Generic placeholder image

Mini-Reviews in Organic Chemistry

Editor-in-Chief

ISSN (Print): 1570-193X
ISSN (Online): 1875-6298

Mini-Review Article

New Strategies in the Chemical Control of Fusarium oxysporum Using Synthetic Bioisosteres of Secondary Metabolites: A Review of the Synthetic Methods for Novel Compounds with Potential Antifungal Activity

Author(s): Paola Borrego-Muñoz, Ericsson Coy-Barrera and Diego Quiroga*

Volume 21, Issue 8, 2024

Published on: 22 June, 2023

Page: [794 - 810] Pages: 17

DOI: 10.2174/1570193X20666230516144539

Price: $65

Abstract

One of the main problems affecting the world is food scarcity which is occasioned by different causes, including difficult climatic conditions, economic and technical limitations, infrastructure and transportation, food safety and insecurity, and diseases caused by microorganisms (phytopathogens) such as Fusarium oxysporum whose damage triggers a series of irreversible effects on several crops, causing economic losses worldwide. Given the complexity that the chemical control of phytopathogens represents, various investigations have been refocused on exploring new biomimetic actions that lead to synthesizing new compounds with potential antifungal activity. In addition, computational chemistry and chemoinformatics tools (molecular docking and molecular dynamics) make it possible to understand and often predict these compounds' mechanisms of action, thereby formulating Quantitative Structure-Activity Relationship (QSAR) models. These strategies have established an important advance in designing new molecules capable of inhibiting pathogens from a rational development of antifungal compounds. This article reviewed the novel synthetic bioisosteres of secondary metabolites biologically active against Fusarium oxysporum, their synthetic protocols, and the strategies implemented for its control. The most innovative examples of this class of active organic compounds are presented, such as N,S-dialkyl dithiocarbamates, Schiff bases, N-alkyl substituted amides, and several heterocyclic systems with potential antifungal activity. Likewise, the use of computational tools is discussed, showing how these results can conduce to the design of new antifungal agents.

Keywords: Bioisoster, molecular docking, QSAR, molecular dynamics, secondary metabolites, Fusarium oxysporum, organic synthesis.

Graphical Abstract
[1]
Savary, S.; Ficke, A.; Aubertot, J.N.; Hollier, C. Crop losses due to diseases and their implications for global food production losses and food security. Food Secur., 2012, 4(4), 519-537.
[http://dx.doi.org/10.1007/s12571-012-0200-5]
[2]
Nobile, F.O.; Galbiatti, J.A.; Muraishi, R.I.; Spadoni, T.B. Biofertilizante e adubação mineral no desenvolvimento da cultura da cebola (allium cepa l.) irrrigado com duas lâminas de água. Nucleus, 2012, 9(1), 27-34.
[http://dx.doi.org/10.3738/1982.2278.562]
[3]
Singh, N.; Mukherjee, S.K.; Rajam, M.V. Silencing of the ornithine decarboxylase gene of fusarium oxysporum f. sp. lycopersici by host-induced RNAi confers resistance to Fusarium wilt in tomato. Plant Mol. Biol. Report., 2020, 38(3), 419-429.
[http://dx.doi.org/10.1007/s11105-020-01205-2]
[4]
Mathur, M.; Nair, A.; Kadoo, N. Plant-pathogen interactions: MicroRNA-mediated trans-kingdom gene regulation in fungi and their host plants. Genomics, 2020, 112(5), 3021-3035.
[http://dx.doi.org/10.1016/j.ygeno.2020.05.021] [PMID: 32454170]
[5]
Khademi, M.; Varasteh-Shams, M.; Nazarian-Firouzabadi, F.; Ismaili, A. New recombinant antimicrobial peptides confer resistance to fungal pathogens in Tobacco plants. Front. Plant Sci., 2020, 11(1236), 1236.
[http://dx.doi.org/10.3389/fpls.2020.01236] [PMID: 32903611]
[6]
Singh, A.K.; Mehta, A.K.; Sridhara, S.; Gaur, S.N.; Singh, B.P.; Sarma, P.U.; Arora, N. Allergenicity assessment of transgenic mustard (Brassica juncea) expressing bacterial codA gene. Allergy, 2006, 61(4), 491-497.
[http://dx.doi.org/10.1111/j.1398-9995.2006.01049.x] [PMID: 16512812]
[7]
Nica-Badea, D.; Udristioiu, A.; Andriţoiu, C.V. Évaluation des risques allergéniques pour les aliments génétiquement modifiés d’origine végétale. Rev. Fr. Allergol., 2018, 58(1), 29-34.
[http://dx.doi.org/10.1016/j.reval.2017.05.006]
[8]
Kumar, K.; Gambhir, G.; Dass, A.; Tripathi, A.K.; Singh, A.; Jha, A.K.; Yadava, P.; Choudhary, M.; Rakshit, S. Genetically modified crops: Current status and future prospects. Planta, 2020, 251(4), 91.
[http://dx.doi.org/10.1007/s00425-020-03372-8] [PMID: 32236850]
[9]
Howell, C.R. Mechanisms employed by Trichoderma species in the biological control of plant diseases: the history and evolution of current concepts. Plant Dis., 2003, 87(1), 4-10.
[http://dx.doi.org/10.1094/PDIS.2003.87.1.4] [PMID: 30812698]
[10]
Haas, D.; Défago, G. Biological control of soil-borne pathogens by fluorescent pseudomonads. Nat. Rev. Microbiol., 2005, 3(4), 307-319.
[http://dx.doi.org/10.1038/nrmicro1129] [PMID: 15759041]
[11]
Sharma, R.R.; Singh, D.; Singh, R. Biological control of postharvest diseases of fruits and vegetables by microbial antagonists: A review. Biol. Control, 2009, 50(3), 205-221.
[http://dx.doi.org/10.1016/j.biocontrol.2009.05.001]
[12]
Castillo, U.F.; Strobel, G.A.; Ford, E.J.; Hess, W.M.; Porter, H.; Jensen, J.B.; Albert, H.; Robison, R.; Condron, M.A.M.; Teplow, D.B.; Stevens, D.; Yaver, D. Munumbicins, wide-spectrum antibiotics produced by Streptomyces NRRL 30562, endophytic on Kennedia nigriscans a aThe GenBank accession number for the sequence determined in this work is AY127079. Microbiology (Reading), 2002, 148(9), 2675-2685.
[http://dx.doi.org/10.1099/00221287-148-9-2675] [PMID: 12213914]
[13]
van Loon, L.C.; Bakker, P.A.H.M.; Pieterse, C.M.J. Systemic resistance induced by rhizosphere bacteria. Annu. Rev. Phytopathol., 1998, 36(1), 453-483.
[http://dx.doi.org/10.1146/annurev.phyto.36.1.453] [PMID: 15012509]
[14]
Fravel, D.; Olivain, C.; Alabouvette, C. Fusarium oxysporum and its biocontrol. New Phytol., 2003, 157(3), 493-502.
[http://dx.doi.org/10.1046/j.1469-8137.2003.00700.x] [PMID: 33873407]
[15]
Boughalleb-M’Hamdi, N.; Salem, I.B.; M’Hamdi, M. Evaluation of the efficiency of Trichoderma, Penicillium, and Aspergillus species as biological control agents against four soil-borne fungi of melon and watermelon. Egypt. J. Biol. Pest Control, 2018, 28(1), 25.
[http://dx.doi.org/10.1186/s41938-017-0010-3]
[16]
Lecomte, C.; Alabouvette, C.; Edel-Hermann, V.; Robert, F.; Steinberg, C. Biological control of ornamental plant diseases caused by Fusarium oxysporum: A review. Biol. Control, 2016, 101, 17-30.
[http://dx.doi.org/10.1016/j.biocontrol.2016.06.004]
[17]
Herrero-Hernández, E.; Simón-Egea, A.B.; Sánchez-Martín, M.J.; Rodríguez-Cruz, M.S.; Andrades, M.S. Monitoring and environmental risk assessment of pesticide residues and some of their degradation products in natural waters of the Spanish vineyard region included in the Denomination of Origin Jumilla. Environ. Pollut., 2020, 264, 114666.
[http://dx.doi.org/10.1016/j.envpol.2020.114666] [PMID: 32380396]
[18]
Amossé, J.; Bart, S.; Brulle, F.; Tebby, C.; Beaudouin, R.; Nélieu, S.; Lamy, I.; Péry, A.R.R.; Pelosi, C. A two years field experiment to assess the impact of two fungicides on earthworm communities and their recovery. Ecotoxicol. Environ. Saf., 2020, 203, 110979.
[http://dx.doi.org/10.1016/j.ecoenv.2020.110979] [PMID: 32678758]
[19]
Mao, L.; Jia, W.; Zhang, L.; Zhang, Y.; Zhu, L.; Sial, M.U.; Jiang, H. Embryonic development and oxidative stress effects in the larvae and adult fish livers of zebrafish (Danio rerio) exposed to the strobilurin fungicides, kresoxim-methyl and pyraclostrobin. Sci. Total Environ., 2020, 729, 139031.
[http://dx.doi.org/10.1016/j.scitotenv.2020.139031] [PMID: 32387777]
[20]
Abdel-Fattah Mostafa, A.; Abdulrahman Al-Askar, A.; Dawoud, T.M.; Ameen, F.; Taha Yassin, M. In vitro evaluation of antifungal activity of some agricultural fungicides against two saprolegnoid fungi infecting cultured fish. J. King Saud Univ. Sci., 2020, 32(7), 3091-3096.
[http://dx.doi.org/10.1016/j.jksus.2020.08.019]
[21]
Lerro, C.C.; Beane Freeman, L.E.; DellaValle, C.T.; Andreotti, G.; Hofmann, J.N.; Koutros, S.; Parks, C.G.; Shrestha, S.; Alavanja, M.C.R.; Blair, A.; Lubin, J.H.; Sandler, D.P.; Ward, M.H. Pesticide exposure and incident thyroid cancer among male pesticide applicators in agricultural health study. Environ. Int., 2021, 146, 106187.
[http://dx.doi.org/10.1016/j.envint.2020.106187] [PMID: 33126065]
[22]
Jeandet, P.; Douillet-Breuil, A.C.; Bessis, R.; Debord, S.; Sbaghi, M.; Adrian, M. Phytoalexins from the Vitaceae: Biosynthesis, phytoalexin gene expression in transgenic plants, antifungal activity, and metabolism. J. Agric. Food Chem., 2002, 50(10), 2731-2741.
[http://dx.doi.org/10.1021/jf011429s] [PMID: 11982391]
[23]
Pedras, M.S.C.; Gadagi, R.S.; Jha, M.; Sarma-Mamillapalle, V.K. Detoxification of the phytoalexin brassinin by isolates of Leptosphaeria maculans pathogenic on brown mustard involves an inducible hydrolase. Phytochemistry, 2007, 68(11), 1572-1578.
[http://dx.doi.org/10.1016/j.phytochem.2007.03.020] [PMID: 17467751]
[24]
Pedras, M.S.C.; Jha, M.; Minic, Z.; Okeola, O.G. Isosteric probes provide structural requirements essential for detoxification of the phytoalexin brassinin by the fungal pathogen Leptosphaeria maculans. Bioorg. Med. Chem., 2007, 15(18), 6054-6061.
[http://dx.doi.org/10.1016/j.bmc.2007.06.040] [PMID: 17616463]
[25]
Pedras, M.S.C.; Hossain, M. Design, synthesis, and evaluation of potential inhibitors of brassinin glucosyltransferase, a phytoalexin detoxifying enzyme from Sclerotinia sclerotiorum. Bioorg. Med. Chem., 2007, 15(17), 5981-5996.
[http://dx.doi.org/10.1016/j.bmc.2007.05.072] [PMID: 17590338]
[26]
Pedras, M.S.C.; Minic, Z. The phytoalexins brassilexin and camalexin inhibit cyclobrassinin hydrolase, a unique enzyme from the fungal pathogen Alternaria brassicicola. Bioorg. Med. Chem., 2014, 22(1), 459-467.
[http://dx.doi.org/10.1016/j.bmc.2013.11.005] [PMID: 24275350]
[27]
Pedras, M.S.C.; Minic, Z.; Sarma-Mamillapalle, V.K.; Suchy, M. Discovery of inhibitors of brassinin oxidase based on the scaffolds of the phytoalexins brassilexin and wasalexin. Bioorg. Med. Chem., 2010, 18(7), 2456-2463.
[http://dx.doi.org/10.1016/j.bmc.2010.02.054] [PMID: 20303277]
[28]
Pedras, M.S.C.; Minic, Z.; Sarma-Mamillapalle, V.K. Substrate specificity and inhibition of brassinin hydrolases, detoxifying enzymes from the plant pathogens Leptosphaeria maculans and Alternaria brassicicola. FEBS J., 2009, 276(24), 7412-7428.
[http://dx.doi.org/10.1111/j.1742-4658.2009.07457.x] [PMID: 19922473]
[29]
Alabouvette, C. Fusarium wilt suppressive soils: An example of disease-suppressive soils. Australas. Plant Pathol., 1999, 28(1), 57.
[http://dx.doi.org/10.1071/AP99008]
[30]
Wagener, M.; Lommerse, J.P.M. The quest for bioisosteric replacements. J. Chem. Inf. Model., 2006, 46(2), 677-685.
[http://dx.doi.org/10.1021/ci0503964] [PMID: 16562998]
[31]
Quiroga, D.; Becerra, L.; Sadat-Bernal, J.; Vargas, N.; Coy-Barrera, E. Synthesis and antifungal activity against fusarium oxysporum of some brassinin analogs derived from l-tryptophan: A DFT/B3LYP study on the reaction mechanism. Molecules, 2016, 21(10), 1349.
[http://dx.doi.org/10.3390/molecules21101349] [PMID: 27727186]
[32]
Angarita-Rodríguez, A.; Quiroga, D.; Coy-Barrera, E. Indole-Containing phytoalexin-based bioisosteres as antifungals: in vitro and in silico evaluation against Fusarium oxysporum. Molecules, 2019, 25(1), 45.
[http://dx.doi.org/10.3390/molecules25010045] [PMID: 31877731]
[33]
McGovern, R.J. Management of tomato diseases caused by Fusarium oxysporum. Crop Prot., 2015, 73, 78-92.
[http://dx.doi.org/10.1016/j.cropro.2015.02.021]
[34]
Bao, J.R.; Lazarovits, G. Differential Colonization Of Tomato Roots By Nonpathogenic And Pathogenic Fusarium oxysporum strains may influence Fusarium wilt control. Phytopathology, 2001, 91(5), 449-456.
[http://dx.doi.org/10.1094/PHYTO.2001.91.5.449] [PMID: 18943589]
[35]
Antonissen, G.; Van Immerseel, F.; Pasmans, F.; Ducatelle, R.; Haesebrouck, F.; Timbermont, L.; Verlinden, M.; Janssens, G.P.J.; Eeckhaut, V.; Eeckhout, M.; De Saeger, S.; Hessenberger, S.; Martel, A.; Croubels, S. The mycotoxin deoxynivalenol predisposes for the development of Clostridium perfringens-induced necrotic enteritis in broiler chickens. PLoS One, 2014, 9(9), e108775.
[http://dx.doi.org/10.1371/journal.pone.0108775] [PMID: 25268498]
[36]
Nordkvist, E.; Häggblom, P. Fusarium mycotoxin contamination of cereals and bedding straw at Swedish pig farms. Anim. Feed Sci. Technol., 2014, 198, 231-237.
[http://dx.doi.org/10.1016/j.anifeedsci.2014.10.002]
[37]
Pestka, J.J.; Smolinski, A.T. Deoxynivalenol: Toxicology and potential effects on humans. J. Toxicol. Environ. Health B Crit. Rev., 2005, 8(1), 39-69.
[http://dx.doi.org/10.1080/10937400590889458] [PMID: 15762554]
[38]
Boutati, E.I.; Anaissie, E.J. Fusarium, a significant emerging pathogen in patients with hematologic malignancy: Ten years’ experience at a cancer center and implications for management. Blood, 1997, 90(3), 999-1008.
[http://dx.doi.org/10.1182/blood.V90.3.999] [PMID: 9242529]
[39]
Dananjaya, S.H.S.; Udayangani, R.M.C.; Shin, S.Y.; Edussuriya, M.; Nikapitiya, C.; Lee, J.; De Zoysa, M. In vitro and in vivo antifungal efficacy of plant based lawsone against Fusarium] oxysporum species complex. Microbiol. Res., 2017, 201, 21-29.
[http://dx.doi.org/10.1016/j.micres.2017.04.011] [PMID: 28602398]
[40]
Zheng, B.; Yan, L.; Liang, W.; Yang, Q. Paralogous Cyp51s mediate the differential sensitivity of Fusarium oxysporum to sterol demethylation inhibitors. Pest Manag. Sci., 2019, 75(2), 396-404.
[http://dx.doi.org/10.1002/ps.5127] [PMID: 29931739]
[41]
Villa-Martínez, A.; Pérez-Leal, R.; Morales-Morales, H.A.; Basurto-Sotelo, M.; Soto-Parra, J.M.; Martínez-Escudero, E. Situación actual en el control de Fusarium spp. y evaluación de la actividad antifúngica de extractos vegetales. Acta Agron., 2014, 64(2), 194-205.
[http://dx.doi.org/10.15446/acag.v64n2.43358]
[42]
Perez-Nadales, E.; Almeida Nogueira, M.F.; Baldin, C.; Castanheira, S.; El Ghalid, M.; Grund, E.; Lengeler, K.; Marchegiani, E.; Mehrotra, P.V.; Moretti, M.; Naik, V.; Oses-Ruiz, M.; Oskarsson, T.; Schäfer, K.; Wasserstrom, L.; Brakhage, A.A.; Gow, N.A.R.; Kahmann, R.; Lebrun, M.H.; Perez-Martin, J.; Di Pietro, A.; Talbot, N.J.; Toquin, V.; Walther, A.; Wendland, J. Fungal model systems and the elucidation of pathogenicity determinants. Fungal Genet. Biol., 2014, 70(100), 42-67.
[http://dx.doi.org/10.1016/j.fgb.2014.06.011] [PMID: 25011008]
[43]
Plant Pathology; Elsevier, 2005.
[http://dx.doi.org/10.1016/C2009-0-02037-6]
[44]
Flood, J. A review of fusarium wilt of oil palm caused by Fusarium oxysporum f. sp. elaeidis. Phytopathology, 2006, 96(6), 660-662.
[http://dx.doi.org/10.1094/PHYTO-96-0660] [PMID: 18943186]
[45]
de Sain, M.; Rep, M. The role of pathogen-secreted proteins in fungal vascular wilt diseases. Int. J. Mol. Sci., 2015, 16(10), 23970-23993.
[http://dx.doi.org/10.3390/ijms161023970] [PMID: 26473835]
[46]
Maymon, M.; Sela, N.; Shpatz, U.; Galpaz, N.; Freeman, S. The origin and current situation of Fusarium oxysporum f. sp. cubense tropical race 4 in Israel and the Middle East. Sci. Rep., 2020, 10(1), 1590.
[http://dx.doi.org/10.1038/s41598-020-58378-9] [PMID: 32005853]
[47]
Guo, L.; Han, L.; Yang, L.; Zeng, H.; Fan, D.; Zhu, Y.; Feng, Y.; Wang, G.; Peng, C.; Jiang, X.; Zhou, D.; Ni, P.; Liang, C.; Liu, L.; Wang, J.; Mao, C.; Fang, X.; Peng, M.; Huang, J. Genome and transcriptome analysis of the fungal pathogen Fusarium oxysporum f. sp. cubense causing banana vascular wilt disease. PLoS One, 2014, 9(4), e95543.
[http://dx.doi.org/10.1371/journal.pone.0095543] [PMID: 24743270]
[48]
de Menezes, H.D.; Tonani, L.; Bachmann, L.; Wainwright, M.; Braga, G.Ú.L.; von Zeska Kress, M.R. Photodynamic treatment with phenothiazinium photosensitizers kills both ungerminated and germinated microconidia of the pathogenic fungi Fusarium oxysporum, Fusarium moniliforme and Fusarium solani. J. Photochem. Photobiol. B, 2016, 164, 1-12.
[http://dx.doi.org/10.1016/j.jphotobiol.2016.09.008] [PMID: 27623154]
[49]
Mycotoxigenic Fungi: Methods and Protocols; Springer: New York, 2017, p. 1542.
[http://dx.doi.org/10.1007/978-1-4939-6707-0]
[50]
Singh, V.K.; Singh, H.B.; Upadhyay, R.S. Role of fusaric acid in the development of ‘Fusarium wilt’ symptoms in tomato: Physiological, biochemical and proteomic perspectives. Plant Physiol. Biochem., 2017, 118, 320-332.
[http://dx.doi.org/10.1016/j.plaphy.2017.06.028] [PMID: 28683401]
[51]
Hay, R.J. Fusarium infections of the skin. Curr. Opin. Infect. Dis., 2007, 20(2), 115-117.
[http://dx.doi.org/10.1097/QCO.0b013e328014392d] [PMID: 17496567]
[52]
Guarro, J. Fusariosis, a complex infection caused by a high diversity of fungal species refractory to treatment. Eur. J. Clin. Microbiol. Infect. Dis., 2013, 32(12), 1491-1500.
[http://dx.doi.org/10.1007/s10096-013-1924-7] [PMID: 23934595]
[53]
Arnoni, M.V.; Paula, C.R.; Auler, M.E.; Simões, C.C.N.; Nakano, S.; Szeszs, M.W.; Melhem, M.S.C.; Pereira, V.B.R.; Garces, H.G.; Bagagli, E.; Silva, E.G.; de Macêdo, M.F.; Ruiz, L.S. Infections caused by fusarium species in pediatric cancer patients and review of published literature. Mycopathologia, 2018, 183(6), 941-949.
[http://dx.doi.org/10.1007/s11046-018-0257-6] [PMID: 29564632]
[54]
Dignani, M.C.; Anaissie, E. Human fusariosis. Clin. Microbiol. Infect., 2004, 10(Suppl. 1), 67-75.
[http://dx.doi.org/10.1111/j.1470-9465.2004.00845.x] [PMID: 14748803]
[55]
Shabani, F.; Kumar, L.; Esmaeili, A. Future distributions of Fusarium oxysporum f. spp. in European, Middle Eastern and North African agricultural regions under climate change. Agric. Ecosyst. Environ., 2014, 197, 96-105.
[http://dx.doi.org/10.1016/j.agee.2014.08.005]
[56]
Shabani, F.; Kumar, L. Risk levels of invasive Fusarium oxysporum f. sp. in areas suitable for date palm (Phoenix dactylifera) cultivation under various climate change projections. PLoS One, 2013, 8(12), e83404.
[http://dx.doi.org/10.1371/journal.pone.0083404] [PMID: 24340100]
[57]
Osorio-Guarín, J.A.; Enciso-Rodríguez, F.E.; González, C.; Fernández-Pozo, N.; Mueller, L.A.; Barrero, L.S. Association analysis for disease resistance to Fusarium oxysporum in cape gooseberry (Physalis peruviana L). BMC Genomics, 2016, 17(1), 248.
[http://dx.doi.org/10.1186/s12864-016-2568-7] [PMID: 26988219]
[58]
Větrovský, T.; Morais, D.; Kohout, P.; Lepinay, C.; Algora, C.; Awokunle Hollá, S.; Bahnmann, B.D.; Bílohnědá, K.; Brabcová, V.; D’Alò, F.; Human, Z.R.; Jomura, M.; Kolařík, M.; Kvasničková, J.; Lladó, S.; López-Mondéjar, R.; Martinović, T.; Mašínová, T.; Meszárošová, L.; Michalčíková, L.; Michalová, T.; Mundra, S.; Navrátilová, D.; Odriozola, I.; Piché-Choquette, S.; Štursová, M.; Švec, K.; Tláskal, V.; Urbanová, M.; Vlk, L.; Voříšková, J.; Žifčáková, L.; Baldrian, P. GlobalFungi, a global database of fungal occurrences from high-throughput-sequencing metabarcoding studies. Sci. Data, 2020, 7(1), 228.
[http://dx.doi.org/10.1038/s41597-020-0567-7] [PMID: 32661237]
[59]
Vinale, F.; Sivasithamparam, K.; Ghisalberti, E.L.; Marra, R.; Woo, S.L.; Lorito, M. Trichoderma-plant-pathogen interactions. Soil Biol. Biochem., 2008, 40(1), 1-10.
[http://dx.doi.org/10.1016/j.soilbio.2007.07.002]
[60]
Edel-Hermann, V.; Lecomte, C. Current status of Fusarium oxysporum Formae Speciales and races. Phytopathology, 2019, 109(4), 512-530.
[http://dx.doi.org/10.1094/PHYTO-08-18-0320-RVW] [PMID: 30461350]
[61]
Rep, M.; Kistler, H.C. The genomic organization of plant pathogenicity in Fusarium species. Curr. Opin. Plant Biol., 2010, 13(4), 420-426.
[http://dx.doi.org/10.1016/j.pbi.2010.04.004] [PMID: 20471307]
[62]
Oumouloud, A.; El-Otmani, M.; Chikh-Rouhou, H.; Claver, A.G.; Torres, R.G.; Perl-Treves, R.; Álvarez, J.M. Breeding melon for resistance to Fusarium wilt: Recent developments. Euphytica, 2013, 192(2), 155-169.
[http://dx.doi.org/10.1007/s10681-013-0904-4]
[63]
Ghag, S.B.; Shekhawat, U.K.S.; Ganapathi, T.R. Fusarium wilt of banana: Biology, epidemiology and management. Int. J. Pest Manage., 2015, 61(3), 250-263.
[http://dx.doi.org/10.1080/09670874.2015.1043972]
[64]
Dita, M.; Barquero, M.; Heck, D.; Mizubuti, E.S.G.; Staver, C.P. Fusarium Wilt of Banana: Current knowledge on epidemiology and research needs toward sustainable disease management. Front. Plant Sci., 2018, 9, 1468.
[http://dx.doi.org/10.3389/fpls.2018.01468] [PMID: 30405651]
[65]
Ploetz, R.C. Management of Fusarium wilt of banana: A review with special reference to tropical race 4. Crop Prot., 2015, 73, 7-15.
[http://dx.doi.org/10.1016/j.cropro.2015.01.007]
[66]
Aktar, W.; Sengupta, D.; Chowdhury, A. Impact of pesticides use in agriculture: Their benefits and hazards. Interdiscip. Toxicol., 2009, 2(1), 1-12.
[http://dx.doi.org/10.2478/v10102-009-0001-7] [PMID: 21217838]
[67]
Dias, M.C. Phytotoxicity: An overview of the physiological responses of plants exposed to fungicides. J. Bot. (Egypt), 2012, 2012, 1-4.
[http://dx.doi.org/10.1155/2012/135479]
[68]
Gullino, M.L.; Minuto, A.; Gilardi, G.; Garibaldi, A. Efficacy of azoxystrobin and other strobilurins against Fusarium wilts of carnation, cyclamen and Paris daisy. Crop Prot., 2002, 21(1), 57-61.
[http://dx.doi.org/10.1016/S0261-2194(01)00066-7]
[69]
Petit, A.N.; Fontaine, F.; Vatsa, P.; Clément, C.; Vaillant-Gaveau, N. Fungicide impacts on photosynthesis in crop plants. Photosynth. Res., 2012, 111(3), 315-326.
[http://dx.doi.org/10.1007/s11120-012-9719-8] [PMID: 22302592]
[70]
Finch, H.J.S.; Samuel, A.M.; Lane, G.P.F. Diseases of Farm Crops.Lockhart and Wiseman’s Crop Husbandry Including Grassland; Elsevier, 2002, pp. 142-179.
[http://dx.doi.org/10.1533/9781855736504.1.142]
[71]
Taylor, S.L. Chemical intoxications. Foodborne Diseases; Elsevier, 2017, pp. 447-458.
[http://dx.doi.org/10.1016/B978-0-12-385007-2.00022-X]
[72]
Borrego-Muñoz, P.; Ospina, F.; Quiroga, D. A compendium of the most promising synthesized organic compounds against several Fusarium oxysporum species: Synthesis, antifungal activity, and perspectives. Molecules, 2021, 26(13), 3997.
[http://dx.doi.org/10.3390/molecules26133997] [PMID: 34208916]
[73]
Yactayo-Chang, J.P.; Tang, H.V.; Mendoza, J.; Christensen, S.A.; Block, A.K. Plant defense chemicals against insect pests. Agronomy (Basel), 2020, 10(8), 1156.
[http://dx.doi.org/10.3390/agronomy10081156]
[74]
Ahuja, I.; Kissen, R.; Bones, A.M. Phytoalexins in defense against pathogens. Trends Plant Sci., 2012, 17(2), 73-90.
[http://dx.doi.org/10.1016/j.tplants.2011.11.002] [PMID: 22209038]
[75]
Arruda, R.L.; Paz, A.T.S.; Bara, M.T.F.; Côrtes, M.V.C.B.; Filippi, M.C.C.; Conceição, E.C. An approach on phytoalexins: Function, characterization and biosynthesis in plants of the family Poaceae. Cienc. Rural, 2016, 46(7), 1206-1216.
[http://dx.doi.org/10.1590/0103-8478cr20151164]
[76]
Pedras, M.S.C.; Abdoli, A. Pathogen inactivation of cruciferous phytoalexins: Detoxification reactions, enzymes and inhibitors. RSC Advances, 2017, 7(38), 23633-23646.
[http://dx.doi.org/10.1039/C7RA01574G]
[77]
Sellam, A.; Iacomi-Vasilescu, B.; Hudhomme, P.; Simoneau, P. In vitro antifungal activity of brassinin, camalexin and two isothiocyanates against the crucifer pathogens Alternaria brassicicola and Alternaria brassicae. Plant Pathol., 2007, 56(2), 296-301.
[http://dx.doi.org/10.1111/j.1365-3059.2006.01497.x]
[78]
Camagna, M.; Ojika, M.; Takemoto, D. Detoxification of the solanaceous phytoalexins rishitin, lubimin, oxylubimin and solavetivone via a cytochrome P450 oxygenase. Plant Signal. Behav., 2020, 15(2), 1707348.
[http://dx.doi.org/10.1080/15592324.2019.1707348] [PMID: 31884882]
[79]
Pedras, M.S.C.; Thapa, C. Unveiling fungal detoxification pathways of the cruciferous phytoalexin rapalexin A: Sequential L-cysteine conjugation, acetylation and oxidative cyclization mediated by Colletotrichum spp. Phytochemistry, 2020, 169, 112188.
[http://dx.doi.org/10.1016/j.phytochem.2019.112188] [PMID: 31683228]
[80]
Brodowska, K.; Lodyga-Chruscinska, E. ChemInform abstract: Schiff bases - interesting range of applications in various fields of science. ChemInform, 2015, 46(11)
[http://dx.doi.org/10.1002/chin.201511346]
[81]
Kajal, A.; Bala, S.; Kamboj, S.; Sharma, N.; Saini, V. Schiff bases: A versatile pharmacophore. J. Catal., 2013, 2013, 1-14.
[http://dx.doi.org/10.1155/2013/893512]
[82]
Tidwell, T.T. Hugo (Ugo) Schiff, Schiff bases, and a century of β-lactam synthesis. Angew. Chem. Int. Ed., 2008, 47(6), 1016-1020.
[http://dx.doi.org/10.1002/anie.200702965] [PMID: 18022986]
[83]
Basa, P.N.; Bhowmick, A.; Horn, L.M.; Sykes, A.G. Zinc(II) mediated imine-enamine tautomerization. Org. Lett., 2012, 14(11), 2698-2701.
[http://dx.doi.org/10.1021/ol300874c] [PMID: 22582888]
[84]
Sondhi, S.M.; Singh, N.; Kumar, A.; Lozach, O.; Meijer, L. Synthesis, anti-inflammatory, analgesic and kinase (CDK-1, CDK-5 and GSK-3) inhibition activity evaluation of benzimidazole/benzoxazole derivatives and some Schiff’s bases. Bioorg. Med. Chem., 2006, 14(11), 3758-3765.
[http://dx.doi.org/10.1016/j.bmc.2006.01.054] [PMID: 16480879]
[85]
Pandey, A.; Rajavel, R.; Chandraker, S.; Dash, D. Synthesis of schiff bases of 2-amino-5-aryl-1,3,4-thiadiazole and its analgesic, anti-inflammatory and anti-bacterial activity. E-J. Chem., 2012, 9(4), 2524-2531.
[http://dx.doi.org/10.1155/2012/145028]
[86]
Chinnasamy, R.; Sundararajan, R.; Govindaraj, S. Synthesis, characterization, and analgesic activity of novel schiff base of isatin derivatives. J. Adv. Pharm. Technol. Res., 2010, 1(3), 342-347.
[http://dx.doi.org/10.4103/0110-5558.72428] [PMID: 22247869]
[87]
Mounika, K.; Pragathi, A.; Gyanakumari, C. Synthesis¸ characterization and biological activity of a schiff base derived from 3-ethoxy salicylaldehyde and 2-amino benzoic acid and its transition metal complexes. J. Scient. Res., 2010, 2(3), 513.
[http://dx.doi.org/10.3329/jsr.v2i3.4899]
[88]
Khan, S.A.; Nami, S.A.A.; Bhat, S.A.; Kareem, A.; Nishat, N. Synthesis, characterization and antimicrobial study of polymeric transition metal complexes of Mn(II), Co(II), Ni(II), Cu(II) and Zn(II). Microb. Pathog., 2017, 110, 414-425.
[http://dx.doi.org/10.1016/j.micpath.2017.07.008] [PMID: 28729223]
[89]
Aboul-Fadl, T.; Mohammed, F.A.H.; Hassan, E.A.S. Synthesis, antitubercular activity and pharmacokinetic studies of some schiff bases derived from 1- alkylisatin and isonicotinic acid hydrazide (inh). Arch. Pharm. Res., 2003, 26(10), 778-784.
[http://dx.doi.org/10.1007/BF02980020] [PMID: 14609123]
[90]
Ali, S.M.M.; Azad, M.A.K.; Jesmin, M.; Ahsan, S.; Rahman, M.M.; Khanam, J.A.; Islam, M.N.; Shahriar, S.M.S. In vivo anticancer activity of vanillin semicarbazone. Asian Pac. J. Trop. Biomed., 2012, 2(6), 438-442.
[http://dx.doi.org/10.1016/S2221-1691(12)60072-0] [PMID: 23569946]
[91]
Miri, R.; Razzaghi-asl, N.; Mohammadi, M.K. QM study and conformational analysis of an isatin Schiff base as a potential cytotoxic agent. J. Mol. Model., 2013, 19(2), 727-735.
[http://dx.doi.org/10.1007/s00894-012-1586-x] [PMID: 23053004]
[92]
Wei, D.; Li, N.; Lu, G.; Yao, K. Synthesis, catalytic and biological activity of novel dinuclear copper complex with schiff base. Sci. china Ser. B, 2006, 49(3), 225-229.
[http://dx.doi.org/10.1007/s11426-006-0225-8]
[93]
Avaji, P.G.; Vinod Kumar, C.H.; Patil, S.A.; Shivananda, K.N.; Nagaraju, C. Synthesis, spectral characterization, in-vitro microbiological evaluation and cytotoxic activities of novel macrocyclic bis hydrazone. Eur. J. Med. Chem., 2009, 44(9), 3552-3559.
[http://dx.doi.org/10.1016/j.ejmech.2009.03.032] [PMID: 19419802]
[94]
Prakash, C.R.; Raja, S. Synthesis, characterization and in vitro antimicrobial activity of some novel 5-substituted Schiff and Mannich base of isatin derivatives. J. Saudi Chem. Soc., 2013, 17(3), 337-344.
[http://dx.doi.org/10.1016/j.jscs.2011.10.022]
[95]
Durango, D.; Pulgarin, N.; Echeverri, F.; Escobar, G.; Quiñones, W. Effect of salicylic acid and structurally related compounds in the accumulation of phytoalexins in cotyledons of common bean (Phaseolus vulgaris L.) cultivars. Molecules, 2013, 18(9), 10609-10628.
[http://dx.doi.org/10.3390/molecules180910609] [PMID: 24002137]
[96]
Ahmadi, R.; Ebrahimzadeh, M.A. Resveratrol - A comprehensive review of recent advances in anticancer drug design and development. Eur. J. Med. Chem., 2020, 200, 112356.
[http://dx.doi.org/10.1016/j.ejmech.2020.112356] [PMID: 32485531]
[97]
Kotora, P.; Šeršeň, F.; Filo, J.; Loos, D.; Gregáň, J.; Gregáň, F. The scavenging of DPPH, galvinoxyl and ABTS radicals by imine analogs of resveratrol. Molecules, 2016, 21(1), 127.
[http://dx.doi.org/10.3390/molecules21010127] [PMID: 26805801]
[98]
Csomós, P.; Fodor, L.; Csámpai, A.; Sohár, P. A useful ring transformation route to novel thiazepino[7,6- b]indoles from monochloro-β-lactam-fused 1,3-thiazino[6,5- b]indoles, analogues of cyclobrassinin. Tetrahedron, 2017, 73(17), 2476-2482.
[http://dx.doi.org/10.1016/j.tet.2017.03.047]
[99]
Seavill, P.W.; Wilden, J.D. The preparation and applications of amides using electrosynthesis. Green Chem., 2020, 22(22), 7737-7759.
[http://dx.doi.org/10.1039/D0GC02976A]
[100]
Mahesh, S.; Tang, K.C.; Raj, M. Amide bond activation of biological molecules. Molecules, 2018, 23(10), 2615.
[http://dx.doi.org/10.3390/molecules23102615] [PMID: 30322008]
[101]
Kumari, S.; Carmona, A.V.; Tiwari, A.K.; Trippier, P.C. Amide bond bioisosteres: strategies, synthesis, and successes. J. Med. Chem., 2020, 63(21), 12290-12358.
[http://dx.doi.org/10.1021/acs.jmedchem.0c00530] [PMID: 32686940]
[102]
Burgart, Y.V.; Shchur, I.V.; Shchegolkov, E.V.; Saloutin, V.I. Synthesis and biological activity of polyfluorinated p-aminosalicylic acids and their amides. Mendeleev Commun., 2020, 30(5), 636-638.
[http://dx.doi.org/10.1016/j.mencom.2020.09.028]
[103]
Kaushik, C.P.; Sangwan, J.; Luxmi, R.; Kumar, D.; Kumar, D.; Das, A.; Kumar, A.; Singh, D. Design, synthesis, anticancer and antioxidant activities of amide linked 1,4-disubstituted 1,2,3-triazoles. J. Mol. Struct., 2021, 1226, 129255.
[http://dx.doi.org/10.1016/j.molstruc.2020.129255]
[104]
Hua, X.; Liu, N.; Zhou, S.; Zhang, L.; Yin, H.; Wang, G.; Fan, Z.; Ma, Y. Design, synthesis, and biological activity of novel aromatic amide derivatives containing sulfide and sulfone substructures. Engineering (Beijing), 2020, 6(5), 553-559.
[http://dx.doi.org/10.1016/j.eng.2019.09.011]
[105]
Bhagare, A.M.; Aher, J.S.; Gaware, M.R.; Lokhande, D.D.; Kardel, A.V.; Bholay, A.D.; Dhayagude, A.C. Novel Schiff bases derived from N-aryl maleimide derivatives as an effective antimicrobial agent: Theoretical and experimental approach. Bioorg. Chem., 2020, 103, 104129.
[http://dx.doi.org/10.1016/j.bioorg.2020.104129] [PMID: 32745757]
[106]
Chen, Y.; Mi, Y.; Li, Q.; Dong, F.; Guo, Z. Synthesis of Schiff bases modified inulin derivatives for potential antifungal and antioxidant applications. Int. J. Biol. Macromol., 2020, 143, 714-723.
[http://dx.doi.org/10.1016/j.ijbiomac.2019.09.127] [PMID: 31726150]
[107]
Kaur, H.; Lim, S.M.; Ramasamy, K.; Vasudevan, M.; Shah, S.A.A.; Narasimhan, B. Diazenyl schiff bases: Synthesis, spectral analysis, antimicrobial studies and cytotoxic activity on human colorectal carcinoma cell line (HCT-116). Arab. J. Chem., 2020, 13(1), 377-392.
[http://dx.doi.org/10.1016/j.arabjc.2017.05.004]
[108]
Bhatnagar, R.; Pandey, J.; Panhekar, D. Design, synthesis, characterization and biological activities of recent isatin derivatives with proven pharmacophoric moiety. Asian J. Chem., 2020, 32(11), 2731-2738.
[http://dx.doi.org/10.14233/ajchem.2020.22823]
[109]
Gbaj, A.M. Microwave assisted synthesis and antimicrobial evaluation of symmetrical 1,2-Phenylenediamine Schiff’s base derivatives. Pharm. Pharmacol. Int. J., 2018, 6(5), 344-348.
[http://dx.doi.org/10.15406/ppij.2018.06.00199]
[110]
Magalhães, T.F.F.; Silva, C.M.; Santos, L.B.F.; Santos, D.A.; Silva, L.M.; Fuchs, B.B.; Mylonakis, E.; Martins, C.V.B.; Resende-Stoianoff, M.A.; Fátima, Â. Cinnamyl Schiff bases: Synthesis, cytotoxic effects and antifungal activity of clinical interest. Lett. Appl. Microbiol., 2020, 71(5), 490-497.
[http://dx.doi.org/10.1111/lam.13356] [PMID: 32777092]
[111]
Borrego-Muñoz, P.; Becerra, L.D.; Ospina, F.; Coy-Barrera, E.; Quiroga, D. Synthesis (Z) vs (E) selectivity, antifungal activity against Fusarium oxysporum, and structure-based virtual screening of novel schiff bases derived from L -Tryptophan. ACS Omega, 2022, 7(28), 24714-24726.
[http://dx.doi.org/10.1021/acsomega.2c02614] [PMID: 35874194]
[112]
Sui, G.; Xu, D.; Luo, T.; Guo, H.; Sheng, G.; Yin, D.; Ren, L.; Hao, H.; Zhou, W. Design, synthesis and antifungal activity of amide and imine derivatives containing a kakuol moiety. Bioorg. Med. Chem. Lett., 2020, 30(1), 126774.
[http://dx.doi.org/10.1016/j.bmcl.2019.126774]
[113]
Sun, B.; Dong, Y.; Lei, K.; Wang, J.; Zhao, L.; Liu, M. Design, synthesis and biological evaluation of amide-pyridine derivatives as novel dual-target (SE, CYP51) antifungal inhibitors. Bioorg. Med. Chem., 2019, 27(12), 2427-2437.
[http://dx.doi.org/10.1016/j.bmc.2019.02.009] [PMID: 30765301]
[114]
Huang, P.; Zhou, S.; Du, Y.; Li, H.; Lv, Y.; Lv, L. Study on a new type of high efficient amide compound fungicides against soybean rust. Tetrahedron Lett., 2021, 64(152745), 152745.
[http://dx.doi.org/10.1016/j.tetlet.2020.152745]
[115]
Mabkhot, Y.; Al-Majid, A.; Barakat, A.; Al-Showiman, S.; Al-Har, M.; Radi, S.; Naseer, M.; Hadda, T. Synthesis and biological evaluation of 2-aminobenzamide derivatives as antimicrobial agents: Opening/closing pharmacophore site. Int. J. Mol. Sci., 2014, 15(3), 5115-5127.
[http://dx.doi.org/10.3390/ijms15035115] [PMID: 24663060]
[116]
Jaisankar, K.R.; Kumaran, K.; Kamil, S.R.M.; Srinivasan, T.; Baskaran, C. Synthesis, characterisation and antimicrobial studies of 1, 2, 4-triazole carboxamides from esters and amines. J. Pharm. Res., 2012, 5(9), 4676-4680.
[117]
Valerio, L.G., Jr Application of advanced in silico methods for predictive modeling and information integration. Expert Opin. Drug Metab. Toxicol., 2012, 8(4), 395-398.
[http://dx.doi.org/10.1517/17425255.2012.664636] [PMID: 22432718]
[118]
de Azevedo Junior, W.F.; Dias, R.; Macedo Timmers, L.F.; Pauli, I.; Caceres, R.; Pereira Soares, M. Bioinformatics tools for screening of antiparasitic drugs. Curr. Drug Targets, 2009, 10(3), 232-239.
[http://dx.doi.org/10.2174/138945009787581122] [PMID: 19275559]
[119]
Ekins, S.; Mestres, J.; Testa, B. In silico pharmacology for drug discovery: Methods for virtual ligand screening and profiling. Br. J. Pharmacol., 2007, 152(1), 9-20.
[http://dx.doi.org/10.1038/sj.bjp.0707305] [PMID: 17549047]
[120]
Brogi, S.; Ramalho, T.C.; Kuca, K.; Medina-Franco, J.L.; Valko, M. Editorial: in silico methods for drug design and discovery. Front Chem., 2020, 8, 612.
[http://dx.doi.org/10.3389/fchem.2020.00612] [PMID: 32850641]
[121]
Ayati, A.; Falahati, M.; Irannejad, H.; Emami, S. Synthesis, in vitro antifungal evaluation and in silico study of 3-azolyl-4-chromanone phenylhydrazones. Daru, 2012, 20(1), 46.
[http://dx.doi.org/10.1186/2008-2231-20-46] [PMID: 23351328]
[122]
Hargrove, T.Y.; Wawrzak, Z.; Alexander, P.W.; Chaplin, J.H.; Keenan, M.; Charman, S.A.; Perez, C.J.; Waterman, M.R.; Chatelain, E.; Lepesheva, G.I. Complexes of Trypanosoma cruzi sterol 14α-demethylase (CYP51) with two pyridine-based drug candidates for Chagas disease: Structural basis for pathogen selectivity. J. Biol. Chem., 2013, 288(44), 31602-31615.
[http://dx.doi.org/10.1074/jbc.M113.497990] [PMID: 24047900]
[123]
Sahu, S.N.; Pattanayak, S.K. Molecular docking and molecular dynamics simulation studies on PLCE1 encoded protein. J. Mol. Struct., 2019, 1198, 126936.
[http://dx.doi.org/10.1016/j.molstruc.2019.126936]
[124]
Dominguez Dueñas, L.; Goode-Romero, G.; Aguayo-Ortiza, R. Relaciones cuantitativas estructura-actividad/propiedad en dos dimensiones empleando el programa R. Educ. Quim., 2019, 30(2), 27.
[http://dx.doi.org/10.22201/fq.18708404e.2019.2.67211]
[125]
Quiroga, D.; Becerra, L.D.; Coy-Barrera, E. Ultrasound-assisted synthesis, antifungal activity against Fusarium oxysporum, and three-dimensional quantitative structure-activity relationship of N, S-dialkyl dithiocarbamates derived from 2-amino acids. ACS Omega, 2019, 4(9), 13710-13720.
[http://dx.doi.org/10.1021/acsomega.9b01098] [PMID: 31497688]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy