Generic placeholder image

Mini-Reviews in Organic Chemistry

Editor-in-Chief

ISSN (Print): 1570-193X
ISSN (Online): 1875-6298

Review Article

Recent Progress in Synthetic Chemistry and Biological Activities of Pyrimido[ 4,5-b] Quinoline Derivatives (Part III)

Author(s): Moustafa A. Gouda*, Ameen A. Abu-Hashem*, Tahah A. Ameen, Mohammed A. Salem and Ateyatallah Aljuhani*

Volume 21, Issue 7, 2024

Published on: 20 July, 2023

Page: [779 - 792] Pages: 14

DOI: 10.2174/1570193X20666230626101436

Price: $65

Abstract

Amongst heterocyclic compounds, quinoline and pyrimidine are advantaged scaffolds that appear as significant assembly motifs for the development of new drug entities. Moreover, quinolinepyrimidine- inspired hybrids have a number of biological characteristics that are known. In addition, many pyrimido[4,5-b]quinoline ring systems (PyQs4,5-b), specifically concerning medicinal chemistry, have been reported over the past decade. The synthesis of (PyQs4,5-b) using barbituric acid, thiobarbituric acid, pyrimidine, and their derivatives is presented in this review. The preparation of PyQs4,5-b was clarified through the following chemical reactions: Friedländer, Vilsmeier-Haack formylation, Hantzsch-like reaction, and one-pot three-component reaction.

Keywords: Barbituric acid, thiobarbituric acid, vilsmeier-haack formylation, one-pot multi-component, friedländer reaction, pyrimidoquinoline.

« Previous
Graphical Abstract
[1]
Esmaili, S.; Moosavi-Zare, A.R.; Khazaei, A.; Najafi, Z. Synthesis of novel pyrimido[4,5- b]quinolines containing benzyloxy and 1, 2, 3-triazole moieties by DABCO as a basic catalyst. ACS Omega, 2022, 7(49), 45314-45324.
[http://dx.doi.org/10.1021/acsomega.2c05896] [PMID: 36530277]
[2]
Gill, C.H.; Chate, A.V.; Shinde, G.Y.; Sarkate, A.P.; Tiwari, S.V. One-pot, four-component synthesis and SAR STUDIES of spiro[pyrimido[5,4-b]quinoline-10,5′-pyrrolo[2,3-d]pyrimidine] derivatives catalyzed by β-cyclodextrin in water as potential anticancer agents. Res. Chem. Intermed., 2018, 44(7), 4029-4043.
[http://dx.doi.org/10.1007/s11164-018-3353-9]
[3]
Metwally, K.; Pratsinis, H.; Kletsas, D. Pyrimido[4,5-c]quinolin-1(2H)-ones as a novel class of antimitotic agents: Synthesis and in vitro cytotoxic activity. Eur. J. Med. Chem., 2007, 42(3), 344-350.
[http://dx.doi.org/10.1016/j.ejmech.2006.10.008] [PMID: 17141923]
[4]
Mekheimer, R.A.; Allam, S.M.; Al-Sheikh, M.A.; Moustafa, M.S.; Al-Mousawi, S.M.; Mostafa, Y.A.; Youssif, B.G.; Gomaa, H.A.; Hayallah, A.M.; Abdelaziz, M.; Sadek, K.U. Discovery of new pyrimido[5, 4-c]quinolines as potential antiproliferative agents with multitarget actions: Rapid synthesis, docking, and ADME studies. Bioorg. Chem., 2022, 121, 105693.
[http://dx.doi.org/10.1016/j.bioorg.2022.105693] [PMID: 35219045]
[5]
Garg, P.; Rawat, R.S.; Bhatt, H.; Kumar, S.; Reddy, S.R. Recent developments in the synthesis of n‐heterocyclic compounds as α‐amylase inhibitors via in vitro and in‐silico analysis: Future drugs for treating diabetes. ChemistrySelect, 2022, 7(28), e202201706.
[6]
Kotoulas, S.S. Kojić, V. V.; Bogdanović, G. M.; Koumbis, A. E. Synthesis and cytotoxic evaluation of novel pyrimidine deoxyapiothionucleosides. Bioorg. Med. Chem. Lett., 2013, 23(11), 3364-3367.
[http://dx.doi.org/10.1016/j.bmcl.2013.03.091] [PMID: 23591117]
[7]
Koga, H.; Itoh, A.; Murayama, S.; Suzue, S.; Irikura, T. Structure-activity relationships of antibacterial 6, 7-and 7, 8-disubstituted 1-alkyl-1,4-dihydro-4-oxoquinoline-3-carboxylic acids. J. Med. Chem., 1980, 23(12), 1358-1363.
[http://dx.doi.org/10.1021/jm00186a014] [PMID: 7452690]
[8]
Haemers, A.; Leysen, D.C.; Bollaert, W.; Zhang, M.Q.; Pattyn, S.R. Influence of N substitution on antimycobacterial activity of ciprofloxacin. Antimicrob. Agents Chemother., 1990, 34(3), 496-497.
[http://dx.doi.org/10.1128/AAC.34.3.496] [PMID: 2334166]
[9]
Kumada, T.; Neu, H.C. In-vitro activity of ofloxacin, a quinolone carboxylic acid compared to other quinolones and other antimicrobial agents. J. Antimicrob. Chemother., 1985, 16(5), 563-574.
[http://dx.doi.org/10.1093/jac/16.5.563] [PMID: 3865923]
[10]
You, Z.; Ran, X.; Dai, Y.; Ran, Y. Clioquinol, an alternative antimicrobial agent against common pathogenic microbe. J. Mycol. Med., 2018, 28(3), 492-501.
[http://dx.doi.org/10.1016/j.mycmed.2018.03.007] [PMID: 29650464]
[11]
Kumbhar, D.; Chandam, D.; Patil, R.; Jadhav, S.; Patil, D.; Patravale, A.; Deshmukh, M. Synthesis and Antimicrobial Activity of Novel Derivatives of 7-aryl-10-thioxo-7, 10, 11, 12 - tertahydro-9 H -benzo[ H] pyrimido[4,5- b]quinoline-8-one. J. Heterocycl. Chem., 2018, 55(3), 692-698.
[http://dx.doi.org/10.1002/jhet.3089]
[12]
Alqasoumi, S.I.; Al-Taweel, A.M.; Alafeefy, A.M.; Noaman, E.; Ghorab, M.M. Novel quinolines and pyrimido[4,5-b]quinolines bearing biologically active sulfonamide moiety as a new class of antitumor agents. Eur. J. Med. Chem., 2010, 45(2), 738-744.
[http://dx.doi.org/10.1016/j.ejmech.2009.11.021] [PMID: 19944497]
[13]
Eghtedari, M.; Azimzadeh Arani, M.; Sarrafi, Y.; Shafiei, M.; Alimohammadi, K.; Safari, F.; Foroumadi, A. Synthesis and antitumor activity evaluation of novel pyrimidoquinoline derivatives. Polycycl. Aromat. Compd., 2022, 42(7), 4359-4373.
[http://dx.doi.org/10.1080/10406638.2021.1892778]
[14]
Ali, H.I.; Tomita, K.; Akaho, E.; Kambara, H.; Miura, S.; Hayakawa, H.; Ashida, N.; Kawashima, Y.; Yamagishi, T.; Ikeya, H.; Yoneda, F.; Nagamatsu, T. Antitumor studies. Part 1: Design, synthesis, antitumor activity, and AutoDock study of 2-deoxo-2-phenyl-5-deazaflavins and 2-deoxo-2-phenylflavin-5-oxides as a new class of antitumor agents. Bioorg. Med. Chem., 2007, 15(1), 242-256.
[http://dx.doi.org/10.1016/j.bmc.2006.09.063] [PMID: 17049252]
[15]
Długosz, A.; Duś, D. Synthesis and anticancer properties of pyrimido[4,5-b]quinolines. Farmaco, 1996, 51(5), 367-374.
[PMID: 8767847]
[16]
de Oliveira, C. Brum, J.; Neto, D.C.F.; de Almeida, J.S.F.D.; Lima, J.A.; Kuca, K.; França, T.C.C.; Figueroa-Villar, J.D.; Figueroa-Villar, J.D. Synthesis of new quinoline-piperonal hybrids as potential drugs against Alzheimer’s disease. Int. J. Mol. Sci., 2019, 20(16), 3944.
[http://dx.doi.org/10.3390/ijms20163944] [PMID: 31416113]
[17]
Joshi, A.A.; Narkhede, S.S.; Viswanathan, C.L. Design, synthesis and evaluation of 5-substituted amino-2,4-diamino-8-chloropyrimido-[4,5-b]quinolines as novel antimalarials. Bioorg. Med. Chem. Lett., 2005, 15(1), 73-76.
[http://dx.doi.org/10.1016/j.bmcl.2004.10.037] [PMID: 15582413]
[18]
Donkor, I.O.; Devraj, R.; Queener, S.F.; Barrows, L.R.; Gangjee, A. Synthesis of a series of diaminobenzo[ f]- and diaminobenzo[ h]pyrimido[4,5- b]quinolines as 5-deaza tetracyclic nonclassical antifolates. J. Heterocycl. Chem., 1996, 33(6), 1653-1661.
[http://dx.doi.org/10.1002/jhet.5570330618]
[19]
Gouda, M.A.; Abu-Hashem, A.A.; Ameen, T.A.; Salem, M.A. Synthesis of Pyrimido[4,5-b]quinolones from 6-Aminopyrimidin-4-(thi)one derivatives. Mini Rev. Org. Chem., 2022, 20(6)
[http://dx.doi.org/10.2174/1570193X20666221104110606]
[20]
Abu-Hashem, A.A.; Ameen, T.A.; Youssef, M.M.; Gouda, M.A. Recent Developments in synthetic chemistry and biological activities of pyrimido[4,5-b]quinoline derivatives. J. Heterocycl. Chem., 2022.
[21]
Shen, Q.; Wang, L.; Yu, J.; Liu, M.; Qiu, J.; Fang, L.; Guo, F.; Tang, J. Synthesis of quinolines via Friedländer reaction in water and under catalyst-free conditions. Synthesis, 2012, 44(03), 389-392.
[http://dx.doi.org/10.1055/s-2001-11426]
[22]
O’Brien, D.E.; Weinslock, L.T.; Cheng, C.C. Synthesis of 10-deazariboflavin and related 2,4-Dioxopyrimido[4,5- b]quinolines. J. Heterocycl. Chem., 1970, 7(1), 99-105.
[http://dx.doi.org/10.1002/jhet.5570070114]
[23]
Bell, T.W.; Khasanov, A.B.; Drew, M.G.B. Role of pyridine hydrogen-bonding sites in recognition of basic amino acid side chains. J. Am. Chem. Soc., 2002, 124(47), 14092-14103.
[http://dx.doi.org/10.1021/ja0273694] [PMID: 12440908]
[24]
King, F.E.; King, T.J.; Thompson, G.B. 112. The condensation of isatin and of 1-methylisation with barbituric acid. J. Chem. Soc., 1948, 2, 552-556.
[http://dx.doi.org/10.1039/jr9480000552] [PMID: 18869423]
[25]
Ledochowski, A.; Konieczny, M.T. Research on tumor inhibiting compounds. Part LXII. Synthesis of acridine-9-carboxylic acid and 2,4-dioxo-1,2,3,4-tetrahydropyrimidine [4,5-b]quinolino-9-carboxylic acid derivatives. Roczniki Chemii., 1977, 51(11), 2259-2262.
[26]
Shaabani, A.; Rahmati, A.; Farhangi, E. Water promoted one-pot synthesis of 2′-aminobenzothiazolomethyl naphthols and 5-(2′-aminobenzothiazolomethyl)-6-hydroxyquinolines. Tetrahedron Lett., 2007, 48(41), 7291-7294.
[http://dx.doi.org/10.1016/j.tetlet.2007.08.042]
[27]
Chakrawar, A.V.; Pendalwar, S.S.; Bhusare, S.R. An efficient synthesis of biologically active 7-aryl-11, 12-dihydrobenzo-[H]pyri-mido[4,5-b]quinoline 8,10 (7H,9H)-diones. J. Chem. Pharm. Res., 2016, 8(7), 6-9.
[28]
Guo, H.Y.; Yu, Y. One-pot synthesis of 7-aryl-11,12-dihydrobenzo[h]pyrimido-[4,5-b]quinoline-8,10(7H,9H)-diones via three-component reaction in ionic liquid. Chin. Chem. Lett., 2010, 21(12), 1435-1438.
[http://dx.doi.org/10.1016/j.cclet.2010.07.017]
[29]
Kumar, A.; Rai, P.; Yadav, V.B.; Sagir, H.; Siddiqui, I.R. Malic acid as bioorganocatalyst: Sustainable, one-pot and multicomponent synthesis of benzopyrimido[4,5-b]quinoline in biodegradable glycerol. Curr. Organocatal., 2019, 5(3), 239-245.
[http://dx.doi.org/10.2174/2213337205666181008103213]
[30]
Wang, X.S.; Li, Q.; Wu, J.R.; Zhang, M.M. Green method for the synthesis of benzo [f] pyrimido[4,5-b]quinoline derivatives catalyzed by iodine in aqueous media. Synth. Commun., 2009, 39(17), 3069-3080.
[http://dx.doi.org/10.1080/00397910902730929]
[31]
Kozlov, N.G.; Bondarev, S.L.; Odnoburtsev, B.A.; Basalaeva, L.I. Synthesis of aryl-methylpyrimidinetriones and pyrimidoquinolinediones with fluorescent and nonlinear-optical properties. Russ. J. Appl. Chem., 2007, 80(7), 1101-1104.
[http://dx.doi.org/10.1134/S1070427207070178]
[32]
Kozlov, N.G.; Agabekov, V.E.; Bondarev, S.L.; Basalayeva, L.I.; Kadutskiu, A.P. Synthesis of carbonyl containing heterocyclic compounds and their fluorescent and nonlinear optical properties. In Dokl. Nats. Akad. Nauk. Belarusi., 2009, 53, 64-67.
[33]
Shi, F.; Yan, S.; Zhou, D.; Tu, S.; Zou, X.; Hao, W.; Zhang, X.; Han, Z.; Wu, S.; Cao, X. A facile and efficient synthesis of novel pyrimido[5, 4‐b][4, 7] phenanthroline‐9, 11(7H, 8H, 10H, 12H)dione derivatives via microwave‐assisted multicomponent reactions. J. Heterocycl. Chem., 2009, 469(3), 563-566.
[http://dx.doi.org/10.1002/jhet.116]
[34]
Tereshko, A.B.; Kozlov, N.G.; Gusak, K.N.; Koroleva, E.V.; Ignatovich, Z.V. Condensation of pyrimidin-2, 4, 6 (1H, 3H, 5H)-trione with 6-aminoquinoline and aromatic aldehydes. Proc. Natl. Acad. Sci. Belarus Chem. Ser., 2014, 4, 66-71.
[35]
Reddy, S.S. Reddy, M.V.K.; Peddiahgari, V.G.R. β-Cyclodextrin in Water: As an Efficient Green Protocol for the Synthesis of Pyrimido[4, 5- b]quinoline-diones. ChemistrySelect, 2018, 3(16), 4283-4288.
[http://dx.doi.org/10.1002/slct.201800208]
[36]
Aknin, K.; Desbène-Finck, S.; Helissey, P.; Giorgi-Renault, S. A new synthetic approach to functionalize pyrimido[4,5-b]quinoline-2,4(1H,3H)-diones via a three-component one-pot reaction. Mol. Divers., 2010, 14(1), 123-130.
[http://dx.doi.org/10.1007/s11030-009-9154-8] [PMID: 19452259]
[37]
Baker, B.R.; Schaub, R.; Joseph, J.P. McEVOY, F.J.; Williams, J.H. McEVOY, F.J.; Williams, J.H. An antimalarial alkaloid from Hydrangea. XIV. Synthesis of 5-, 6-, 7-, and 8-monosubstituted derivatives. J. Org. Chem., 1952, 17(1), 141-148.
[http://dx.doi.org/10.1021/jo01135a014]
[38]
Carlson, E.E.; Kiessling, L.L. Improved chemical syntheses of 1- and 5-deazariboflavin. J. Org. Chem., 2004, 69(7), 2614-2617.
[http://dx.doi.org/10.1021/jo049859f] [PMID: 15049673]
[39]
Choi, Y.H.K.; Urlacher, V.B.; Arends, I.W.; Hollmann, F. A photoenzymatic NADH regeneration system. Chembiochem, 2018, 19(22), 2344-2347.
[http://dx.doi.org/10.1002/cbic.201800530] [PMID: 30192991]
[40]
Wingen, R.; Dittmar, W.; Raether, W.; Seibert, G. Quaternary pyrimido[4,5-b]quinolinium salts. Ger. Offen., 1984.
[41]
Kimachi, T.; Sugita, K.I.; Bessho, K.; Yoneda, F. Synthesis of a new type of 5-deazaflavoquinone (Hybrid model compound of 5-deazaflavin and coenzyme PQQ). Bioorg. Med. Chem. Lett., 1995, 5(1), 31-34.
[42]
Link, P.A.J.; Van Der Pias, H.C.; Müller, F. Synthesis of 8-substituted 5-deazaflavins. J. Heterocycl. Chem., 1985, 22(3), 841-848.
[http://dx.doi.org/10.1002/jhet.5570220347]
[43]
Todorovic, N.; Giacomelli, A.; Hassell, J.A.; Frampton, C.S.; Capretta, A. Microwave-assisted synthesis of 3-aryl-pyrimido[5,4-e][1,2,4]triazine-5,7(1H,6H)-dione libraries: Derivatives of toxoflavin. Tetrahedron Lett., 2010, 51(46), 6037-6040.
[http://dx.doi.org/10.1016/j.tetlet.2010.09.044]
[44]
Yoneda, F.; Mori, K.; Sakuma, Y.; Koshiro, A. Synthesis of some 8‐substituted 5‐deazaflavins. J. Heterocycl. Chem., 1982, 19(4), 954-947.
[http://dx.doi.org/10.1002/jhet.5570190451]
[45]
Joshi, A.A.; Viswanathan, C.L. Docking studies and development of novel 5-heteroarylamino-2,4-diamino-8-chloropyrimido-[4,5-b]quinolines as potential antimalarials. Bioorg. Med. Chem. Lett., 2006, 16(10), 2613-2617.
[http://dx.doi.org/10.1016/j.bmcl.2006.02.038] [PMID: 16516468]
[46]
Yao, Q.; Liang, C.; Wang, X.; Zhang, Q.; Jiang, H.; Lei, D. 1, 2- dihydro-6-methyl-4-amino-5-pyrimidinecarboxylic acid compounds as cell abnormal proliferation inhibitors and their preparation, pharmaceutical compositions and use in the treatment of cancer. China, CN103333119 A, 2013.
[47]
Radinov, R.; Chanev, K.; Khaimova, M. Lithiation of polychloropyrimidines and dichloropyridines. J. Org. Chem., 1991, 56(15), 4793-4796.
[http://dx.doi.org/10.1021/jo00015a041]
[48]
Marugan, J.J.; Zheng, W.; Southall, N.; Huang, W. Preparation of thienopyrimidines and pyrazolopyrimidines for treating or preventing neurodegenerative diseases or disorders. World Intellec. Prop. Organ., 2012, WO2012044993, A1.
[49]
Kim, D.H.; Santilli, A.A. Synthesis of 5‐substituted‐7‐methoxy‐2‐phenylpyrimido[4,5‐b]quinolines new synthesis of pyrimido[4,5‐b]quinolinees. J. Heterocycl. Chem., 1975, 12(1), 181-182.
[http://dx.doi.org/10.1002/jhet.5570120135]
[50]
Gong, J.; Szego, É.M.; Leonov, A.; Benito, E.; Becker, S.; Fischer, A.; Zweckstetter, M.; Outeiro, T.; Schneider, A. Translocator protein ligand protects against neurodegeneration in the MPTP mouse model of Parkinsonism. J. Neurosci., 2019, 39(19), 3752-3769.
[http://dx.doi.org/10.1523/JNEUROSCI.2070-18.2019] [PMID: 30796158]
[51]
Robev, S.K. 2, 6-disubstituted-4-(2-biphenylamino)-5-cyanopyri-midines. Doklad. Bolgarsk. Akadem. Nauk., 1980, 33(6), 791-794.
[52]
Hu, F.; Cui, X.; Ban, Z.; Lu, G.; Luo, N.; Huang, G. Synthesis of quinazolin-4(1 H)-ones via amination and annulation of amidines and benzamides. Org. Biomol. Chem., 2019, 17(9), 2356-2360.
[http://dx.doi.org/10.1039/C9OB00020H] [PMID: 30758386]
[53]
Robev, S. Method for the synthesis of some 7, 8, 10-triazabenzo(a)anthracene. Dokl. Bolg. Akad. Nauk, 1980, 33(7), 929-932.
[54]
Robev, S. Synthesis of 9, 11, 12-triazabenz[a]anthracene derivatives. Dokl. Bolg. Akad. Nauk, 1979, 32(7), 903-906.
[55]
Kohra, S.; Tominaga, Y.; Hosomi, A. Synthesis of pyrimidine derivatives by the reaction of ketene dithioacetals with amides. J. Heterocycl. Chem., 1988, 25(3), 959-968.
[http://dx.doi.org/10.1002/jhet.5570250349]
[56]
Verma, R.K.; Ila, H.; Singh, M.S. Heteroaromatic annulation studies on 2-[bis(methylthio)methylene]-1,3-indanedione: Efficient routes to indenofused heterocycles. Tetrahedron, 2010, 66(37), 7389-7398.
[http://dx.doi.org/10.1016/j.tet.2010.07.031]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy