Generic placeholder image

Current Diabetes Reviews

Editor-in-Chief

ISSN (Print): 1573-3998
ISSN (Online): 1875-6417

Review Article

Diverse Approaches toward Application of Dental Pulp Stem Cells from Human Permanent and Deciduous Teeth in the Treatment of Diabetes

Author(s): Mohammad Mahboob Kanafi* and Ramesh Ramchandra Bhonde

Volume 20, Issue 1, 2024

Published on: 04 May, 2023

Article ID: e210323214822 Pages: 8

DOI: 10.2174/1573399819666230321120734

Price: $65

Abstract

Background: Diabetes Mellitus is defined by hyperglycemia, a condition which is the result of defects in insulin secretion, insulin action, or both. Evidence suggest that islet transplantation is a promising treatment approach, but the shortage of sources of insulin-producing cells is a major problem. Ethical concerns and the limited availability of most stem cells have led scientists to concentrate on mesenchymal stem cells, which are found in stem cells niches of all organs of the body including dental tissues on which dental pulp stem cells (DPSCs) and stem cells from exfoliated deciduous teeth (SHED) are the easiest accessible sources.

Highlights: Generally, SHED show characteristics similar to DPSCs; however, its proliferative and clonogenic capacities are higher. It has been proved that these two types of dental mesenchymal stem cells are able to produce islet-like cells capable of insulin secretion. In this review, we discuss various conducted approaches on the application of DPSCs and SHED in the treatment of diseases associated with diabetes such as; pancreatic differentiation cocktails, 2D and 3D culture techniques, factors that affect pancreatic differentiation, in vivo studies (direct administration of DPSCs and SHED, administration of their secretome and encapsulation of their-derived insulin producing cells), clinical trials and future perspectives of these approaches.

Conclusion: Dental stem cell-based therapy has been considered as a promising therapeutic procedure for treatment of diabetes. Major advances in research on the derivation of insulin producing cells from DPSCs and SHED have enhanced our chance of re-establishing glucose-responsive insulin secretion in patients with diabetes.

Keywords: DPSCs, SHED, diabetes, MSCs, 3D culture, hyperglycemia.

[1]
Schmidt AM. Highlighting diabetes mellitus. Arterioscler Thromb Vasc Biol 2018; 38(1): e1-8.
[http://dx.doi.org/10.1161/ATVBAHA.117.310221] [PMID: 29282247]
[2]
Woldaregay AZ, Årsand E, Walderhaug S, et al. Data-driven modeling and prediction of blood glucose dynamics: Machine learning applications in type 1 diabetes. Artif Intell Med 2019; 98: 109-34.
[http://dx.doi.org/10.1016/j.artmed.2019.07.007] [PMID: 31383477]
[3]
Jarrige M, Frank E, Herardot E, et al. The future of regenerative medicine: Cell therapy using pluripotent stem cells and acellular therapies based on extracellular vesicles. Cells 2021; 10(2): 240.
[http://dx.doi.org/10.3390/cells10020240] [PMID: 33513719]
[4]
Lanzoni G, Ricordi C. Transplantation of stem cell-derived pancreatic islet cells. Nat Rev Endocrinol 2021; 17(1): 7-8.
[http://dx.doi.org/10.1038/s41574-020-00430-9] [PMID: 33087845]
[5]
Chen S, Du K, Zou C. Current progress in stem cell therapy for type 1 diabetes mellitus. Stem Cell Res Ther 2020; 11(1): 275.
[http://dx.doi.org/10.1186/s13287-020-01793-6] [PMID: 32641151]
[6]
Kanafi MM, Rajeshwari YB, Gupta S, et al. Transplantation of islet-like cell clusters derived from human dental pulp stem cells restores normoglycemia in diabetic mice. Cytotherapy 2013; 15(10): 1228-36.
[http://dx.doi.org/10.1016/j.jcyt.2013.05.008] [PMID: 23845187]
[7]
Zhou L, Liu W, Wu Y, Sun W, Dörfer CE, Fawzy El-Sayed KM. Oral mesenchymal stem/progenitor cells: The immunomodulatory masters. Stem Cells Int 2020; 2020: 1-16.
[http://dx.doi.org/10.1155/2020/1327405] [PMID: 32184830]
[8]
Gan L, Liu Y, Cui D, Pan Y, Zheng L, Wan M. Dental tissue-derived human mesenchymal stem cells and their potential in therapeutic application. Stem Cells Int 2020; 2020: 1-17.
[http://dx.doi.org/10.1155/2020/8864572] [PMID: 32952572]
[9]
Gronthos S, Mankani M, Brahim J, Robey PG, Shi S. Postnatal human dental pulp stem cells (DPSCs) in vitro and in vivo. Proc Natl Acad Sci 2000; 97(25): 13625-30.
[http://dx.doi.org/10.1073/pnas.240309797] [PMID: 11087820]
[10]
Miura M, Gronthos S, Zhao M, et al. SHED: Stem cells from human exfoliated deciduous teeth. Proc Natl Acad Sci USA 2003; 100(10): 5807-12.
[http://dx.doi.org/10.1073/pnas.0937635100] [PMID: 12716973]
[11]
Ueda T, Inden M, Ito T, Kurita H, Hozumi I. Characteristics and therapeutic potential of dental pulp stem cells on neurodegenerative diseases. Front Neurosci 2020; 14: 407.
[http://dx.doi.org/10.3389/fnins.2020.00407] [PMID: 32457568]
[12]
Aydin S, Şahin F. Stem cells derived from dental tissues Adv Exp Med Biol 2019; 1144: 123-32.
[http://dx.doi.org/10.1007/5584_2018_333] [PMID: 30635857]
[13]
Jauković A, Kukolj T, Trivanović D et al,. Modulating stemness of mesenchymal stem cells from exfoliated deciduous and permanent teeth by IL‐17 and bFGF. J Cell Physiol 2021; 236(11): 7322-41.
[http://dx.doi.org/10.1002/jcp.30399] [PMID: 33934350]
[14]
Shivakumar SB, Lee HJ, Son YB, et al. In vitro differentiation of single donor derived human dental mesenchymal stem cells into pancreatic β cell-like cells. Biosci Rep 2019; 39(5): BSR20182051.
[http://dx.doi.org/10.1042/BSR20182051] [PMID: 31015367]
[15]
Carnevale G, Pisciotta A, Bertoni L, Vallarola A, Bertani G, Mecugni D. Neural crest derived stem cells from dental pulp and tooth-associated stem cells for peripheral nerve regeneration. Neural Regen Res 2020; 15(3): 373-81.
[http://dx.doi.org/10.4103/1673-5374.266043] [PMID: 31571644]
[16]
Huang CYC, Pelaez D, Bendala JD, Garcia-Godoy F, Cheung HS. Plasticity of stem cells derived from adult periodontal ligament. Regen Med 2009; 4(6): 809-21.
[http://dx.doi.org/10.2217/rme.09.55] [PMID: 19903001]
[17]
Govindasamy V, Ronald VS, Abdullah AN, et al. Differentiation of dental pulp stem cells into islet-like aggregates. J Dent Res 2011; 90(5): 646-52.
[http://dx.doi.org/10.1177/0022034510396879] [PMID: 21335539]
[18]
Liu X, Qin J, Chang M, et al. Enhanced differentiation of human pluripotent stem cells into pancreatic endocrine cells in 3D culture by inhibition of focal adhesion kinase. Stem Cell Res Ther 2020; 11(1): 488.
[http://dx.doi.org/10.1186/s13287-020-02003-z] [PMID: 33198821]
[19]
Kuncorojakti S, Rodprasert W, Yodmuang S, et al. Alginate/Pluronic F127-based encapsulation supports viability and functionality of human dental pulp stem cell-derived insulin-producing cells. J Biol Eng 2020; 14(1): 23.
[http://dx.doi.org/10.1186/s13036-020-00246-1] [PMID: 32855655]
[20]
Dorrell C, Abraham SL, Lanxon-Cookson KM, Canaday PS, Streeter PR, Grompe M. Isolation of major pancreatic cell types and long-term culture-initiating cells using novel human surface markers. Stem Cell Res 2008; 1(3): 183-94.
[http://dx.doi.org/10.1016/j.scr.2008.04.001] [PMID: 19383399]
[21]
Xu B, Fan D, Zhao Y, et al. Three-dimensional culture promotes the differentiation of human dental pulp mesenchymal stem cells into insulin-producing cells for improving the diabetes therapy. Front Pharmacol 2020; 10: 1576.
[http://dx.doi.org/10.3389/fphar.2019.01576] [PMID: 32038250]
[22]
Mo Y, Wang Z, Gao J, et al. Comparative study of three types of mesenchymal stem cell to differentiate into pancreatic β-like cells in vitro. Exp Ther Med 2021; 22(3): 936.
[http://dx.doi.org/10.3892/etm.2021.10368] [PMID: 34335885]
[23]
Okada M, Imai T, Yaegaki K, Ishkitiev N, Tanaka T. Regeneration of insulin-producing pancreatic cells using a volatile bioactive compound and human teeth. J Breath Res 2014; 8(4): 046004.
[http://dx.doi.org/10.1088/1752-7155/8/4/046004] [PMID: 25358383]
[24]
Zhang Y, Yu J, Ren K, Zuo J, Ding J, Chen X. Thermosensitive hydrogels as scaffolds for cartilage tissue engineering. Biomacromolecules 2019; 20(4): 1478-92.
[http://dx.doi.org/10.1021/acs.biomac.9b00043] [PMID: 30843390]
[25]
Yagi Mendoza H, Yokoyama T, Tanaka T, Ii H, Yaegaki K. Regeneration of insulin-producing islets from dental pulp stem cells using a 3D culture system. Regen Med 2018; 13(6): 673-87.
[http://dx.doi.org/10.2217/rme-2018-0074] [PMID: 30028236]
[26]
Ravi M, Paramesh V, Kaviya SR, Anuradha E, Solomon FDP. 3D cell culture systems: Advantages and applications. J Cell Physiol 2015; 230(1): 16-26.
[http://dx.doi.org/10.1002/jcp.24683] [PMID: 24912145]
[27]
Llacua LA, Faas MM, de Vos P. Extracellular matrix molecules and their potential contribution to the function of transplanted pancreatic islets. Diabetologia 2018; 61(6): 1261-72.
[http://dx.doi.org/10.1007/s00125-017-4524-8] [PMID: 29306997]
[28]
Cechin S, Álvarez-Cubela S, Giraldo JA, et al. Influence of in vitro and in vivo oxygen modulation on β cell differentiation from human embryonic stem cells. Stem Cells Transl Med 2014; 3(3): 277-89.
[http://dx.doi.org/10.5966/sctm.2013-0160] [PMID: 24375542]
[29]
Xu Y, Chen J, Zhou H, et al. Effects and mechanism of stem cells from human exfoliated deciduous teeth combined with hyperbaric oxygen therapy in type 2 diabetic rats. Clinics 2020; 75: e1656.
[http://dx.doi.org/10.6061/clinics/2020/e1656] [PMID: 32520222]
[30]
Wang L, Zhao S, Mao H, Zhou L, Wang ZJ, Wang HX. Autologous bone marrow stem cell transplantation for the treatment of type 2 diabetes mellitus. Chin Med J 2011; 124(22): 3622-8.
[PMID: 22340214]
[31]
Matei IV, Ii H, Yaegaki K. Hydrogen sulfide enhances pancreatic β-cell differentiation from human tooth under normal and glucotoxic conditions. Regen Med 2017; 12(2): 125-41.
[http://dx.doi.org/10.2217/rme-2016-0142] [PMID: 27925870]
[32]
Shin TH, Kim HS, Choi S, Kang KS. Mesenchymal stem cell therapy for inflammatory skin diseases: Clinical potential and mode of action. Int J Mol Sci 2017; 18(2): 244.
[http://dx.doi.org/10.3390/ijms18020244] [PMID: 28125063]
[33]
Haber T, Baruch L, Machluf M. Ultrasound-mediated mesenchymal stem cells transfection as a targeted cancer therapy platform. Sci Rep 2017; 7(1): 42046.
[http://dx.doi.org/10.1038/srep42046] [PMID: 28169315]
[34]
Si Y, Zhao Y, Hao H, et al. Infusion of mesenchymal stem cells ameliorates hyperglycemia in type 2 diabetic rats: Identification of a novel role in improving insulin sensitivity. Diabetes 2012; 61(6): 1616-25.
[http://dx.doi.org/10.2337/db11-1141] [PMID: 22618776]
[35]
Ezquer F, Ezquer M, Simon V, Conget P. The antidiabetic effect of MSCs is not impaired by insulin prophylaxis and is not improved by a second dose of cells. PLoS One 2011; 6(1): e16566.
[http://dx.doi.org/10.1371/journal.pone.0016566] [PMID: 21304603]
[36]
Rao N, Wang X, Zhai Y, et al. Stem cells from human exfoliated deciduous teeth ameliorate type II diabetic mellitus in Goto-Kakizaki rats. Diabetol Metab Syndr 2019; 11(1): 22.
[http://dx.doi.org/10.1186/s13098-019-0417-y] [PMID: 30858895]
[37]
Ben-Ami E, Berrih-Aknin S, Miller A. Mesenchymal stem cells as an immunomodulatory therapeutic strategy for autoimmune diseases. Autoimmun Rev 2011; 10(7): 410-5.
[http://dx.doi.org/10.1016/j.autrev.2011.01.005] [PMID: 21256250]
[38]
El-Kersh AOFO, El-Akabawy G, Al-Serwi RH. Transplantation of human dental pulp stem cells in streptozotocin-induced diabetic rats. Anat Sci Int 2020; 95(4): 523-39.
[http://dx.doi.org/10.1007/s12565-020-00550-2] [PMID: 32476103]
[39]
Li W, Jiao X, Song J, et al. Therapeutic potential of stem cells from human exfoliated deciduous teeth infusion into patients with type 2 diabetes depends on basal lipid levels and islet function. Stem Cells Transl Med 2021; 10(7): 956-67.
[http://dx.doi.org/10.1002/sctm.20-0303] [PMID: 33660433]
[40]
Li N, Hua J. Interactions between mesenchymal stem cells and the immune system. Cell Mol Life Sci 2017; 74(13): 2345-60.
[http://dx.doi.org/10.1007/s00018-017-2473-5] [PMID: 28214990]
[41]
Izumoto-Akita T, Tsunekawa S, Yamamoto A, et al. Secreted factors from dental pulp stem cells improve glucose intolerance in streptozotocin-induced diabetic mice by increasing pancreatic β-cell function. BMJ Open Diabetes Res Care 2015; 3(1): e000128.
[http://dx.doi.org/10.1136/bmjdrc-2015-000128] [PMID: 26504525]
[42]
Hata M, Omi M, Kobayashi Y, et al. Transplantation of human dental pulp stem cells ameliorates diabetic polyneuropathy in streptozotocin-induced diabetic nude mice: The role of angiogenic and neurotrophic factors. Stem Cell Res Ther 2020; 11(1): 236.
[http://dx.doi.org/10.1186/s13287-020-01758-9] [PMID: 32546222]
[43]
Rosa V, Dubey N, Islam I, Min KS, Nör JE. Pluripotency of stem cells from human exfoliated deciduous teeth for tissue engineering. Stem Cells Int 2016; 2016: 1-6.
[http://dx.doi.org/10.1155/2016/5957806] [PMID: 27313627]
[44]
Wu S, Wang L, Fang Y, Huang H, You X, Wu J. Advances in encapsulation and delivery strategies for islet transplantation. Adv Healthc Mater 2021; 10(20): 2100965.
[http://dx.doi.org/10.1002/adhm.202100965] [PMID: 34480420]
[45]
Desai T, Shea LD. Advances in islet encapsulation technologies. Nat Rev Drug Discov 2017; 16(5): 338-50.
[http://dx.doi.org/10.1038/nrd.2016.232] [PMID: 28008169]
[46]
Rodprasert W, Nantavisai S, Pathanachai K, Pavasant P, Osathanon T, Sawangmake C. Tailored generation of insulin producing cells from canine mesenchymal stem cells derived from bone marrow and adipose tissue. Sci Rep 2021; 11(1): 12409.
[http://dx.doi.org/10.1038/s41598-021-91774-3] [PMID: 34117315]
[47]
Kanafi MM, Pal R, Gupta PK. Phenotypic and functional comparison of optimum culture conditions for upscaling of dental pulp stem cells. Cell Biol Int 2013; 37(2): 126-36.
[http://dx.doi.org/10.1002/cbin.10021] [PMID: 23319390]
[48]
Sabbagh J, Ghassibe-Sabbagh M, Fayyad-Kazan M, et al. Differences in osteogenic and odontogenic differentiation potential of DPSCs and SHED. J Dent 2020; 101: 103413.
[http://dx.doi.org/10.1016/j.jdent.2020.103413] [PMID: 32585262]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy