Chu, D.; Alder, J.D. In vivo efficacy of ABT-255 against drug-sensitive and -resistant Mycobacterium tuberculosis strains. Antimicrob. Agents Chemother., 1998, 42(10), 2674-2677.
[http://dx.doi.org/10.1128/AAC.42.10.2674] [PMID: 9756775]
[99]
Flamm, R.K.; Vojtko, C.; Chu, D.T.; Li, Q.; Beyer, J.; Hensey, D.; Ramer, N.; Clement, J.J.; Tanaka, S.K. In vitro evaluation of ABT-719, a novel DNA gyrase inhibitor. Antimicrob. Agents Chemother., 1995, 39(4), 964-970.
[http://dx.doi.org/10.1128/AAC.39.4.964] [PMID: 7786004]
[100]
Hirata, T.; Saito, H.; Tomioka, H.; Sato, K.; Jidoi, J.; Hosoe, K.; Hidaka, T. In vitro and in vivo activities of the benzoxazinorifamycin KRM-1648 against Mycobacterium tuberculosis. Antimicrob. Agents Chemother., 1995, 39(10), 2295-2303.
[http://dx.doi.org/10.1128/AAC.39.10.2295] [PMID: 8619585]
[101]
Shoen, C.M.; DeStefano, M.S.; Cynamon, M.H. Durable cure for tuberculosis: rifalazil in combination with isoniazid in a murine model of Mycobacterium tuberculosis infection. Clin. Infect. Dis., 2000, 30(3)(Suppl. 3), S288-S290.
[http://dx.doi.org/10.1086/313876] [PMID: 10875802]
[102]
Moghazeh, S.L.; Pan, X.; Arain, T.; Stover, C.K.; Musser, J.M.; Kreiswirth, B.N. Comparative antimycobacterial activities of rifampin, rifapentine, and KRM-1648 against a collection of rifampin-resistant Mycobacterium tuberculosis isolates with known rpoB mutations. Antimicrob. Agents Chemother., 1996, 40(11), 2655-2657.
[http://dx.doi.org/10.1128/AAC.40.11.2655] [PMID: 8913484]
[103]
Andries, K.; Verhasselt, P.; Guillemont, J.; Göhlmann, H.W.H.; Neefs, J-M.; Winkler, H.; Van Gestel, J.; Timmerman, P.; Zhu, M.; Lee, E.; Williams, P.; de Chaffoy, D.; Huitric, E.; Hoffner, S.; Cambau, E.; Truffot-Pernot, C.; Lounis, N.; Jarlier, V. A diarylquinoline drug active on the ATP synthase of Mycobacterium tuberculosis. Science, 2005, 307(5707), 223-227.
[http://dx.doi.org/10.1126/science.1106753]
[104]
Koul, A.; Dendouga, N.; Vergauwen, K.; Molenberghs, B.; Vranckx, L.; Willebrords, R.; Ristic, Z.; Lill, H.; Dorange, I.; Guillemont, J.; Bald, D.; Andries, K. Diarylquinolines target subunit c of mycobacterial ATP synthase. Nat. Chem. Biol., 2007, 3(6), 323-324.
[http://dx.doi.org/10.1038/nchembio884] [PMID: 17496888]
[105]
Matsumoto, M.; Hashizume, H.; Tomishige, T.; Kawasaki, M.; Tsubouchi, H.; Sasaki, H.; Shimokawa, Y.; Komatsu, M. OPC-67683, a nitro-dihydro-imidazooxazole derivative with promising action against tuberculosis in vitro and in mice. PLoS Med., 2006, 3(11), e466.
[http://dx.doi.org/10.1371/journal.pmed.0030466] [PMID: 17132069]
[106]
Gurumurthy, M.; Tathagate, M.; Cynthia, D.S.; Singh, R.; Niyomrattanakit, P.; Tay, J.A.; Nayyar, A.; Lee, Y.S.; Cherian, J.; Boshoff, H.I.; Dick, T.; Barry, C.E., III; Manjunatha, U.H. Substrate specificity of the deazaflavin-dependent nitroreductase from tuberculosis Mycobacterium responsible for the bioreductive activation of bicyclic nitroimidazoles. FEBS J., 2012, 279, 113-125.
[http://dx.doi.org/10.1111/j.1742-4658.2011.08404.x] [PMID: 22023140]
[107]
Stover, C.K.; Warrener, P.; VanDevanter, D.R.; Sherman, D.R.; Arain, T.M.; Langhorne, M.H.; Anderson, S.W.; Towell, J.A.; Yuan, Y.; McMurray, D.N.; Kreiswirth, B.N.; Barry, C.E.; Baker, W.R. A small-molecule nitroimidazopyran drug candidate for the treatment of tuberculosis. Nature, 2000, 405(6789), 962-966.
[http://dx.doi.org/10.1038/35016103] [PMID: 10879539]
[108]
Manjunatha, U.H.; Boshoff, H.; Dowd, C.S.; Zhang, L.; Albert, T.J.; Norton, J.E.; Daniels, L.; Dick, T.; Pang, S.S.; Barry, C.E., III Identification of a nitroimidazo-oxazine-specific protein involved in PA-824 resistance in Mycobacterium tuberculosis. Proc. Natl. Acad. Sci., 2006, 103(2), 431-436.
[http://dx.doi.org/10.1073/pnas.0508392103] [PMID: 16387854]
[109]
Rao, S.P.S.; Alonso, S.; Rand, L.; Dick, T.; Pethe, K. The protonmotive force is required for maintaining ATP homeostasis and viability of hypoxic, nonreplicating Mycobacterium tuberculosis. Proc. Natl. Acad. Sci., 2008, 105(33), 11945-11950.
[http://dx.doi.org/10.1073/pnas.0711697105] [PMID: 18697942]
[110]
Singh, R.; Manjunatha, U.; Boshoff, H.I.M.; Ha, Y.H.; Niyomrattanakit, P.; Ledwidge, R.; Dowd, C.S.; Lee, I.Y.; Kim, P.; Zhang, L.; Kang, S.; Keller, T.H.; Jiricek, J.; Barry, C.E., III PA-824 Kills Nonreplicating Mycobacterium tuberculosis by Intracellular NO Release. Science, 2008, 322(5906), 1392-1395.
[http://dx.doi.org/10.1126/science.1164571]
[111]
Tahlan, K.; Wilson, R.; Kastrinsky, D.B.; Arora, K.; Nair, V.; Fischer, E.; Barnes, S.W.; Walker, J.R.; Alland, D.; Barry, C.E., III; Boshoff, H.I. SQ109 targets MmpL3, a membrane transporter of trehalose monomycolate involved in mycolic acid donation to the cell wall core of Mycobacterium tuberculosis. Antimicrob. Agents Chemother., 2012, 56(4), 1797-1809.
[http://dx.doi.org/10.1128/AAC.05708-11] [PMID: 22252828]
[112]
Bantubani, N.; Kabera, G.; Connolly, C.; Rustomjee, R.; Reddy, T.; Cohen, T.; Pym, A.S. High rates of potentially infectious tuberculosis and multidrug-resistant tuberculosis (MDR-TB) among hospital inpatients in KwaZulu Natal, South Africa indicate risk of nosocomial transmission. PLoS One, 2014, 9(3), e90868.
[http://dx.doi.org/10.1371/journal.pone.0090868] [PMID: 24625669]
[113]
Seifert, M.; Catanzaro, D.; Catanzaro, A.; Rodwell, T.C. Genetic mutations associated with isoniazid resistance in Mycobacterium tuberculosis: a systematic review. PLoS One, 2015, 10(3), e0119628.
[http://dx.doi.org/10.1371/journal.pone.0119628] [PMID: 25799046]
[114]
Aye, K.S.; Nakajima, C.; Yamaguchi, T.; Win, M.M.; Shwe, M.M.; Win, A.A.; Lwin, T.; Nyunt, W.W.; Ti, T.; Suzuki, Y. Genotypic characterization of multi-drug-resistant Mycobacterium tuberculosis isolates in Myanmar. J. Infect. Chemother., 2016, 22(3), 174-179.
[http://dx.doi.org/10.1016/j.jiac.2015.12.009] [PMID: 26806152]
[115]
Datta, G.; Nieto, L.M.; Davidson, R.M.; Mehaffy, C.; Pederson, C.; Dobos, K.M.; Strong, M. Longitudinal whole genome analysis of pre and post drug treatment Mycobacterium tuberculosis isolates reveals progressive steps to drug resistance. Tuberculosis (Edinb.), 2016, 98, 50-55.
[http://dx.doi.org/10.1016/j.tube.2016.02.004] [PMID: 27156618]
[116]
Fenner, L.; Egger, M.; Bodmer, T.; Altpeter, E.; Zwahlen, M.; Jaton, K.; Pfyffer, G.E.; Borrell, S.; Dubuis, O.; Bruderer, T.; Siegrist, H.H.; Furrer, H.; Calmy, A.; Fehr, J.; Stalder, J.M.; Ninet, B.; Böttger, E.C.; Gagneux, S. Effect of mutation and genetic background on drug resistance in Mycobacterium tuberculosis. Antimicrob. Agents Chemother., 2012, 56(6), 3047-3053.
[http://dx.doi.org/10.1128/AAC.06460-11] [PMID: 22470121]
[117]
Müller, B.; Streicher, E.M.; Hoek, K.G.; Tait, M.; Trollip, A.; Bosman, M.E.; Coetzee, G.J.; Chabula-Nxiweni, E.M.; Hoosain, E.; Gey van Pittius, N.C.; Victor, T.C.; van Helden, P.D.; Warren, R.M.; Hanekom, M.; Coetzee, G.; Trollip, A.; Hayes, C.; Bosman, M.E.; van Pittius, N.C.G.; Victor, T.C.; van Helden, P.D.; Warren, R.M. inhA promoter mutations: a gateway to extensively drug-resistant tuberculosis in South Africa? Int. J. Tuberc. Lung Dis., 2011, 15(3), 344-351.
[PMID: 21333101]
[118]
Machado, D.; Perdigão, J.; Ramos, J.; Couto, I.; Portugal, I.; Ritter, C.; Boettger, E.C.; Viveiros, M. High-level resistance to isoniazid and ethionamide in multidrug-resistant Mycobacterium tuberculosis of the Lisboa family is associated with inhA double mutations. J. Antimicrob. Chemother., 2013, 68(8), 1728-1732.
[http://dx.doi.org/10.1093/jac/dkt090] [PMID: 23539241]
[119]
Vilchèze, C.; Wang, F.; Arai, M.; Hazbón, M.H.; Colangeli, R.; Kremer, L.; Weisbrod, T.R.; Alland, D.; Sacchettini, J.C.; Jacobs, W.R., Jr Transfer of a point mutation in Mycobacterium tuberculosis inhA resolves the target of isoniazid. Nat. Med., 2006, 12(9), 1027-1029.
[http://dx.doi.org/10.1038/nm1466] [PMID: 16906155]
[120]
Ocheretina, O.; Escuyer, V.E.; Mabou, M.M.; Royal-Mardi, G.; Collins, S.; Vilbrun, S.C.; Pape, J.W.; Fitzgerald, D.W. Correlation between genotypic and phenotypic testing for resistance to rifampin in Mycobacterium tuberculosis clinical isolates in Haiti: investigation of cases with discrepant susceptibility results. PLoS One, 2014, 9(3), e90569.
[http://dx.doi.org/10.1371/journal.pone.0090569] [PMID: 24599230]
[121]
Thirumurugan, R.; Kathirvel, M.; Vallayyachari, K.; Surendar, K.; Samrot, A.V.; Muthaiah, M. Molecular analysis of rpoB gene mutations in rifampicin resistant Mycobacterium tuberculosis isolates by multiple allele specific polymerase chain reaction in Puducherry, South India. J. Infect. Public Health, 2015, 8(6), 619-625.
[http://dx.doi.org/10.1016/j.jiph.2015.05.003] [PMID: 26117709]
[122]
Mboowa, G.; Namaganda, C.; Ssengooba, W. Rifampicin resistance mutations in the 81 bp RRDR of rpoB gene in Mycobacterium tuberculosis clinical isolates using Xpert®MTB/RIF in Kampala, Uganda: a retrospective study. BMC Infect. Dis., 2014, 14(1), 481.
[http://dx.doi.org/10.1186/1471-2334-14-481] [PMID: 25190040]
[123]
Comas, I.; Borrell, S.; Roetzer, A.; Rose, G.; Malla, B.; Kato-Maeda, M.; Galagan, J.; Niemann, S.; Gagneux, S. Whole-genome sequencing of rifampicin-resistant M. tuberculosis strains identifies compensatory mutations in RNA polymerase. Nat. Genet., 2012, 44, 106-110.
[http://dx.doi.org/10.1038/ng.1038] [PMID: 22179134]
[124]
Brandis, G.; Hughes, D. Genetic characterization of compensatory evolution in strains carrying rpoB Ser531Leu, the rifampicin resistance mutation most frequently found in clinical isolates. J. Antimicrob. Chemother., 2013, 68(11), 2493-2497.
[http://dx.doi.org/10.1093/jac/dkt224] [PMID: 23759506]
[125]
Xu, Y.; Jia, H.; Huang, H.; Sun, Z.; Zhang, Z. Mutations found in embCAB, embR, and ubiA genes of ethambutol-sensitive and -resistant Mycobacterium tuberculosis clinical isolates from China. BioMed Res. Int., 2015, 2015, 1-8.
[http://dx.doi.org/10.1155/2015/951706] [PMID: 26417605]
[126]
Shen, X.; Shen, G.; Wu, J.; Gui, X.; Li, X.; Mei, J.; DeRiemer, K.; Gao, Q. Association between embB codon 306 mutations and drug resistance in Mycobacterium tuberculosis. Antimicrob. Agents Chemother., 2007, 51(7), 2618-2620.
[http://dx.doi.org/10.1128/AAC.01516-06] [PMID: 17438044]
[127]
Perdigão, J.; Macedo, R.; Ribeiro, A.; Brum, L.; Portugal, I. Genetic characterisation of the ethambutol resistance-determining region in Mycobacterium tuberculosis: prevalence and significance of embB306 mutations. Int. J. Antimicrob. Agents, 2009, 33(4), 334-338.
[http://dx.doi.org/10.1016/j.ijantimicag.2008.09.021] [PMID: 19097862]
[128]
Zhang, Z.; Wang, Y.; Pang, Y.; Kam, K.M. Ethambutol resistance as determined by broth dilution method correlates better than sequencing results with embB mutations in multidrug-resistant Mycobacterium tuberculosis isolates. J. Clin. Microbiol., 2014, 52(2), 638-641.
[http://dx.doi.org/10.1128/JCM.02713-13] [PMID: 24478502]
[129]
Brossier, F.; Sougakoff, W.; Bernard, C.; Petrou, M.; Adeyema, K.; Pham, A.; Amy de la Breteque, D.; Vallet, M.; Jarlier, V.; Sola, C.; Veziris, N. Molecular analysis of the embCAB locus and embR gene involved in ethambutol resistance in clinical isolates of Mycobacterium Tuberculosis in France. Antimicrob. Agents Chemother., 2015, 59(8), 4800-4808.
[http://dx.doi.org/10.1128/AAC.00150-15] [PMID: 26033726]
[130]
Tye, G.J.; Lew, M.H.; Choong, Y.S.; Lim, T.S.; Sarmiento, M.E.; Acosta, A.; Norazmi, M.N. Vaccines for TB: Lessons from the Past Translating into Future Potentials. J. Immunol. Res., 2015, 2015, 1-9.
[http://dx.doi.org/10.1155/2015/916780] [PMID: 26146643]
[131]
Shi, W.; Zhang, X.; Jiang, X.; Yuan, H.; Lee, J.S.; Barry, C.E., III; Wang, H.; Zhang, W.; Zhang, Y. Pyrazinamide inhibits trans-translation in Mycobacterium tuberculosis. Science, 2011, 333(6049), 1630-1632.
[http://dx.doi.org/10.1126/science.1208813] [PMID: 21835980]
[132]
Safi, H.; Lingaraju, S.; Amin, A.; Kim, S.; Jones, M.; Holmes, M.; McNeil, M.; Peterson, S.N.; Chatterjee, D.; Fleischmann, R.; Alland, D. Evolution of high-level ethambutol-resistant tuberculosis through interacting mutations in decaprenylphosphoryl-β-D-arabinose biosynthetic and utilization pathway genes. Nat. Genet., 2013, 45(10), 1190-1197.
[http://dx.doi.org/10.1038/ng.2743] [PMID: 23995136]
[133]
Schmitt, E.K.; Riwanto, M.; Sambandamurthy, V.; Roggo, S.; Miault, C.; Zwingelstein, C.; Krastel, P.; Noble, C.; Beer, D.; Rao, S.P.S.; Au, M.; Niyomrattanakit, P.; Lim, V.; Zheng, J.; Jeffery, D.; Pethe, K.; Camacho, L.R. The natural product cyclomarin kills Mycobacterium tuberculosis by targeting the ClpC1 subunit of the caseinolytic protease. Angew. Chem. Int. Ed., 2011, 50(26), 5889-5891.
[http://dx.doi.org/10.1002/anie.201101740] [PMID: 21563281]
[134]
Liu, W.; Chen, J.; Shen, Y.; Jin, J.; Wu, J.; Sun, F.; Wu, Y.; Xie, L.; Zhang, Y.; Zhang, W. Phenotypic and genotypic characterization of pyrazinamide resistance among multidrug-resistant Mycobacterium tuberculosis clinical isolates in Hangzhou, China. Clin. Microbiol. Infect., 2018, 24(9), 1016.e1-1016.e5.
[http://dx.doi.org/10.1016/j.cmi.2017.12.012] [PMID: 29288021]
[135]
Juréen, P.; Werngren, J.; Toro, J.C.; Hoffner, S. Pyrazinamide resistance and pncA gene mutations in Mycobacterium tuberculosis. Antimicrob. Agents Chemother., 2008, 52(5), 1852-1854.
[http://dx.doi.org/10.1128/AAC.00110-08] [PMID: 18316515]
[136]
Kahbazi, M.; Sarmadian, H.; Ahmadi, A.; Didgar, F.; Sadrnia, M.; Poolad, T.; Arjomandzadegan, M. Novel mutations in pncA gene of pyrazinamide resistant clinical isolates of Mycobacterium tuberculosis. Sci. Pharm., 2018, 86(2), 15.
[http://dx.doi.org/10.3390/scipharm86020015] [PMID: 29659533]
[137]
Finken, M.; Kirschner, P.; Meier, A.; Wrede, A.; Böttger, E.C. Molecular basis of streptomycin resistance in Mycobacterium tuberculosis: alterations of the ribosomal protein S12 gene and point mutations within a functional 16S ribosomal RNA pseudoknot. Mol. Microbiol., 1993, 9(6), 1239-1246.
[http://dx.doi.org/10.1111/j.1365-2958.1993.tb01253.x] [PMID: 7934937]
[138]
Perdigão, J.; Macedo, R.; Machado, D.; Silva, C.; Jordão, L.; Couto, I.; Viveiros, M.; Portugal, I. GidB mutation as a phylogenetic marker for Q1 cluster Mycobacterium tuberculosis isolates and intermediate-level streptomycin resistance determinant in Lisbon, Portugal. Clin. Microbiol. Infect., 2014, 20(5), O278-O284.
[http://dx.doi.org/10.1111/1469-0691.12392] [PMID: 24102832]
[139]
Sreevatsan, S.; Pan, X.; Stockbauer, K.E.; Williams, D.L.; Kreiswirth, B.N.; Musser, J.M. Characterization of rpsL and rrs mutations in streptomycin-resistant Mycobacterium tuberculosis isolates from diverse geographic localities. Antimicrob. Agents Chemother., 1996, 40(4), 1024-1026.
[http://dx.doi.org/10.1128/AAC.40.4.1024] [PMID: 8849220]
[140]
Cáceres, N.E.; Harris, N.B.; Wellehan, J.F.; Feng, Z.; Kapur, V.; Barletta, R.G. Overexpression of the D-alanine racemase gene confers resistance to D-cycloserine in Mycobacterium smegmatis. J. Bacteriol., 1997, 179(16), 5046-5055.
[http://dx.doi.org/10.1128/jb.179.16.5046-5055.1997] [PMID: 9260945]
[141]
Pantel, A.; Petrella, S.; Veziris, N.; Brossier, F.; Bastian, S.; Jarlier, V.; Mayer, C.; Aubry, A. Extending the definition of the GyrB quinolone resistance-determining region in Mycobacterium tuberculosis DNA gyrase for assessing fluoroquinolone resistance in M. tuberculosis. Antimicrob. Agents Chemother., 2012, 56(4), 1990-1996.
[http://dx.doi.org/10.1128/AAC.06272-11] [PMID: 22290942]
[142]
Nosova, E.Y.; Bukatina, A.A.; Isaeva, Y.D.; Makarova, M.V.; Galkina, K.Y.; Moroz, A.M. Analysis of mutations in the gyrA and gyrB genes and their association with the resistance of Mycobacterium tuberculosis to levofloxacin, moxifloxacin and gatifloxacin. J. Med. Microbiol., 2013, 62(1), 108-113.
[http://dx.doi.org/10.1099/jmm.0.046821-0] [PMID: 23019190]
[143]
Li, J.; Gao, X.; Luo, T.; Wu, J.; Sun, G.; Liu, Q.; Jiang, Y.; Zhang, Y.; Mei, J.; Gao, Q. Association of gyrA/B mutations and resistance levels to fluoroquinolones in clinical isolates of Mycobacterium tuberculosis. Emerg. Microbes Infect., 2014, 3(3), e19.
[PMID: 26038513]
[144]
Cui, Z.; Wang, J.; Lu, J.; Huang, X.; Hu, Z. Association of mutation patterns in gyrA/B genes and ofloxacin resistance levels in Mycobacterium tuberculosisisolates from East China in 2009. BMC Infect. Dis., 2011, 11(1), 78.
[http://dx.doi.org/10.1186/1471-2334-11-78] [PMID: 21443804]
[145]
Long, Q.; Li, W.; Du, Q.; Fu, Y.; Liang, Q.; Huang, H.; Xie, J. gyrA/B fluoroquinolone resistance allele profiles amongst Mycobacterium tuberculosis isolates from mainland China. Int. J. Antimicrob. Agents, 2012, 39(6), 486-489.
[http://dx.doi.org/10.1016/j.ijantimicag.2012.02.015] [PMID: 22526012]
[146]
Ajbani, K.; Rodrigues, C.; Shenai, S.; Mehta, A. Mutation detection and accurate diagnosis of extensively drug-resistant tuberculosis: report from a tertiary care center in India. J. Clin. Microbiol., 2011, 49(4), 1588-1590.
[http://dx.doi.org/10.1128/JCM.00113-11] [PMID: 21289142]
[147]
Yuan, X.; Zhang, T.; Kawakami, K.; Zhu, J.; Li, H.; Lei, J.; Tu, S. Molecular characterization of multidrug- and extensively drug-resistant Mycobacterium tuberculosis strains in Jiangxi, China. J. Clin. Microbiol., 2012, 50(7), 2404-2413.
[http://dx.doi.org/10.1128/JCM.06860-11] [PMID: 22553245]
[148]
Du, Q.; Dai, G.; Long, Q.; Yu, X.; Dong, L.; Huang, H.; Xie, J. Mycobacterium tuberculosis rrs A1401G mutation correlates with high-level resistance to kanamycin, amikacin, and capreomycin in clinical isolates from mainland China. Diagn. Microbiol. Infect. Dis., 2013, 77(2), 138-142.
[http://dx.doi.org/10.1016/j.diagmicrobio.2013.06.031] [PMID: 23948547]
[149]
Sowajassatakul, A.; Prammananan, T.; Chaiprasert, A.; Phunpruch, S. Molecular characterization of amikacin, kanamycin and capreomycin resistance in M/XDR-TB strains isolated in Thailand. BMC Microbiol., 2014, 14(1), 165.
[http://dx.doi.org/10.1186/1471-2180-14-165] [PMID: 24953243]
[150]
Islam, M.M.; Hameed, H.M.A.; Mugweru, J.; Chhotaray, C.; Wang, C.; Tan, Y.; Liu, J.; Li, X.; Tan, S.; Ojima, I.; Yew, W.W.; Nuermberger, E.; Lamichhane, G.; Zhang, T. Drug resistance mechanisms and novel drug targets for tuberculosis therapy. J. Genet. Genomics, 2017, 44(1), 21-37.
[http://dx.doi.org/10.1016/j.jgg.2016.10.002] [PMID: 28117224]
[151]
Almeida, D.; Ioerger, T.; Tyagi, S.; Li, S.Y.; Mdluli, K.; Andries, K.; Grosset, J.; Sacchettini, J.; Nuermberger, E. Mutations in pepQ confer low-level resistance to bedaquiline and clofazimine in Mycobacterium Tuberculosis. Antimicrob. Agents Chemother., 2016, 60(8), 4590-4599.
[http://dx.doi.org/10.1128/AAC.00753-16] [PMID: 27185800]
[152]
Shimokawa, Y.; Sasahara, K.; Yoda, N.; Mizuno, K.; Umehara, K. Delamanid does not inhibit or induce cytochrome p450 enzymes in vitro. Biol. Pharm. Bull., 2014, 37(11), 1727-1735.
[http://dx.doi.org/10.1248/bpb.b14-00311] [PMID: 25366478]
[153]
Grzegorzewicz, A.E.; Korduláková, J.; Jones, V.; Born, S.E.M.; Belardinelli, J.M.; Vaquié, A.; Gundi, V.A.K.B.; Madacki, J.; Slama, N.; Laval, F.; Vaubourgeix, J.; Crew, R.M.; Gicquel, B.; Daffé, M.; Morbidoni, H.R.; Brennan, P.J.; Quémard, A.; McNeil, M.R.; Jackson, M. A common mechanism of inhibition of the Mycobacterium tuberculosis mycolic acid biosynthetic pathway by isoxyl and thiacetazone. J. Biol. Chem., 2012, 287(46), 38434-38441.
[http://dx.doi.org/10.1074/jbc.M112.400994] [PMID: 23002234]
[154]
Jia, L.; Coward, L.; Gorman, G.S.; Noker, P.E.; Tomaszewski, J.E. Pharmacoproteomic effects of isoniazid, ethambutol and SQ109 on Mycobacterium Tuberculosis H37Rv. J. Pharmacol. Exp. Ther., 2005, 315, 905-911.
[http://dx.doi.org/10.1124/jpet.105.087817] [PMID: 16085758]
[155]
Heath, R.J.; Rock, C.O. Fatty acid biosynthesis as a target for novel antibacterials. Curr. Opin. Investig. Drugs, 2004, 5(2), 146-153.
[PMID: 15043388]
[156]
Oishi, H.; Noto, T.; Sasaki, H.; Suzuki, K.; Hayashi, T.; Okazaki, H.; Ando, K.; Sawada, M. Thiolactomycin, a new antibiotic. I. Taxonomy of the producing organism, fermentation and biological properties. J. Antibiot. (Tokyo), 1982, 35(4), 391-395.
[http://dx.doi.org/10.7164/antibiotics.35.391] [PMID: 7096194]
[157]
Slayden, R.A.; Barry, C.E., III The role of KasA and KasB in the biosynthesis of meromycolic acids and isoniazid resistance in Mycobacterium tuberculosis. Tuberculosis (Edinb.), 2002, 82(4-5), 149-160.
[http://dx.doi.org/10.1054/tube.2002.0333] [PMID: 12464486]
[158]
Tripathi, R.P.; Tewari, N.; Dwivedi, N.; Tiwari, V.K. Fighting tuberculosis: An old disease with new challenges. Med. Res. Rev., 2005, 25(1), 93-131.
[http://dx.doi.org/10.1002/med.20017] [PMID: 15389729]
[159]
Berning, S.E. The role of fluoroquinolones in tuberculosis today. Drugs, 2001, 61(1), 9-18.
[http://dx.doi.org/10.2165/00003495-200161010-00002] [PMID: 11217874]
[160]
Pasqualoto, K.F.; Ferreira, E.I. An approach for the rational design of new antituberculosis agents. Curr. Drug Targets, 2001, 2(4), 427-437.
[http://dx.doi.org/10.2174/1389450013348227] [PMID: 11732641]
[161]
Tomioka, H.; Namba, K. Development of antituberculous drugs: current status and future prospects. Kekkaku, 2006, 81(12), 753-774.
[PMID: 17240921]
[162]
Daffe, M.; Brennan, P.J.; Mcneil, M. C-3 Alkyl/Arylalkyl-2,3-dideoxy hex-2-enopyranosides as Antitubercular Agents: Synthesis, Biological Evaluation and QSAR Study. J. Med. Chem., 2007, 50, 2492.
[163]
Smith, C.V.; Sharma, V.; Sacchettini, J.C. TB drug discovery: addressing issues of persistence and resistance. Tuberculosis (Edinb.), 2004, 84(1-2), 45-55.
[http://dx.doi.org/10.1016/j.tube.2003.08.019] [PMID: 14670345]
[164]
Frieden, T.R.; Sterling, T.R.; Munsiff, S.S.; Watt, C.J.; Dye, C. Tuberculosis. Lancet, 2003, 362(9387), 887-899.
[http://dx.doi.org/10.1016/S0140-6736(03)14333-4] [PMID: 13678977]
[165]
Khasnobis, S.; Escuyer, V.E.; Chatterjee, D. Emerging therapeutic targets in tuberculosis: post-genomic era. Expert Opin. Ther. Targets, 2002, 6(1), 21-40.
[http://dx.doi.org/10.1517/14728222.6.1.21] [PMID: 11901479]
[166]
Somoskovi, A.; Parsons, L.M.; Salfinger, M. The molecular basis of resistance to isoniazid, rifampin, and pyrazinamide in Mycobacterium tuberculosis. Respir. Res., 2001, 2(3), 164-168.
[http://dx.doi.org/10.1186/rr54] [PMID: 11686881]
[167]
Bayles, K.W. The bactericidal action of penicillin: new clues to an unsolved mystery. Trends Microbiol., 2000, 8(6), 274-278.
[http://dx.doi.org/10.1016/S0966-842X(00)01762-5] [PMID: 10838585]
[168]
Glickman, S.W.; Rasiel, E.B.; Hamilton, C.D.; Kubataev, A.; Schulman, K.A. Medicine. A portfolio model of drug development for tuberculosis. Science, 2006, 311(5765), 1246-1247.
[http://dx.doi.org/10.1126/science.1119299] [PMID: 16513969]
[169]
Teodori, E.; Dei, S.; Scapecchi, S.; Gualtieri, F. The medicinal chemistry of multidrug resistance (MDR) reversing drugs. Farmaco, 2002, 57(5), 385-415.
[http://dx.doi.org/10.1016/S0014-827X(02)01229-6] [PMID: 12058813]
[170]
O’Brien, R.J.; Nunn, P.P. The need for new drugs against tuberculosis. Obstacles, opportunities, and next steps. Am. J. Respir. Crit. Care Med., 2001, 163(5), 1055-1058.
[http://dx.doi.org/10.1164/ajrccm.163.5.2007122] [PMID: 11316634]
[171]
Ashtekar, D.R.; Costa-Perira, R.; Nagrajan, K.; Vishvanathan, N.; Bhatt, A.D.; Rittel, W. In vitro and in vivo activities of the nitroimidazole CGI 17341 against Mycobacterium tuberculosis. Antimicrob. Agents Chemother., 1993, 37(2), 183-186.
[http://dx.doi.org/10.1128/AAC.37.2.183] [PMID: 8452346]
[172]
Tyagi, S.; Nuermberger, E.; Yoshimatsu, T.; Williams, K.; Rosenthal, I.; Lounis, N.; Bishai, W.; Grosset, J. Bactericidal activity of the nitroimidazopyran PA-824 in a murine model of tuberculosis. Antimicrob. Agents Chemother., 2005, 49(6), 2289-2293.
[http://dx.doi.org/10.1128/AAC.49.6.2289-2293.2005] [PMID: 15917523]
[173]
Nuermberger, E.; Grosset, J. Pharmacokinetic and pharmacodynamic issues in the treatment of mycobacterial infections. Eur. J. Clin. Microbiol. Infect. Dis., 2004, 23(4), 243-255.
[http://dx.doi.org/10.1007/s10096-004-1109-5] [PMID: 15024625]
[174]
Tian, J.; Bryk, R.; Shi, S.; Erdjument-Bromage, H.; Tempst, P.; Nathan, C. Mycobacterium tuberculosis appears to lack α-ketoglutarate dehydrogenase and encodes pyruvate dehydrogenase in widely separated genes. Mol. Microbiol., 2005, 57(3), 859-868.
[http://dx.doi.org/10.1111/j.1365-2958.2005.04741.x] [PMID: 16045627]
[175]
Shi, S.; Ehrt, S. Dihydrolipoamide acyltransferase is critical for Mycobacterium tuberculosis pathogenesis. Infect. Immun., 2006, 74(1), 56-63.
[http://dx.doi.org/10.1128/IAI.74.1.56-63.2006] [PMID: 16368957]
[176]
Jain, R.; Chen, D.; White, R.; Patel, D.; Yuan, Z. Bacterial Peptide deformylase inhibitors: a new class of antibacterial agents. Curr. Med. Chem., 2005, 12(14), 1607-1621.
[http://dx.doi.org/10.2174/0929867054367194] [PMID: 16022661]
[177]
Cynamon, M.H.; Alvirez-Freites, E.; Yeo, A.E. BB-3497, a peptide deformylase inhibitor, is active against Mycobacterium tuberculosis. J. Antimicrob. Chemother., 2004, 53(2), 403-b-405.
[http://dx.doi.org/10.1093/jac/dkh054] [PMID: 14688038]
[178]
Sun, Z.; Zhang, Y. Antituberculosis activity of certain antifungal and antihelmintic drugs. Tuber. Lung Dis., 1999, 79(5), 319-320.
[http://dx.doi.org/10.1054/tuld.1999.0212] [PMID: 10707260]
[179]
Groll, A.H.; Walsh, T.J. Potential new antifungal agents. Curr. Opin. Infect. Dis., 1997, 10(6), 449-458.
[http://dx.doi.org/10.1097/00001432-199712000-00007]
[180]
Shindikar, A.V.; Viswanathan, C.L. Novel fluoroquinolones: design, synthesis, and in vivo activity in mice against Mycobacterium tuberculosis H37Rv. Bioorg. Med. Chem. Lett., 2005, 15(7), 1803-1806.
[http://dx.doi.org/10.1016/j.bmcl.2005.02.037] [PMID: 15780610]
[181]
Petrella, S.; Cambau, E.; Chauffour, A.; Andries, K.; Jarlier, V.; Sougakoff, W. Genetic basis for natural and acquired resistance to the diarylquinoline R207910 in mycobacteria. Antimicrob. Agents Chemother., 2006, 50(8), 2853-2856.
[http://dx.doi.org/10.1128/AAC.00244-06] [PMID: 16870785]
[182]
Dolezal, M.; Jampílek, J.; Osicka, Z.; Kuneš, J.; Buchta, V.; Víchová, P. Substituted 5-aroylpyrazine-2-carboxylic acid derivatives: synthesis and biological activity. Farmaco, 2003, 58(11), 1105-1111.
[http://dx.doi.org/10.1016/S0014-827X(03)00163-0] [PMID: 14572861]
[183]
Bakkestuen, A.K.; Gundersen, L.L.; Langli, G.; Liu, F.; Nolsøe, J.M.J. 9-Benzylpurines with inhibitory activity against Mycobacterium tuberculosis. Bioorg. Med. Chem. Lett., 2000, 10(11), 1207-1210.
[http://dx.doi.org/10.1016/S0960-894X(00)00188-8] [PMID: 10866382]
[184]
Gundersen, L.L.; Nissen-Meyer, J.; Spilsberg, B. Synthesis and antimycobacterial activity of 6-arylpurines: the requirements for the N-9 substituent in active antimycobacterial purines. J. Med. Chem., 2002, 45(6), 1383-1386.
[http://dx.doi.org/10.1021/jm0110284] [PMID: 11882008]
[185]
Scozzafava, A.; Mastrolorenzo, A.; Supuran, C.T. Antimycobacterial activity of 9-sulfonylated/sulfenylated-6-mercaptopurine derivatives. Bioorg. Med. Chem. Lett., 2001, 11(13), 1675-1678.
[http://dx.doi.org/10.1016/S0960-894X(01)00266-9] [PMID: 11425535]
[186]
Miyakawa, S.; Suzuki, K.; Noto, T.; Harada, Y.; Okazaki, H. Thiolactomycin, a new antibiotic. IV. Biological properties and chemotherapeutic activity in mice. J. Antibiot. (Tokyo), 1982, 35(4), 411-419.
[http://dx.doi.org/10.7164/antibiotics.35.411] [PMID: 7096196]
[187]
Hayashi, T.; Yamamoto, O.; Sasaki, H. Kawaguchi. A.; Okazaki, H. Hayashi, T.; Yamamoto, O.; Sasaki, H.; Kawaguchi. A.; Okazaki, H. Biochem. Biophys. Res. Commun., 1983, 115, 1108-1113.
[http://dx.doi.org/10.1016/S0006-291X(83)80050-3] [PMID: 6354189]
[188]
Heath, R.J.; White, S.W.; Rock, C.O. Lipid biosynthesis as a target for antibacterial agents. Prog. Lipid Res., 2001, 40(6), 467-497.
[http://dx.doi.org/10.1016/S0163-7827(01)00012-1] [PMID: 11591436]
[189]
Tsay, J.T.; Rock, C.O.; Jackowski, S. Overproduction of beta-ketoacyl-acyl carrier protein synthase I imparts thiolactomycin resistance to Escherichia coli K-12. J. Bacteriol., 1992, 174(2), 508-513.
[http://dx.doi.org/10.1128/jb.174.2.508-513.1992] [PMID: 1729241]
[190]
Douglas, J.D.; Senior, S.J.; Morehouse, C.; Phetsukiri, B.; Campbell, I.B.; Besra, G.S.; Minnikin, D.E. Analogues of thiolactomycin: potential drugs with enhanced anti-mycobacterial activity a aDetails for the preparation of the thiolactomycin analogues shown in Table 1 are available as supplementary data in Microbiology Online ([http://mic.sgmjournals.org). Microbiology (Reading), 2002, 148(10), 3101-3109.
[http://dx.doi.org/10.1099/00221287-148-10-3101] [PMID: 12368443]
[191]
Waller, R.F.; Keeling, P.J.; Donald, R.G.K.; Striepen, B.; Handman, E.; Lang-Unnasch, N.; Cowman, A.F.; Besra, G.S.; Roos, D.S.; McFadden, G.I. Nuclear-encoded proteins target to the plastid in Toxoplasma gondii and Plasmodium falciparum. Proc. Natl. Acad. Sci. USA, 1998, 95(21), 12352-12357.
[http://dx.doi.org/10.1073/pnas.95.21.12352] [PMID: 9770490]
[192]
Morita, Y.S.; Paul, K.S.; Englund, P.T. Specialized fatty acid synthesis in African trypanosomes: myristate for GPI anchors. Science, 2000, 288(5463), 140-143.
[http://dx.doi.org/10.1126/science.288.5463.140] [PMID: 10753118]
[193]
Slayden, R.A.; Lee, R.E.; Armour, J.W.; Cooper, A.M.; Orme, I.M.; Brennan, P.J.; Besra, G.S. Antimycobacterial action of thiolactomycin: an inhibitor of fatty acid and mycolic acid synthesis. Antimicrob. Agents Chemother., 1996, 40(12), 2813-2819.
[http://dx.doi.org/10.1128/AAC.40.12.2813] [PMID: 9124847]
[194]
Johnsson, K.; Schultz, P.G. Mechanistic studies of the oxidation of isoniazid by the catalase peroxidase from Mycobacterium tuberculosis. J. Am. Chem. Soc., 1994, 116(16), 7425-7426.
[http://dx.doi.org/10.1021/ja00095a063]
[195]
Chambers, M.S.; Thomas, E.J. Asymmetric synthesis of 5,5-disubstituted thiotetronic acids using an allyl xanthate to dithiocarbonate rearrangement: total synthesis of (5S)-thiolactomycin with revision of the absolute configuration of the natural. J. Chem. Soc., Perkin Trans. 1, 1997, 1(4), 417-432.
[http://dx.doi.org/10.1039/a605768c]
[196]
Kunin, C.M.; Ellis, W.Y. Antimicrobial activities of mefloquine and a series of related compounds. Antimicrob. Agents Chemother., 2000, 44(4), 848-852.
[http://dx.doi.org/10.1128/AAC.44.4.848-852.2000] [PMID: 10722480]
[197]
De, D.; Krogstad, F.M.; Byers, L.D.; Krogstad, D.J. Structure-activity relationships for antiplasmodial activity among 7-substituted 4-aminoquinolines. J. Med. Chem., 1998, 41(25), 4918-4926.
[http://dx.doi.org/10.1021/jm980146x] [PMID: 9836608]
[198]
Li, X.Z.; Zhang, L.; Nikaido, H. Efflux pump-mediated intrinsic drug resistance in Mycobacterium smegmatis. Antimicrob. Agents Chemother., 2004, 48(7), 2415-2423.
[http://dx.doi.org/10.1128/AAC.48.7.2415-2423.2004] [PMID: 15215089]
[199]
Cocco, M.T.; Congiu, C.; Onnis, V.; Pusceddu, M.C.; Schivo, M.L.; De Logu, A. Synthesis and antimycobacterial activity of some isonicotinoylhydrazones. Eur. J. Med. Chem., 1999, 34(12), 1071-1076.
[http://dx.doi.org/10.1016/S0223-5234(99)00124-5]
[200]
Kamal, A.; Kaleem Ahmed, S.; Srinivasa Reddy, K.; Khan, M.N.A.; Shetty, R.V.C.R.N.C.; Siddhardha, B.; Murthy, U.S.N.; Khan, I.A.; Kumar, M.; Sharma, S.; Ram, A.B. Anti-tubercular agents. Part IV: Synthesis and antimycobacterial evaluation of nitroheterocyclic-based 1,2,4-benzothiadiazines. Bioorg. Med. Chem. Lett., 2007, 17(19), 5419-5422.
[http://dx.doi.org/10.1016/j.bmcl.2007.07.027] [PMID: 17692520]
[201]
Deidda, D.; Lampis, G.; Fioravanti, R.; Biava, M.; Porretta, G.C.; Zanetti, S.; Pompei, R. Bactericidal activities of the pyrrole derivative BM212 against multidrug-resistant and intramacrophagic Mycobacterium tuberculosis strains. Antimicrob. Agents Chemother., 1998, 42(11), 3035-3037.
[http://dx.doi.org/10.1128/AAC.42.11.3035] [PMID: 9797251]
[202]
Jaso, A.; Zarranz, B.; Aldana, I.; Monge, A. Synthesis of new quinoxaline-2-carboxylate 1,4-dioxide derivatives as anti-Mycobacterium tuberculosis agents. J. Med. Chem., 2005, 48(6), 2019-2025.
[http://dx.doi.org/10.1021/jm049952w] [PMID: 15771444]
[203]
Jones, P.B.; Parrish, N.M.; Houston, T.A.; Stapon, A.; Bansal, N.P.; Dick, J.D.; Townsend, C.A. A new class of antituberculosis agents. J. Med. Chem., 2000, 43(17), 3304-3314.
[http://dx.doi.org/10.1021/jm000149l] [PMID: 10966749]
[204]
Koul, A.; Herget, T.; Klebl, B.; Ullrich, A. Interplay between mycobacteria and host signalling pathways. Nat. Rev. Microbiol., 2004, 2(3), 189-202.
[http://dx.doi.org/10.1038/nrmicro840] [PMID: 15083155]
[205]
Scherr, N.; Honnappa, S.; Kunz, G.; Mueller, P.; Jayachandran, R.; Winkler, F.; Pieters, J.; Steinmetz, M.O. Structural basis for the specific inhibition of protein kinase G, a virulence factor of Mycobacterium tuberculosis. Proc. Natl. Acad. Sci. USA, 2007, 104(29), 12151-12156.
[http://dx.doi.org/10.1073/pnas.0702842104] [PMID: 17616581]
[206]
Soellner, M.B.; Rawls, K.A.; Grundner, C.; Alber, T.; Ellman, J.A. Fragment-based substrate activity screening method for the identification of potent inhibitors of the Mycobacterium tuberculosis phosphatase PtpB. J. Am. Chem. Soc., 2007, 129(31), 9613-9615.
[http://dx.doi.org/10.1021/ja0727520] [PMID: 17636914]
[207]
Stephenson, K.; Hoch, J.A. Developing inhibitors to selectively target two-component and phosphorelay signal transduction systems of pathogenic microorganisms. Curr. Med. Chem., 2004, 11(6), 765-773.
[http://dx.doi.org/10.2174/0929867043455765] [PMID: 15032730]
[208]
Stephenson, K.; Yamaguchi, Y.; Hoch, J.A. The mechanism of action of inhibitors of bacterial two-component signal transduction systems. J. Biol. Chem., 2000, 275(49), 38900-38904.
[http://dx.doi.org/10.1074/jbc.M006633200] [PMID: 10978341]
[209]
Matyk, J.; Waisser, K.; Dražková, K.; Kuneš, J.; Klimešová, V.; Palát, K., Jr; Kaustová, J. Heterocyclic isosters of antimycobacterial salicylanilides. Farmaco, 2005, 60(5), 399-408.
[http://dx.doi.org/10.1016/j.farmac.2005.02.002] [PMID: 15910812]
[210]
Waisser, K.; Matyk, J.; Divišová, H.; Husáková, P.; Kuneš, J.; Klimešová, V.; Kaustová, J.; Möllmann, U.; Dahse, H.M.; Miko, M. The oriented development of antituberculotics: salicylanilides. Arch. Pharm. (Weinheim), 2006, 339(11), 616-620.
[http://dx.doi.org/10.1002/ardp.200600093] [PMID: 17048291]
[211]
Av-Gay, Y.; Everett, M. The eukaryotic-like Ser/Thr protein kinases of Mycobacterium tuberculosis. Trends Microbiol., 2000, 8(5), 238-244.
[http://dx.doi.org/10.1016/S0966-842X(00)01734-0] [PMID: 10785641]
[212]
Walburger, A.; Koul, A.; Ferrari, G.; Nguyen, L.; Prescianotto-Baschong, C.; Huygen, K.; Klebl, B.; Thompson, C.; Bacher, G.; Pieters, J. Protein kinase G from pathogenic mycobacteria promotes survival within macrophages. Science, 2004, 304(5678), 1800-1804.
[http://dx.doi.org/10.1126/science.1099384] [PMID: 15155913]
[213]
Koul, A.; Klebl, B.; Mueller, G.; Missio, A.; Schwab, W.; Hafenbradl, D.; Neumann, L.; Sommer, M.N.; Mueller, S.; Hoppe, E.; Freisleben, A.; Backes, A.; Hartung, C.; Felber, B.; Zech, B.; Engkvist, O.; Keri, G.; Oerfi, L.; Banhegyi, P.; Greff, Z. Preparation of hetero-bicyclic fused thieno-pyran compounds as antibacterial, antiviral, antitumor, and pharmaceutically active agents. WO 2005023818 A2, 2005; US2007275962 (A1); EP1670804 (A2); CA2572750 (A1); AU2004270394 (A1), 2004.
[214]
Pato, J.; Keri, G.; Orfi, L.; Waczek, F.; Horvath, Z.; Banhegyi, P.; Szabadkai, I.; Marosfalvi, J.; Hegymegi-Barakonyi, B.; Szekelyhidi, Zs.; Greff, Z.; Choidas, A.; Bacher, G.; Missio, A.; Koul, A. Inhibitors of mycobacterial serine/threonine protein kinases for the treatment of mycobacterial infections. US 20040171603 A1, 2004.
[215]
Zanetti, S.; Sechi, L.A.; Molicotti, P.; Cannas, S.; Carta, A.; Bua, A.; Deriu, A.; Paglietti, G. In vitro activity of new quinoxalin 1,4-dioxide derivatives against strains of Mycobacterium tuberculosis and other mycobacteria. Int. J. Antimicrob. Agents, 2005, 25(2), 179-181.
[http://dx.doi.org/10.1016/j.ijantimicag.2004.11.003] [PMID: 15664491]
[216]
Mitscher, L.A.; Baker, W. Tuberculosis: A search for novel therapy starting with natural products. Med. Res. Rev., 1998, 18(6), 363-374.
[http://dx.doi.org/10.1002/(SICI)1098-1128(199811)18:6<363:AID-MED1>3.0.CO;2-I] [PMID: 9828037]
[217]
Field, S.K.; Cowie, R.L. Treatment of Mycobacterium avium-intracellulare complex lung disease with a macrolide, ethambutol, and clofazimine. Chest, 2003, 124(4), 1482-1486.
[http://dx.doi.org/10.1378/chest.124.4.1482] [PMID: 14555583]
[218]
Ramneatu, O.M.; Lowary, T.L. Poster CARB-52 presented at the 220th National Meeting of the American Chemical Society, Washington D.C.; USA, 20-24 August, 2000. Derwent World Drug Alert abstract WD-2000-011652.
[219]
Bertino, J., Jr; Fish, D. The safety profile of the fluoroquinolones. Clin. Ther., 2000, 22(7), 798-817.
[http://dx.doi.org/10.1016/S0149-2918(00)80053-3] [PMID: 10945507]
[220]
Cynamon, M.H.; Klemens, S.P.; Sharpe, C.A.; Chase, S. Activities of several novel oxazolidinones against Mycobacterium tuberculosis in a murine model. Antimicrob. Agents Chemother., 1999, 43(5), 1189-1191.
[http://dx.doi.org/10.1128/AAC.43.5.1189] [PMID: 10223934]
[221]
Brickner, S.J.; Hutchinson, D.K.; Barbachyn, M.R.; Manninen, P.R.; Ulanowicz, D.A.; Garmon, S.A.; Grega, K.C.; Hendges, S.K.; Toops, D.S.; Ford, C.W.; Zurenko, G.E. Synthesis and antibacterial activity of U-100592 and U-100766, two oxazolidinone antibacterial agents for the potential treatment of multidrug-resistant gram-positive bacterial infections. J. Med. Chem., 1996, 39(3), 673-679.
[http://dx.doi.org/10.1021/jm9509556] [PMID: 8576909]
[222]
Eustice, D.C.; Feldman, P.A.; Zajac, I.; Slee, A.M. Mechanism of action of DuP 721: inhibition of an early event during initiation of protein synthesis. Antimicrob. Agents Chemother., 1988, 32(8), 1218-1222.
[http://dx.doi.org/10.1128/AAC.32.8.1218] [PMID: 2461163]
[223]
Diekema, D.J.; Jones, R.N. Oxazolidinones. Drugs, 2000, 59(1), 7-16.
[http://dx.doi.org/10.2165/00003495-200059010-00002] [PMID: 10718097]
[224]
Corti, G.; Cinelli, R.; Paradisi, F. Clinical and microbiologic efficacy and safety profile of linezolid, a new oxazolidinone antibiotic. Int. J. Antimicrob. Agents, 2000, 16(4), 527-530.
[http://dx.doi.org/10.1016/S0924-8579(00)00290-9] [PMID: 11118873]
[225]
Zurenko, G.E.; Yagi, B.H.; Schaadt, R.D.; Allison, J.W.; Kilburn, J.O.; Glickman, S.E.; Hutchinson, D.K.; Barbachyn, M.R.; Brickner, S.J. In vitro activities of U-100592 and U-100766, novel oxazolidinone antibacterial agents. Antimicrob. Agents Chemother., 1996, 40(4), 839-845.
[http://dx.doi.org/10.1128/AAC.40.4.839] [PMID: 8849237]
[226]
Spino, C.; Dodier, M.; Sotheeswaran, S. Anti-HIV coumarins from calophyllum seed oil. Bioorg. Med. Chem. Lett., 1998, 8(24), 3475-3478.
[http://dx.doi.org/10.1016/S0960-894X(98)00628-3] [PMID: 9934455]
[227]
Jagannath, C.; Reddy, M.V.; Kailasam, S.; O’Sullivan, J.F.; Gangadharam, P.R. Chemotherapeutic activity of clofazimine and its analogues against Mycobacterium tuberculosis. In vitro, intracellular, and in vivo studies. Am. J. Respir. Crit. Care Med., 1995, 151(4), 1083-1086.
[PMID: 7697235]
[228]
Saxena, N.; Srivastava, N.; Shukla, P.; Tripathi, G.K. The drug discovery development for treatment of tuberculosis. J. Drug Deliv. Ther., 2019, 9(3-s), 802-819.
[229]
Ragno, R.; Marshall, G.R.; Di Santo, R.; Costi, R.; Massa, S.; Rompei, R.; Artico, M. Antimycobacterial pyrroles: synthesis, anti- Mycobacterium tuberculosis activity and QSAR studies. Bioorg. Med. Chem., 2000, 8(6), 1423-1432.
[http://dx.doi.org/10.1016/S0968-0896(00)00061-4] [PMID: 10896119]
[230]
Nikonenko, B.V.; Samala, R.; Einck, L.; Nacy, C.A. Rapid, simple in vivo screen for new drugs active against Mycobacterium tuberculosis. Antimicrob. Agents Chemother., 2004, 48(12), 4550-4555.
[http://dx.doi.org/10.1128/AAC.48.12.4550-4555.2004] [PMID: 15561824]
[231]
Kelly, B.P.; Furney, S.K.; Jessen, M.T.; Orme, I.M. Low-dose aerosol infection model for testing drugs for efficacy against Mycobacterium tuberculosis. Antimicrob. Agents Chemother., 1996, 40(12), 2809-2812.
[http://dx.doi.org/10.1128/AAC.40.12.2809] [PMID: 9124846]
[232]
Schlünzen, F.; Pyetan, E.; Fucini, P.; Yonath, A.; Harms, J.M. Inhibition of peptide bond formation by pleuromutilins: the structure of the 50S ribosomal subunit from Deinococcus radiodurans in complex with tiamulin. Mol. Microbiol., 2004, 54(5), 1287-1294.
[http://dx.doi.org/10.1111/j.1365-2958.2004.04346.x] [PMID: 15554968]
[233]
Long, K.S.; Poehlsgaard, J.; Kehrenberg, C.; Schwarz, S.; Vester, B. The Cfr rRNA methyltransferase confers resistance to Phenicols, Lincosamides, Oxazolidinones, Pleuromutilins, and Streptogramin A antibiotics. Antimicrob. Agents Chemother., 2006, 50(7), 2500-2505.
[http://dx.doi.org/10.1128/AAC.00131-06] [PMID: 16801432]
[234]
Parrish, N.M.; Ko, C.G.; Hughes, M.A.; Townsend, C.A.; Dick, J.D. Effect ofn-octanesulphonylacetamide (OSA) on ATP and protein expression in Mycobacterium bovis BCG. J. Antimicrob. Chemother., 2004, 54(4), 722-729.
[http://dx.doi.org/10.1093/jac/dkh408] [PMID: 15355939]
[235]
Protopopova, M.; Hanrahan, C.; Nikonenko, B.; Samala, R.; Chen, P.; Gearhart, J.; Einck, L.; Nacy, C.A. Identification of a new antitubercular drug candidate, SQ109, from a combinatorial library of 1,2-ethylenediamines. J. Antimicrob. Chemother., 2005, 56(5), 968-974.
[http://dx.doi.org/10.1093/jac/dki319] [PMID: 16172107]
[236]
Murugasu-Oei, B.; Dick, T. Bactericidal activity of nitrofurans against growing and dormant Mycobacterium bovis BCG. J. Antimicrob. Chemother., 2000, 46(6), 917-919.
[http://dx.doi.org/10.1093/jac/46.6.917] [PMID: 11102410]
[237]
Tangallapally, R.P.; Yendapally, R.; Lee, R.E.; Hevener, K.; Jones, V.C.; Lenaerts, A.J.M.; McNeil, M.R.; Wang, Y.; Franzblau, S.; Lee, R.E. Synthesis and evaluation of nitrofuranylamides as novel antituberculosis agents. J. Med. Chem., 2004, 47(21), 5276-5283.
[http://dx.doi.org/10.1021/jm049972y] [PMID: 15456272]
[238]
Maitra, A.; Munshi, T.; Healy, J.; Martin, L.T.; Vollmer, W.; Keep, N.H.; Bhakta, S.; Bhakta, S. Cell wall peptidoglycan in Mycobacterium tuberculosis: An Achilles’ heel for the TB-causing pathogen. FEMS Microbiol. Rev., 2019, 43(5), 548-575.
[http://dx.doi.org/10.1093/femsre/fuz016] [PMID: 31183501]
[239]
Hett, E.C.; Rubin, E.J. Bacterial growth and cell division: a mycobacterial perspective. Microbiol. Mol. Biol. Rev., 2008, 72(1), 126-156.
[http://dx.doi.org/10.1128/MMBR.00028-07] [PMID: 18322037]
[240]
Danilchanka, O.; Pires, D.; Anes, E.; Niederweis, M. The Mycobacterium tuberculosis outer membrane channel protein CpnT confers susceptibility to toxic molecules. Antimicrob. Agents Chemother., 2015, 59(4), 2328-2336.
[http://dx.doi.org/10.1128/AAC.04222-14] [PMID: 25645841]
[241]
Chiaradia, L.; Lefebvre, C.; Parra, J.; Marcoux, J.; Burlet-Schiltz, O.; Etienne, G.; Tropis, M.; Daffé, M. Dissecting the mycobacterial cell envelope and defining the composition of the native mycomembrane. Sci. Rep., 2017, 7(1), 12807.
[http://dx.doi.org/10.1038/s41598-017-12718-4] [PMID: 28993692]
[242]
Pandey, A.K.; Sassetti, C.M. Mycobacterial persistence requires the utilization of host cholesterol. Proc. Natl. Acad. Sci. USA, 2008, 105(11), 4376-4380.
[http://dx.doi.org/10.1073/pnas.0711159105] [PMID: 18334639]
[243]
Raffetseder, J.; Pienaar, E.; Blomgran, R.; Eklund, D.; Patcha Brodin, V.; Andersson, H.; Welin, A.; Lerm, M. Replication rates of Mycobacterium tuberculosis in human macrophages do not correlate with mycobacterial antibiotic susceptibility. PLoS One, 2014, 9(11), e112426.
[http://dx.doi.org/10.1371/journal.pone.0112426] [PMID: 25386849]
[244]
Goswam, A.; Chakraborty, U.; Bhattacharya, B.; Pal, N.K. Association of generation time with anti-tubercular drug(s) resistance pattern of Mycobacterium Tuberculosis isolates among treatment failure pulmonary tuberculosis patients. Asian J. Pharm. Clin. Res., 2016, 9(1), 258-261.
[245]
Baek, S.H.; Li, A.H.; Sassetti, C.M. Metabolic regulation of mycobacterial growth and antibiotic sensitivity. PLoS Biol., 2011, 9(5), e1001065.
[http://dx.doi.org/10.1371/journal.pbio.1001065] [PMID: 21629732]
[246]
Daniel, J.; Deb, C.; Dubey, V.S.; Sirakova, T.D.; Abomoelak, B.; Morbidoni, H.R.; Kolattukudy, P.E. Induction of a novel class of diacylglycerol acyltransferases and triacylglycerol accumulation in Mycobacterium tuberculosis as it goes into a dormancy-like state in culture. J. Bacteriol., 2004, 186(15), 5017-5030.
[http://dx.doi.org/10.1128/JB.186.15.5017-5030.2004] [PMID: 15262939]
[247]
Baker, J.J.; Abramovitch, R.B. Genetic and metabolic regulation of Mycobacterium tuberculosis acid growth arrest. Sci. Rep., 2018, 8(1), 4168.
[http://dx.doi.org/10.1038/s41598-018-22343-4] [PMID: 29520087]
[248]
Warner, D.F. Mycobacterium tuberculosis Metabolism. Cold Spring Harb. Perspect. Med., 2015, 5(4), a021121.
[http://dx.doi.org/10.1101/cshperspect.a021121] [PMID: 25502746]
[249]
Nguyen, L. Antibiotic resistance mechanisms in M. tuberculosis: an update. Arch. Toxicol., 2016, 90(7), 1585-1604.
[http://dx.doi.org/10.1007/s00204-016-1727-6] [PMID: 27161440]
[250]
Knutson, K.L.; Hmama, Z.; Herrera-Velit, P.; Rochford, R.; Reiner, N.E. Lipoarabinomannan of Mycobacterium tuberculosis promotes protein tyrosine dephosphorylation and inhibition of mitogen-activated protein kinase in human mononuclear phagocytes. Role of the Src homology 2 containing tyrosine phosphatase 1. J. Biol. Chem., 1998, 273(1), 645-652.
[http://dx.doi.org/10.1074/jbc.273.1.645] [PMID: 9417127]
[251]
Abraham, A.O.; Nasiru, A.U.; Abdulazeez, A.K.; Seun, O.O.; Ogonna, D.W. Mechanism of drug resistance in Mycobacterium Tuberculosis. American Journal of Biomedical Science & Research, 2020, 7(5), 378-383.
[http://dx.doi.org/10.34297/AJBSR.2020.07.001181]
[252]
Kochi, A.; Vareldzis, B.; Styblo, K. Multidrug-resistant tuberculosis and its control. Res. Microbiol., 1993, 144(2), 104-110.
[http://dx.doi.org/10.1016/0923-2508(93)90023-U] [PMID: 8337467]
[253]
Strang, J.I.G.; Gibson, D.G.; Nunn, A.J.; Kakaza, H.H.S.; Girling, D.J.; Fox, W. Controlled trial of prednisolone as adjuvant in treatment of tuberculous constrictive pericarditis in Transkei. Lancet, 1987, 330(8573), 1418-1422.
[http://dx.doi.org/10.1016/S0140-6736(87)91127-5] [PMID: 2891992]
[254]
Damtie, D.; Woldeyohannes, D.; Mathewos, B. Review on Molecular mechanism of first line antibiotic resistance in Mycobacterium Tuberculosis. Mycobact. Dis., 2014, 4(6), 174.
[255]
de Vos, M.; Müller, B.; Borrell, S.; Black, P.A.; van Helden, P.D.; Warren, R.M.; Gagneux, S.; Victor, T.C. Putative compensatory mutations in the rpoC gene of rifampin-resistant Mycobacterium tuberculosis are associated with ongoing transmission. Antimicrob. Agents Chemother., 2013, 57(2), 827-832.
[http://dx.doi.org/10.1128/AAC.01541-12] [PMID: 23208709]
[256]
Heep, M.; Rieger, U.; Beck, D.; Lehn, N. Mutations in the beginning of the rpoB gene can induce resistance to rifamycins in both Helicobacter pylori and Mycobacterium tuberculosis. Antimicrob. Agents Chemother., 2000, 44(4), 1075-1077.
[http://dx.doi.org/10.1128/AAC.44.4.1075-1077.2000] [PMID: 10722516]
[257]
Telenti, A.; Imboden, P.; Marchesi, F.; Matter, L.; Schopfer, K.; Bodmer, T.; Lowrie, D.; Colston, M.J.; Cole, S. Detection of rifampicin-resistance mutations in Mycobacterium tuberculosis. Lancet, 1993, 341(8846), 647-651.
[http://dx.doi.org/10.1016/0140-6736(93)90417-F] [PMID: 8095569]
[258]
Kapur, V.; Li, L.L.; Iordanescu, S.; Hamrick, M.R.; Wanger, A.; Kreiswirth, B.N.; Musser, J.M. Characterization by automated DNA sequencing of mutations in the gene (rpoB) encoding the RNA polymerase beta subunit in rifampin-resistant Mycobacterium tuberculosis strains from New York City and Texas. J. Clin. Microbiol., 1994, 32(4), 1095-1098.
[http://dx.doi.org/10.1128/jcm.32.4.1095-1098.1994] [PMID: 8027320]
[259]
Yang, B.; Koga, H.; Ohno, H.; Ogawa, K.; Fukuda, M.; Hirakata, Y.; Maesaki, S.; Tomono, K.; Tashiro, T.; Kohno, S. Relationship between antimycobacterial activities of rifampicin, rifabutin and KRM-1648 and rpoB mutations of Mycobacterium tuberculosis. J. Antimicrob. Chemother., 1998, 42(5), 621-628.
[http://dx.doi.org/10.1093/jac/42.5.621] [PMID: 9848446]
[260]
Cavusoglu, C.; Karaca-Derici, Y.; Bilgic, A. In-vitro activity of rifabutin against rifampicin-resistant Mycobacterium tuberculosis isolates with known rpoB mutations. Clin. Microbiol. Infect., 2004, 10(7), 662-665.
[http://dx.doi.org/10.1111/j.1469-0691.2004.00917.x] [PMID: 15214882]
[261]
Burman, W.J.; Jones, B. Treatment of HIV-related tuberculosis in the era of effective antiretroviral therapy. Am. J. Respir. Crit. Care Med., 2001, 164(1), 7-12.
[http://dx.doi.org/10.1164/ajrccm.164.1.2101133] [PMID: 11435232]
[262]
Johnsson, K.; Froland, W.A.; Schultz, P.G. Overexpression, purification, and characterization of the catalase-peroxidase KatG from Mycobacterium tuberculosis. J. Biol. Chem., 1997, 272(5), 2834-2840.
[http://dx.doi.org/10.1074/jbc.272.5.2834] [PMID: 9006925]
[263]
Bollela, V.R.; Namburete, E.I.; Feliciano, C.S.; Macheque, D.; Harrison, L.H.; Caminero, J.A. Detection of kat G and inh A mutations to guide isoniazid and ethionamide use for drug-resistant tuberculosis. Int. J. Tuberc. Lung Dis., 2016, 20(8), 1099-1104.
[http://dx.doi.org/10.5588/ijtld.15.0864] [PMID: 27393546]
[264]
Lempens, P.; Meehan, C.J.; Vandelannoote, K.; Fissette, K.; de Rijk, P.; Van Deun, A.; Rigouts, L.; de Jong, B.C. Isoniazid resistance levels of Mycobacterium tuberculosis can largely be predicted by high-confidence resistance-conferring mutations. Sci. Rep., 2018, 8(1), 3246.
[http://dx.doi.org/10.1038/s41598-018-21378-x] [PMID: 29459669]
[265]
Kandler, J.L.; Mercante, A.D.; Dalton, T.L.; Ezewudo, M.N.; Cowan, L.S.; Burns, S.P.; Metchock, B.; Cegielski, P.; Posey, J.E. Validation of novel Mycobacterium tuberculosis isoniazid resistance mutations not detectable by common molecular tests. Antimicrob. Agents Chemother., 2018, 62(10), e00974-e18.
[http://dx.doi.org/10.1128/AAC.00974-18] [PMID: 30082293]
[266]
Hazbón, M.H.; Brimacombe, M.; Bobadilla del Valle, M.; Cavatore, M.; Guerrero, M.I.; Varma-Basil, M.; Billman-Jacobe, H.; Lavender, C.; Fyfe, J.; García-García, L.; León, C.I.; Bose, M.; Chaves, F.; Murray, M.; Eisenach, K.D.; Sifuentes-Osornio, J.; Cave, M.D.; Ponce de León, A.; Alland, D. Population genetics study of isoniazid resistance mutations and evolution of multidrug-resistant Mycobacterium tuberculosis. Antimicrob. Agents Chemother., 2006, 50(8), 2640-2649.
[http://dx.doi.org/10.1128/AAC.00112-06] [PMID: 16870753]
[267]
Chesov, D.; Ciobanu, N.; Lange, C.; Schön, T.; Heyckendorf, J.; Crudu, V. Lack of evidence of isoniazid efficacy for the treatment of MDR/XDR-TB in the presence of the katG 315T mutation. Eur. Respir. J., 2017, 50(4), 1701752.
[http://dx.doi.org/10.1183/13993003.01752-2017] [PMID: 29025884]
[268]
Parsons, L.M.; Salfinger, M.; Clobridge, A.; Dormandy, J.; Mirabello, L.; Polletta, V.L.; Sanic, A.; Sinyavskiy, O.; Larsen, S.C.; Driscoll, J.; Zickas, G.; Taber, H.W. Phenotypic and molecular characterization of Mycobacterium tuberculosis isolates resistant to both isoniazid and ethambutol. Antimicrob. Agents Chemother., 2005, 49(6), 2218-2225.
[http://dx.doi.org/10.1128/AAC.49.6.2218-2225.2005] [PMID: 15917515]
[269]
Ando, H.; Miyoshi-Akiyama, T.; Watanabe, S.; Kirikae, T. A silent mutation in mabA confers isoniazid resistance on Mycobacterium tuberculosis. Mol. Microbiol., 2014, 91(3), 538-547.
[http://dx.doi.org/10.1111/mmi.12476] [PMID: 24354762]
[270]
Pöso, H.; Paulin, L.; Brander, E. Specific inhibition of spermidine synthase from mycobacteria by ethambutol. Lancet, 1983, 322(8364), 1418.
[http://dx.doi.org/10.1016/S0140-6736(83)90943-1] [PMID: 6140513]
[271]
Hazbón, M.H.; Bobadilla del Valle, M.; Guerrero, M.I.; Varma-Basil, M.; Filliol, I.; Cavatore, M.; Colangeli, R.; Safi, H.; Billman-Jacobe, H.; Lavender, C.; Fyfe, J.; García-García, L.; Davidow, A.; Brimacombe, M.; León, C.I.; Porras, T.; Bose, M.; Chaves, F.; Eisenach, K.D.; Sifuentes-Osornio, J.; Ponce de León, A.; Cave, M.D.; Alland, D. Role of embB codon 306 mutations in Mycobacterium tuberculosis revisited: a novel association with broad drug resistance and IS6110 clustering rather than ethambutol resistance. Antimicrob. Agents Chemother., 2005, 49(9), 3794-3802.
[http://dx.doi.org/10.1128/AAC.49.9.3794-3802.2005] [PMID: 16127055]
[272]
Gale, E.F.; Cundliffe, E.; Reynolds, P.E.; Richmond, M.H.; Waring, M.J. The molecular basis of antibiotic action. The Mol Basis Antibiot. Act, 1981, 62(9), 1577-1578.
[273]
Plinke, C.; Cox, H.S.; Zarkua, N.; Karimovich, H.A.; Braker, K.; Diel, R.; Rüsch-Gerdes, S.; Feuerriegel, S.; Niemann, S. embCAB sequence variation among ethambutol-resistant Mycobacterium tuberculosis isolates without embB306 mutation. J. Antimicrob. Chemother., 2010, 65(7), 1359-1367.
[http://dx.doi.org/10.1093/jac/dkq120] [PMID: 20427375]
[274]
Ahmad, S.; Jaber, A.A.; Mokaddas, E. Frequency of embB codon 306 mutations in ethambutol-susceptible and -resistant clinical Mycobacterium tuberculosis isolates in Kuwait. Tuberculosis (Edinb.), 2007, 87(2), 123-129.
[http://dx.doi.org/10.1016/j.tube.2006.05.004] [PMID: 17289435]
[275]
Al-Mutairi, N.M.; Ahmad, S.; Mokaddas, E. Molecular screening versus phenotypic susceptibility testing of multidrug-resistant Mycobacterium tuberculosis isolates for streptomycin and ethambutol. Microb. Drug Resist., 2018, 24(7), 923-931.
[http://dx.doi.org/10.1089/mdr.2017.0294] [PMID: 29336677]
[276]
Tulyaprawat, O.; Chaiprasert, A.; Chongtrakool, P.; Suwannakarn, K.; Ngamskulrungroj, P. Association of ubiA mutations and high-level of ethambutol resistance among Mycobacterium tuberculosis Thai clinical isolates. Tuberculosis (Edinb.), 2019, 114, 42-46.
[http://dx.doi.org/10.1016/j.tube.2018.11.006] [PMID: 30711156]
[277]
khan, M.T.; Malik, S.I.; Ali, S.; Masood, N.; Nadeem, T.; Khan, A.S.; Afzal, M.T. Pyrazinamide resistance and mutations in pncA among isolates of Mycobacterium tuberculosis from Khyber Pakhtunkhwa, Pakistan. BMC Infect. Dis., 2019, 19(1), 116.
[http://dx.doi.org/10.1186/s12879-019-3764-2] [PMID: 30728001]
[278]
Njire, M.; Tan, Y.; Mugweru, J.; Wang, C.; Guo, J.; Yew, W.; Tan, S.; Zhang, T. Pyrazinamide resistance in Mycobacterium tuberculosis: Review and update. Adv. Med. Sci., 2016, 61(1), 63-71.
[http://dx.doi.org/10.1016/j.advms.2015.09.007] [PMID: 26521205]
[279]
Huy, N.Q.; Lucie, C.; Hoa, T.T.T.; Hung, N.V.; Lan, N.T.N.; Son, N.T.; Nhung, N.V.; Anh, D.D.; Anne-Laure, B.; Van Anh, N.T. Molecular analysis of pyrazinamide resistance in Mycobacterium tuberculosis in Vietnam highlights the high rate of pyrazinamide resistance-associated mutations in clinical isolates. Emerg. Microbes Infect., 2017, 6(1), 1-7.
[http://dx.doi.org/10.1038/emi.2017.73] [PMID: 29018250]
[280]
Zhang, Y.J.; Li, X.J.; Mi, K.X. Mechanisms of fluoroquinolone resistance in Mycobacterium tuberculosis. Yi Chuan, 2016, 38(10), 918-927.
[PMID: 27806933]
[281]
Crofton, J.; Mitchison, D.A. Streptomycin resistance in pulmonary tuberculosis. BMJ, 1948, 2(4588), 1009-1015.
[http://dx.doi.org/10.1136/bmj.2.4588.1009] [PMID: 18100441]
[282]
Moazed, D.; Noller, H.F. Interaction of antibiotics with functional sites in 16S ribosomal RNA. Nature, 1987, 327(6121), 389-394.
[http://dx.doi.org/10.1038/327389a0] [PMID: 2953976]
[283]
Gillespie, S.H. Evolution of drug resistance in Mycobacterium tuberculosis: clinical and molecular perspective. Antimicrob. Agents Chemother., 2002, 46(2), 267-274.
[http://dx.doi.org/10.1128/AAC.46.2.267-274.2002] [PMID: 11796329]
[284]
Okamoto, S.; Tamaru, A.; Nakajima, C.; Nishimura, K.; Tanaka, Y.; Tokuyama, S.; Suzuki, Y.; Ochi, K. Loss of a conserved 7‐methylguanosine modification in 16S rRNA confers low‐level streptomycin resistance in bacteria. Mol. Microbiol., 2007, 63(4), 1096-1106.
[http://dx.doi.org/10.1111/j.1365-2958.2006.05585.x] [PMID: 17238915]
[285]
Spies, F.S.; Almeida da Silva, P.E.; Ribeiro, M.O.; Rossetti, M.L.; Zaha, A. Identification of mutations related to streptomycin resistance in clinical isolates of Mycobacterium tuberculosis and possible involvement of efflux mechanism. Antimicrob. Agents Chemother., 2008, 52(8), 2947-2949.
[http://dx.doi.org/10.1128/AAC.01570-07] [PMID: 18541729]
[286]
Rengarajan, J.; Sassetti, C.M.; Naroditskaya, V.; Sloutsky, A.; Bloom, B.R.; Rubin, E.J. The folate pathway is a target for resistance to the drug para-aminosalicylic acid (PAS) in mycobacteria. Mol. Microbiol., 2004, 53(1), 275-282.
[http://dx.doi.org/10.1111/j.1365-2958.2004.04120.x] [PMID: 15225321]
[287]
Zhao, F.; Wang, X.D.; Erber, L.N.; Luo, M.; Guo, A.; Yang, S.; Gu, J.; Turman, B.J.; Gao, Y.; Li, D.; Cui, Z.; Zhang, Z.; Bi, L.; Baughn, A.D.; Zhang, X.E.; Deng, J.Y. Binding pocket alterations in dihydrofolate synthase confer resistance to para-aminosalicylic acid in clinical isolates of Mycobacterium tuberculosis. Antimicrob. Agents Chemother., 2014, 58(3), 1479-1487.
[http://dx.doi.org/10.1128/AAC.01775-13] [PMID: 24366731]
[288]
Mathys, V.; Wintjens, R.; Lefevre, P.; Bertout, J.; Singhal, A.; Kiass, M.; Kurepina, N.; Wang, X.M.; Mathema, B.; Baulard, A.; Kreiswirth, B.N.; Bifani, P. Molecular genetics of para-aminosalicylic acid resistance in clinical isolates and spontaneous mutants of Mycobacterium tuberculosis. Antimicrob. Agents Chemother., 2009, 53(5), 2100-2109.
[http://dx.doi.org/10.1128/AAC.01197-08] [PMID: 19237648]
[289]
Cáceres, N.E.; Harris, N.B.; Wellehan, J.F.; Feng, Z.; Kapur, V.; Barletta, R.G. Structural activation of the transcriptional repressor EthR from Mycobacterium Tuberculosis by single amino acid change mimicking natural and synthetic ligands. J. Bacteriol., 1997, 179, 5046-5055.
[PMID: 9260945]
[290]
Chen, J.M.; Uplekar, S.; Gordon, S.V.; Cole, S.T. A point mutation in cycA partially contributes to the D-cycloserine resistance trait of Mycobacterium bovis BCG vaccine strains. PLoS One, 2012, 7(8), e43467.
[http://dx.doi.org/10.1371/journal.pone.0043467] [PMID: 22912881]
[291]
DeBarber, A.E.; Mdluli, K.; Bosman, M.; Bekker, L.G.; Barry, C.E. III Ethionamide activation and sensitivity in multidrug-resistant Mycobacterium tuberculosis. Proc. Natl. Acad. Sci. USA, 2000, 97(17), 9677-9682.
[http://dx.doi.org/10.1073/pnas.97.17.9677] [PMID: 10944230]
[292]
Brossier, F.; Veziris, N.; Truffot-Pernot, C.; Jarlier, V.; Sougakoff, W. Molecular investigation of resistance to the antituberculous drug ethionamide in multidrug-resistant clinical isolates of Mycobacterium tuberculosis. Antimicrob. Agents Chemother., 2011, 55(1), 355-360.
[http://dx.doi.org/10.1128/AAC.01030-10] [PMID: 20974869]
[293]
Vilchèze, C.; Av-Gay, Y.; Attarian, R.; Liu, Z.; Hazbón, M.H.; Colangeli, R.; Chen, B.; Liu, W.; Alland, D.; Sacchettini, J.C.; Jacobs, W.R. Jr Mycothiol biosynthesis is essential for ethionamide susceptibility in Mycobacterium tuberculosis. Mol. Microbiol., 2008, 69(5), 1316-1329.
[http://dx.doi.org/10.1111/j.1365-2958.2008.06365.x] [PMID: 18651841]
[294]
Bernard, C.; Veziris, N.; Brossier, F.; Sougakoff, W.; Jarlier, V.; Robert, J.; Aubry, A. Molecular diagnosis of fluoroquinolone resistance in Mycobacterium tuberculosis. Antimicrob. Agents Chemother., 2015, 59(3), 1519-1524.
[http://dx.doi.org/10.1128/AAC.04058-14] [PMID: 25534742]
[295]
Che, Y.; Song, Q.; Yang, T.; Ping, G.; Yu, M. Fluoroquinolone resistance in multidrug-resistant Mycobacterium tuberculosis independent of fluoroquinolone use. Eur. Respir. J., 2017, 50(6), 1701633.
[http://dx.doi.org/10.1183/13993003.01633-2017] [PMID: 29217603]
[296]
Johansen, S.K.; Maus, C.E.; Plikaytis, B.B.; Douthwaite, S. Capreomycin binds across the ribosomal subunit interface using tlyA-encoded 2′-O-methylations in 16S and 23S rRNAs. Mol. Cell, 2006, 23(2), 173-182.
[http://dx.doi.org/10.1016/j.molcel.2006.05.044] [PMID: 16857584]
[297]
Georghiou, S.B.; Magana, M.; Garfein, R.S.; Catanzaro, D.G.; Catanzaro, A.; Rodwell, T.C. Evaluation of genetic mutations associated with Mycobacterium tuberculosis resistance to amikacin, kanamycin and capreomycin: a systematic review. PLoS One, 2012, 7(3), e33275.
[http://dx.doi.org/10.1371/journal.pone.0033275] [PMID: 22479378]
[298]
Zaunbrecher, M.A.; Sikes, R.D., Jr; Metchock, B.; Shinnick, T.M.; Posey, J.E. Overexpression of the chromosomally encoded aminoglycoside acetyltransferase eis confers kanamycin resistance in Mycobacterium tuberculosis. Proc. Natl. Acad. Sci. USA, 2009, 106(47), 20004-20009.
[http://dx.doi.org/10.1073/pnas.0907925106] [PMID: 19906990]
[299]
Campbell, P.J.; Morlock, G.P.; Sikes, R.D.; Dalton, T.L.; Metchock, B.; Starks, A.M.; Hooks, D.P.; Cowan, L.S.; Plikaytis, B.B.; Posey, J.E.; Posey, J.E. Molecular detection of mutations associated with first- and second-line drug resistance compared with conventional drug susceptibility testing of Mycobacterium tuberculosis. Antimicrob. Agents Chemother., 2011, 55(5), 2032-2041.
[http://dx.doi.org/10.1128/AAC.01550-10] [PMID: 21300839]
[300]
Caws, M.; Duy, P.M.; Tho, D.Q.; Lan, N.T.N.; Hoa, D.V.; Farrar, J. Mutations prevalent among rifampin- and isoniazid-resistant Mycobacterium tuberculosis isolates from a hospital in Vietnam. J. Clin. Microbiol., 2006, 44(7), 2333-2337.
[http://dx.doi.org/10.1128/JCM.00330-06] [PMID: 16825345]
[301]
Kerantzas, C.A.; Jacobs, W.R., Jr Origins of combination therapy for tuberculosis: lessons for future antimicrobial development and application. MBio, 2017, 8(2), e01586-e16.
[http://dx.doi.org/10.1128/mBio.01586-16] [PMID: 28292983]
[302]
Andini, N.; Nash, K.A. Intrinsic macrolide resistance of the Mycobacterium tuberculosis complex is inducible. Antimicrob. Agents Chemother., 2006, 50(7), 2560-2562.
[http://dx.doi.org/10.1128/AAC.00264-06] [PMID: 16801446]
[303]
Bosne-David, S.; Barros, V.; Verde, S.C.; Portugal, C.; David, H.L. Intrinsic resistance of Mycobacterium tuberculosis to clarithromycin is effectively reversed by subinhibitory concentrations of cell wall inhibitors. J. Antimicrob. Chemother., 2000, 46(3), 391-395.
[http://dx.doi.org/10.1093/jac/46.3.391] [PMID: 10980165]
[304]
Leach, K.L.; Brickner, S.J.; Noe, M.C.; Miller, P.F. Linezolid, the first oxazolidinone antibacterial agent. Ann. N. Y. Acad. Sci., 2011, 1222(1), 49-54.
[http://dx.doi.org/10.1111/j.1749-6632.2011.05962.x] [PMID: 21434942]
[305]
Richter, E.; Rüsch-Gerdes, S.; Hillemann, D. First linezolid-resistant clinical isolates of Mycobacterium tuberculosis. Antimicrob. Agents Chemother., 2007, 51(4), 1534-1536.
[http://dx.doi.org/10.1128/AAC.01113-06] [PMID: 17242139]
[306]
Hillemann, D.; Rüsch-Gerdes, S.; Richter, E. In vitro-selected linezolid-resistant Mycobacterium tuberculosis mutants. Antimicrob. Agents Chemother., 2008, 52(2), 800-801.
[http://dx.doi.org/10.1128/AAC.01189-07] [PMID: 18070973]
[307]
Beckert, P.; Hillemann, D.; Kohl, T.A.; Kalinowski, J.; Richter, E.; Niemann, S.; Feuerriegel, S. rplC T460C identified as a dominant mutation in linezolid-resistant Mycobacterium tuberculosis strains. Antimicrob. Agents Chemother., 2012, 56(5), 2743-2745.
[http://dx.doi.org/10.1128/AAC.06227-11] [PMID: 22371899]
[308]
Escribano, I.; Rodríguez, J.C.; Llorca, B.; García-Pachon, E.; Ruiz, M.; Royo, G. Importance of the efflux pump systems in the resistance of Mycobacterium tuberculosis to fluoroquinolones and linezolid. Chemotherapy, 2007, 53(6), 397-401.
[http://dx.doi.org/10.1159/000109769] [PMID: 17934259]
[309]
Barry, V.C.; Belton, J.G.; Conalty, M.L.; Denneny, J.M.; Edward, D.W.; O’Sullivan, J.F.; Twomey, D.; Winder, F. A new series of phenazines (rimino-compounds) with high antituberculosis activity. Nature, 1957, 179(4568), 1013-1015.
[http://dx.doi.org/10.1038/1791013a0] [PMID: 13430770]
[310]
Browne, S.G.; Hogerzeil, L.M. “B 663” in the treatment of leprosy. Preliminary report of a pilot trial. Lepr. Rev., 1962, 33(1), 6-10.
[http://dx.doi.org/10.5935/0305-7518.19620002] [PMID: 13873759]
[311]
Cholo, M.C.; Steel, H.C.; Fourie, P.B.; Germishuizen, W.A.; Anderson, R. Clofazimine: current status and future prospects. J. Antimicrob. Chemother., 2012, 67(2), 290-298.
[http://dx.doi.org/10.1093/jac/dkr444] [PMID: 22020137]
[312]
Yano, T.; Kassovska-Bratinova, S.; Teh, J.S.; Winkler, J.; Sullivan, K.; Isaacs, A.; Schechter, N.M.; Rubin, H. Reduction of clofazimine by mycobacterial type 2 NADH:quinone oxidoreductase: a pathway for the generation of bactericidal levels of reactive oxygen species. J. Biol. Chem., 2011, 286(12), 10276-10287.
[http://dx.doi.org/10.1074/jbc.M110.200501] [PMID: 21193400]
[313]
Hartkoorn, R.C.; Uplekar, S.; Cole, S.T. Cross-resistance between clofazimine and bedaquiline through upregulation of MmpL5 in Mycobacterium tuberculosis. Antimicrob. Agents Chemother., 2014, 58(5), 2979-2981.
[http://dx.doi.org/10.1128/AAC.00037-14] [PMID: 24590481]
[314]
Orenstein, E.W.; Basu, S.; Shah, N.S.; Andrews, J.R.; Friedland, G.H.; Moll, A.P.; Gandhi, N.R.; Galvani, A.P. Treatment outcomes among patients with multidrug-resistant tuberculosis: systematic review and meta-analysis. Lancet Infect. Dis., 2009, 9(3), 153-161.
[http://dx.doi.org/10.1016/S1473-3099(09)70041-6] [PMID: 19246019]
[315]
Dony, J.F.; Ahmad, J.; Khen Tiong, Y. Epidemiology of tuberculosis and leprosy, Sabah, Malaysia. Tuberculosis (Edinb.), 2004, 84(1-2), 8-18.
[http://dx.doi.org/10.1016/j.tube.2003.08.002] [PMID: 14670341]
[316]
Falzon, D.; Gandhi, N.; Migliori, G.B.; Sotgiu, G.; Cox, H.S.; Holtz, T.H.; Hollm-Delgado, M.G.; Keshavjee, S.; DeRiemer, K.; Centis, R.; D’Ambrosio, L.; Lange, C.G.; Bauer, M.; Menzies, D. Resistance to fluoroquinolones and second-line injectable drugs: impact on multidrug-resistant TB outcomes. Eur. Respir. J., 2013, 42(1), 156-168.
[http://dx.doi.org/10.1183/09031936.00134712] [PMID: 23100499]
[317]
Lange, C.; Abubakar, I.; Alffenaar, J.W.C.; Bothamley, G.; Caminero, J.A.; Carvalho, A.C.C.; Chang, K.C.; Codecasa, L.; Correia, A.; Crudu, V.; Davies, P.; Dedicoat, M.; Drobniewski, F.; Duarte, R.; Ehlers, C.; Erkens, C.; Goletti, D.; Günther, G.; Ibraim, E.; Kampmann, B.; Kuksa, L.; de Lange, W.; van Leth, F.; van Lunzen, J.; Matteelli, A.; Menzies, D.; Monedero, I.; Richter, E.; Rüsch-Gerdes, S.; Sandgren, A.; Scardigli, A.; Skrahina, A.; Tortoli, E.; Volchenkov, G.; Wagner, D.; van der Werf, M.J.; Williams, B.; Yew, W.W.; Zellweger, J.P.; Cirillo, D.M. Management of patients with multidrug-resistant/extensively drug-resistant tuberculosis in Europe: a TBNET consensus statement. Eur. Respir. J., 2014, 44(1), 23-63.
[http://dx.doi.org/10.1183/09031936.00188313] [PMID: 24659544]
[318]
Skripconoka, V.; Danilovits, M.; Pehme, L.; Tomson, T.; Skenders, G.; Kummik, T.; Cirule, A.; Leimane, V.; Kurve, A.; Levina, K.; Geiter, L.J.; Manissero, D.; Wells, C.D. Delamanid improves outcomes and reduces mortality in multidrug-resistant tuberculosis. Eur. Respir. J., 2013, 41(6), 1393-1400.
[http://dx.doi.org/10.1183/09031936.00125812] [PMID: 23018916]
[319]
Diacon, A.H.; Pym, A.; Grobusch, M.P.; de los Rios, J.M.; Gotuzzo, E.; Vasilyeva, I.; Leimane, V.; Andries, K.; Bakare, N.; De Marez, T.; Haxaire-Theeuwes, M.; Lounis, N.; Meyvisch, P.; De Paepe, E.; van Heeswijk, R.P.G.; Dannemann, B. Multidrug-resistant tuberculosis and culture conversion with bedaquiline. N. Engl. J. Med., 2014, 371(8), 723-732.
[http://dx.doi.org/10.1056/NEJMoa1313865] [PMID: 25140958]
[320]
Guglielmetti, L.; Le Dû, D.; Jachym, M.; Henry, B.; Martin, D.; Caumes, E.; Veziris, N.; Métivier, N.; Robert, J.; Andrejak, C.; Bernard, C.; Brossier, F.; Chadelat, K.; Dautzenberg, B.; Jarlier, V.; Raskine, L.; Rivoire, B.; Veziris, N.; Appere, C.; Assouline, P.; Borie, R.; Boukari, L.; Caseris, M.; Caumes, E.; Douadi, Y.; Dumoulin, J.; Duval, C.; Faucher, J.F.; Gallien, S.; Godet, C.; Le Grusse, J.; Lopes, A.; Meynard, J.L.; Naccache, J.M.; Philippe, B.; Richaud, C.; Saad, H. Compassionate use of bedaquiline for the treatment of multidrug-resistant and extensively drug-resistant tuberculosis: interim analysis of a French cohort. Clin. Infect. Dis., 2015, 60(2), 188-194.
[http://dx.doi.org/10.1093/cid/ciu786] [PMID: 25320286]
[321]
Jacobson, K.R.; Tierney, D.B.; Jeon, C.Y.; Mitnick, C.D.; Murray, M.B. Treatment outcomes among patients with extensively drug-resistant tuberculosis: systematic review and meta-analysis. Clin. Infect. Dis., 2010, 51(1), 6-14.
[http://dx.doi.org/10.1086/653115] [PMID: 20504231]
[322]
Tang, S.; Yao, L.; Hao, X.; Zhang, X.; Liu, G.; Liu, X.; Wu, M.; Zen, L.; Sun, H.; Liu, Y.; Gu, J.; Lin, F.; Wang, X.; Zhang, Z.; Efficacy, Z. Efficacy, safety and tolerability of linezolid for the treatment of XDR-TB: a study in China. Eur. Respir. J., 2015, 45(1), 161-170.
[http://dx.doi.org/10.1183/09031936.00035114] [PMID: 25234807]
[323]
Corbett, E.L.; Watt, C.J.; Walker, N.; Maher, D.; Williams, B.G.; Raviglione, M.C.; Dye, C. The growing burden of tuberculosis: global trends and interactions with the HIV epidemic. Arch. Intern. Med., 2003, 163(9), 1009-1021.
[http://dx.doi.org/10.1001/archinte.163.9.1009] [PMID: 12742798]
[324]
Gomez, J.E.; McKinney, J.D.M. tuberculosis persistence, latency, and drug tolerance. Tuberculosis (Edinb.), 2004, 84(1-2), 29-44.
[http://dx.doi.org/10.1016/j.tube.2003.08.003] [PMID: 14670344]
[325]
Smith, C.V.; Huang, C.; Miczak, A.; Russell, D.G.; Sacchettini, J.C.; Höner zu Bentrup, K. Biochemical and structural studies of malate synthase from Mycobacterium tuberculosis. J. Biol. Chem., 2003, 278(3), 1735-1743.
[http://dx.doi.org/10.1074/jbc.M209248200] [PMID: 12393860]
[326]
Centers for Disease Control and Prevention. Emergence of Mycobacterium tuberculosis with extensive resistance to second-line drugs worldwide. MMWR Morb. Mortal. Wkly. Rep., 2006, 55, 301-305.
[327]
Garay, S.M. In Tuberculosis, W.N.A.G; Rom, S.M., Ed.; Lippincott Williams & Wilkins: Philadelphia, 2004, pp. 345-394.
[328]
Musser, J.M. Antimicrobial agent resistance in mycobacteria: molecular genetic insights. Clin. Microbiol. Rev., 1995, 8(4), 496-514.
[http://dx.doi.org/10.1128/CMR.8.4.496] [PMID: 8665467]
[329]
Migliori, G.B.; Centis, R.; D’Ambrosio, L.; Spanevello, A.; Borroni, E.; Cirillo, D.M.; Sotgiu, G. Totally drug-resistant and extremely drug-resistant tuberculosis: the same disease? Clin. Infect. Dis., 2012, 54(9), 1379-1380.
[http://dx.doi.org/10.1093/cid/cis128] [PMID: 22492321]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy