Generic placeholder image

Current Cardiology Reviews

Editor-in-Chief

ISSN (Print): 1573-403X
ISSN (Online): 1875-6557

Mini-Review Article

Elucidating the Role of Cardiac Biomarkers in COVID-19: A Narrative Evaluation with Clinical Standpoints and a Pragmatic Approach for Therapeutics

Author(s): Sukhes Mukherjee*, Suman Kumar Ray, Ashwin Kotnis and Jagat R Kanwar

Volume 18, Issue 4, 2022

Published on: 31 March, 2022

Article ID: e220222201354 Pages: 8

DOI: 10.2174/1573403X18666220222144002

Price: $65

Abstract

With the incidence of the unabated spreading of the COVID-19 (coronavirus disease 2019) pandemic with an increase in heart-related complications in COVID-19 patients, laboratory investigations on general health and diseases of heart have greater importance. The production of a higher level of clots in the blood in COVID-19 individuals carries a high risk of severe lethal pneumonia, pulmonary embolism, or widespread thromboembolism. The COVID-19 pandemic has raised awareness regarding the severe consequences for the cardiac system that might cause due to severe acute respiratory distress syndrome (SARS-CoV-2). COVID-19 causes acute respiratory distress syndrome (ARDS), acute myocardial infarction, venous thromboembolism, and acute heart failure in people with preexisting cardiac illness. However, as COVID-19 is primarily a respiratory infectious disease, there is still a lot of debate on whether and how cardiac biomarkers should be used in COVID-19 patients. Considering the most practical elucidation of cardiac biomarkers in COVID-19, it is important to note that recent findings on the prognostic role of cardiac biomarkers in COVID-19 patients are similar to those found in pneumonia and ARDS studies. The use of natriuretic peptides and cardiac troponin concentrations as quantitative variables should help with COVID-19/pneumonia risk classification and ensure that these biomarkers sustain their high diagnostic precision for acute myocardial infarction and heart failure. Serial assessment of D-dimers will possibly aid clinicians in the assortment of patients for venous thromboembolism imaging in addition to the increase of anticoagulation from preventive to marginally higher or even therapeutic dosages because of the central involvement of endothelitis and thromboembolism in COVID-19. Therefore, cardiac biomarkers are produced in this phase because of some pathological processes; this review will focus on major cardiac biomarkers and their significant role in COVID-19.

Keywords: COVID-19, cardiac biomarkers, myocardial infarction, acute heart failure, venous thromboembolism, cardiac stress.

Graphical Abstract
[1]
Nishiga M, Wang DW, Han Y, Lewis DB, Wu JC. COVID-19 and cardiovascular disease: From basic mechanisms to clini-cal perspectives. Nat Rev Cardiol 2020; 17(9): 543-58.
[http://dx.doi.org/10.1038/s41569-020-0413-9] [PMID: 32690910]
[2]
Mueller C, Giannitsis E, Jaffe AS, et al. Cardiovascular bi-omarkers in patients with COVID-19. Eur Heart J Acute Cardiovasc Care 2021; 10(3): 310-9.
[http://dx.doi.org/10.1093/ehjacc/zuab009] [PMID: 33655301]
[3]
Gibson PG, Qin L, Puah SH. COVID-19 acute respiratory distress syndrome (ARDS): Clinical features and differences from typical pre-COVID-19 ARDS. Med J Aust 2020; 213(2): 54-56.e1.
[http://dx.doi.org/10.5694/mja2.50674] [PMID: 32572965]
[4]
Yu JS, Pan NN, Chen RD, Zeng LC, Yang HK, Li H. Cardiac biomarker levels and their prognostic values in COVID-19 patients with or without concomitant cardiac disease. Front Cardiovasc Med 2021; 7: 599096.
[http://dx.doi.org/10.3389/fcvm.2020.599096] [PMID: 33553255]
[5]
Zheng YY, Ma YT, Zhang JY, Xie X. COVID-19 and the cardiovascular system. Nat Rev Cardiol 2020; 17(5): 259-60.
[http://dx.doi.org/10.1038/s41569-020-0360-5] [PMID: 32139904]
[6]
Guzik TJ, Mohiddin SA, Dimarco A, et al. COVID-19 and the cardiovascular system: Implications for risk assessment, di-agnosis, and treatment options. Cardiovasc Res 2020; 116(10): 1666-87.
[http://dx.doi.org/10.1093/cvr/cvaa106] [PMID: 32352535]
[7]
Sabatino J, De Rosa S, Di Salvo G, Indolfi C. Impact of cardi-ovascular risk profile on COVID-19 outcome. A meta-analysis. PLoS One 2020; 15(8): e0237131.
[http://dx.doi.org/10.1371/journal.pone.0237131] [PMID: 32797054]
[8]
Inciardi RM, Lupi L, Zaccone G, et al. Cardiac involvement in a patient with coronavirus disease 2019 (COVID-19). JAMA Cardiol 2020; 5(7): 819-24.
[http://dx.doi.org/10.1001/jamacardio.2020.1096] [PMID: 32219357]
[9]
Ray SK, Mukherjee S. Understanding the role of corona virus based on current scientific evidence - a review with emerging importance in pandemic. Rec Pat Antiinfect Drug Discov 2020; 15(2): 89-103.
[http://dx.doi.org/10.2174/1574891X15999200918144833] [PMID: 32957894]
[10]
Cui J, Li F, Shi ZL. Origin and evolution of pathogenic coro-naviruses. Nat Rev Microbiol 2019; 17(3): 181-92.
[http://dx.doi.org/10.1038/s41579-018-0118-9] [PMID: 30531947]
[11]
Du L, He Y, Zhou Y, Liu S, Zheng BJ, Jiang S. The spike protein of SARS-CoV--a target for vaccine and therapeutic development. Nat Rev Microbiol 2009; 7(3): 226-36.
[http://dx.doi.org/10.1038/nrmicro2090] [PMID: 19198616]
[12]
Hoffmann M, Kleine-Weber H, Schroeder S, et al. SARS- CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell 2020; 181(2): 271-280.e8.
[http://dx.doi.org/10.1016/j.cell.2020.02.052] [PMID: 32142651]
[13]
Bar-On YM, Flamholz A, Phillips R, Milo R. SARS-CoV-2 (COVID-19) by the numbers. eLife 2020; 9: e57309.
[http://dx.doi.org/10.7554/eLife.57309] [PMID: 32228860]
[14]
Zhou P, Yang XL, Wang XG, et al. Addendum: A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature 2020; 588(7836): E6.
[http://dx.doi.org/10.1038/s41586-020-2951-z] [PMID: 33199918]
[15]
Wu F, Zhao S, Yu B, et al. A new coronavirus associated with human respiratory disease in China. Nature 2020; 579(7798): 265-9.
[http://dx.doi.org/10.1038/s41586-020-2008-3] [PMID: 32015508]
[16]
Wrapp D, Wang N, Corbett KS, et al. Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation. Science 2020; 367(6483): 1260-3.
[http://dx.doi.org/10.1126/science.abb2507] [PMID: 32075877]
[17]
Walls AC, Park YJ, Tortorici MA, Wall A, McGuire AT, Veesler D. Structure, function, and antigenicity of the SARS- CoV-2 spike glycoprotein. Cell 2020; 181(2): 281-292.e6.
[http://dx.doi.org/10.1016/j.cell.2020.02.058] [PMID: 32155444]
[18]
Wan Y, Shang J, Graham R, Baric RS, Li F. Receptor recogni-tion by the novel coronavirus from Wuhan: An analysis based on decade- long structural studies of SARS corona-virus. J Virol 2020; 94(7): e00127-20.
[http://dx.doi.org/10.1128/JVI.00127-20] [PMID: 31996437]
[19]
Huang Y, Yang C, Xu XF, Xu W, Liu SW. Structural and functional properties of SARS-CoV-2 spike protein: Potential antivirus drug development for COVID-19. Acta Pharmacol Sin 2020; 41(9): 1141-9.
[http://dx.doi.org/10.1038/s41401-020-0485-4] [PMID: 32747721]
[20]
Belouzard S, Millet JK, Licitra BN, Whittaker GR. Mecha-nisms of coronavirus cell entry mediated by the viral spike protein. Viruses 2012; 4(6): 1011-33.
[http://dx.doi.org/10.3390/v4061011] [PMID: 22816037]
[21]
V’kovski P, Kratzel A, Steiner S, Stalder H, Thiel V. Corona-virus biology and replication: Implications for SARS-CoV-2. Nat Rev Microbiol 2021; 19(3): 155-70.
[http://dx.doi.org/10.1038/s41579-020-00468-6] [PMID: 33116300]
[22]
Trougakos IP, Stamatelopoulos K, Terpos E, et al. Insights to SARS-CoV-2 life cycle, pathophysiology, and rationalized treatments that target COVID-19 clinical complications. J Biomed Sci 2021; 28(1): 9.
[http://dx.doi.org/10.1186/s12929-020-00703-5] [PMID: 33435929]
[23]
García LF. Immune Response, Inflammation, and the Clinical Spectrum of COVID-19. Front Immunol 2020; 11: 1441.
[http://dx.doi.org/10.3389/fimmu.2020.01441] [PMID: 32612615]
[24]
Yazdanpanah F, Hamblin MR, Rezaei N. The immune system and COVID-19: Friend or foe? Life Sci 2020; 256: 117900.
[http://dx.doi.org/10.1016/j.lfs.2020.117900] [PMID: 32502542]
[25]
Zaim S, Chong JH, Sankaranarayanan V, Harky A. COVID-19 and multiorgan response. Curr Probl Cardiol 2020; 45(8): 100618.
[http://dx.doi.org/10.1016/j.cpcardiol.2020.100618] [PMID: 32439197]
[26]
Magadum A, Kishore R. Cardiovascular manifestations of COVID-19 infection. Cells 2020; 9(11): 2508.
[http://dx.doi.org/10.3390/cells9112508] [PMID: 33228225]
[27]
Merad M, Martin JC. Pathological inflammation in patients with COVID-19: A key role for monocytes and macrophages. Nat Rev Immunol 2020; 20(6): 355-62.
[http://dx.doi.org/10.1038/s41577-020-0331-4] [PMID: 32376901]
[28]
Cameli M, Pastore MC, Mandoli GE, et al. COVID-19 and acute coronary syndromes: Current data and future implica-tions. Front Cardiovasc Med 2021; 7: 593496.
[http://dx.doi.org/10.3389/fcvm.2020.593496] [PMID: 33585577]
[29]
Saleh M, Ambrose JA. Understanding myocardial infarction. F1000 Res 7: F1000 Faculty Rev-1378.2018;
[30]
Ni W, Yang X, Yang D, et al. Role of angiotensin-converting enzyme 2 (ACE2) in COVID-19. Crit Care 2020; 24(1): 422.
[http://dx.doi.org/10.1186/s13054-020-03120-0] [PMID: 32660650]
[31]
Rey JR, Caro-Codón J, Rosillo SO, et al. Heart failure in COVID-19 patients: Prevalence, incidence and prognostic im-plications. Eur J Heart Fail 2020; 22(12): 2205-15.
[http://dx.doi.org/10.1002/ejhf.1990] [PMID: 32833283]
[32]
Pranata R, Huang I, Lukito AA, Raharjo SB. Elevated N-terminal pro-brain natriuretic peptide is associated with in-creased mortality in patients with COVID-19: Systematic re-view and meta-analysis. Postgrad Med J 2020; 96(1137): 387-91.
[http://dx.doi.org/10.1136/postgradmedj-2020-137884] [PMID: 32434874]
[33]
Liu K, Fang YY, Deng Y, et al. Clinical characteristics of novel coronavirus cases in tertiary hospitals in Hubei Prov-ince. Chin Med J (Engl) 2020; 133(9): 1025-31.
[http://dx.doi.org/10.1097/CM9.0000000000000744] [PMID: 32044814]
[34]
Guo T, Fan Y, Chen M, et al. Cardiovascular implications of fatal outcomes of patients with coronavirus disease 2019 (COVID-19). JAMA Cardiol 2020; 5(7): 811-8.
[http://dx.doi.org/10.1001/jamacardio.2020.1017] [PMID: 32219356]
[35]
De Rosa S, Spaccarotella C, Basso C, et al. Reduction of hos-pitalizations for myocardial infarction in Italy in the COVID-19 era. Eur Heart J 2020; 41(22): 2083-8.
[http://dx.doi.org/10.1093/eurheartj/ehaa409] [PMID: 32412631]
[36]
Bikdeli B, Madhavan MV, Jimenez D, et al. COVID-19 and thrombotic or thromboembolic disease: Implications for pre-vention, antithrombotic therapy, and follow- up: JACC stateof- the- art review. J Am Coll Cardiol 2020; 75(23): 2950-73.
[http://dx.doi.org/10.1016/j.jacc.2020.04.031] [PMID: 32311448]
[37]
Huang C, Wang Y, Li X, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet 2020; 395(10223): 497-506.
[http://dx.doi.org/10.1016/S0140-6736(20)30183-5] [PMID: 31986264]
[38]
Madjid M, Safavi-Naeini P, Solomon SD, Vardeny O. Poten-tial effects of coronaviruses on the cardiovascular system: A review. JAMA Cardiol 2020; 5(7): 831-40.
[http://dx.doi.org/10.1001/jamacardio.2020.1286] [PMID: 32219363]
[39]
Jiang F, Yang J, Zhang Y, et al. Angiotensin-converting en-zyme 2 and angiotensin 1-7: Novel therapeutic targets. Nat Rev Cardiol 2014; 11(7): 413-26.
[http://dx.doi.org/10.1038/nrcardio.2014.59] [PMID: 24776703]
[40]
Junapudi SS, Junapudi S, Ega K, Chidipi B. Major cardiac concerns in therapy and vaccinations for COVID-19. Metabol Open 2021; 11: 100102.
[http://dx.doi.org/10.1016/j.metop.2021.100102] [PMID: 34222851]
[41]
Puntmann VO, Carerj ML, Wieters I, et al. Outcomes of car-diovascular magnetic resonance imaging in patients recently recovered from coronavirus disease 2019 (COVID-19). JAMA Cardiol 2020; 5(11): 1265-73.
[http://dx.doi.org/10.1001/jamacardio.2020.3557] [PMID: 32730619]
[42]
Aydin S, Ugur K, Aydin S. Sahin İ, Yardim M. Biomarkers in acute myocardial infarction: Current perspectives. Vasc Health Risk Manag 2019; 15: 1-10.
[http://dx.doi.org/10.2147/VHRM.S166157] [PMID: 30697054]
[43]
Vandenberg O, Martiny D, Rochas O, van Belkum A, Ko-zlakidis Z. Considerations for diagnostic COVID-19 tests. Nat Rev Microbiol 2021; 19(3): 171-83.
[http://dx.doi.org/10.1038/s41579-020-00461-z] [PMID: 33057203]
[44]
Shang Y, Pan C, Yang X, et al. Management of critically ill patients with COVID-19 in ICU: Statement from front-line in-tensive care experts in Wuhan, China. Ann Intensive Care 2020; 10(1): 73.
[http://dx.doi.org/10.1186/s13613-020-00689-1] [PMID: 32506258]
[45]
Myhre PL, Prebensen C, Strand H, et al. Growth differentia-tion factor 15 provides prognostic information superior to es-tablished cardiovascular and inflammatory biomarkers in un-selected patients hospitalized with COVID-19. Circulation 2020; 142(22): 2128-37.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.120.050360] [PMID: 33058695]
[46]
Arkoumani M, Papadopoulou-Marketou N, Nicolaides NC, Kanaka-Gantenbein C, Tentolouris N, Papassotiriou I. The clinical impact of growth differentiation factor-15 in heart disease: A 2019 update. Crit Rev Clin Lab Sci 2020; 57(2): 114-25.
[http://dx.doi.org/10.1080/10408363.2019.1678565] [PMID: 31663791]
[47]
Ferreira-Gomes M, Kruglov A, Durek P, et al. SARS-CoV-2 in severe COVID-19 induces a TGF-β-dominated chronic immune response that does not target itself. Nat Commun 2021; 12(1): 1961.
[http://dx.doi.org/10.1038/s41467-021-22210-3] [PMID: 33785765]
[48]
Shah AS, Anand A, Sandoval Y, et al. High-sensitivity cardi-ac troponin I at presentation in patients with suspected acute coronary syndrome: A cohort study. Lancet 2015; 386(10012): 2481-8.
[http://dx.doi.org/10.1016/S0140-6736(15)00391-8] [PMID: 26454362]
[49]
Wang XY, Zhang F, Zhang C, Zheng LR, Yang J. The bi-omarkers for acute myocardial infarction and heart failure. BioMed Res Int 2020; 2020: 2018035.
[http://dx.doi.org/10.1155/2020/2018035] [PMID: 32016113]
[50]
Tsai SH, Lin YY, Chu SJ, Hsu CW, Cheng SM. Interpretation and use of natriuretic peptides in non-congestive heart failure settings. Yonsei Med J 2010; 51(2): 151-63.
[http://dx.doi.org/10.3349/ymj.2010.51.2.151] [PMID: 20191004]
[51]
Gao L, Jiang D, Wen XS, et al. Prognostic value of NT-proBNP in patients with severe COVID-19. Respir Res 2020; 21(1): 83.
[http://dx.doi.org/10.1186/s12931-020-01352-w] [PMID: 32293449]
[52]
Long H, Nie L, Xiang X, et al. D-dimer and prothrombin time are the significant indicators of severe COVID-19 and poor prognosis. BioMed Res Int 2020; 2020: 6159720.
[http://dx.doi.org/10.1155/2020/6159720] [PMID: 32596339]
[53]
Abou-Ismail MY, Diamond A, Kapoor S, Arafah Y, Nayak L. The hypercoagulable state in COVID-19: Incidence, patho-physiology, and management. Thromb Res 2020; 194: 101-15.
[http://dx.doi.org/10.1016/j.thromres.2020.06.029] [PMID: 32788101]
[54]
Ahmed S, Zimba O, Gasparyan AY. Thrombosis in Corona-virus disease 2019 (COVID-19) through the prism of Vir-chow’s triad. Clin Rheumatol 2020; 39(9): 2529-43.
[http://dx.doi.org/10.1007/s10067-020-05275-1] [PMID: 32654082]
[55]
Tassiopoulos AK, Mofakham S, Rubano JA, et al. D-dimer-driven anticoagulation reduces mortality in intubated COVID-19 patients: A cohort study with a propensity-matched analy-sis. Front Med (Lausanne) 2021; 8: 631335.
[http://dx.doi.org/10.3389/fmed.2021.631335] [PMID: 33634153]
[56]
Spiezia L, Boscolo A, Poletto F, et al. COVID-19-related severe hypercoagulability in patients admitted to intensive care unit for acute respiratory failure. Thromb Haemost 2020; 120(6): 998-1000.
[http://dx.doi.org/10.1055/s-0040-1710018] [PMID: 32316063]
[57]
Veldtman GR, Pirisi M, Storti E, et al. Management principles in patients with COVID-19: Perspectives from a growing global experience with emphasis on cardiovascular surveil-lance. Open Heart 2020; 7(2): e001357.
[http://dx.doi.org/10.1136/openhrt-2020-001357] [PMID: 33168640]
[58]
Babuin L, Jaffe AS. Troponin: The biomarker of choice for the detection of cardiac injury. CMAJ 2005; 173(10): 1191-202.
[http://dx.doi.org/10.1503/cmaj/051291] [PMID: 16275971]
[59]
Huang I, Pranata R, Lim MA, Oehadian A, Alisjahbana B. C-reactive protein, procalcitonin, D-dimer, and ferritin in severe coronavirus disease-2019: A meta-analysis. Ther Adv Respir Dis 2020; 14: 1753466620937175.
[http://dx.doi.org/10.1177/1753466620937175] [PMID: 32615866]
[60]
Taher ZA, Kinsara AJ. The myth of myocardial infarction with normal coronary angiography. Cureus 2021; 13(3): e13662.
[http://dx.doi.org/10.7759/cureus.13662] [PMID: 33824813]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy