Generic placeholder image

Letters in Drug Design & Discovery

Editor-in-Chief

ISSN (Print): 1570-1808
ISSN (Online): 1875-628X

Review Article

Emerging Heterocyclic Epidermal Growth Factor Receptor Inhibitors for the Management of Cancer: A Chemical Review

Author(s): Rupali Likhar*, Amey Deshpande, Tabassum Khan and Arati Prabhu

Volume 21, Issue 5, 2024

Published on: 08 May, 2023

Page: [866 - 879] Pages: 14

DOI: 10.2174/1570180820666230417093528

Price: $65

Abstract

Introduction: The Epidermal growth factor receptor is a transmembrane glycoprotein that belongs to the ErbB family of tyrosine kinase receptors, which includes four EGFR members ErbB1 (HER1/ErbB1), ErbB2 (HER2/neu), ErbB3 (HER3), and ErbB4 (HER4).

Methods: Amplification of EGFR corresponds to tyrosine kinase autophosphorylation that activates a downstream signalling pathway involved in regulating tumorigenesis, differentiation, and preservation.

Results: In cancer treatment, inhibition of EGFR is essential; therefore, potential EGFR inhibitors are required. Previously approved tyrosine kinase inhibitors such as erlotinib, lapatinib, and gefitinib and heterocyclic compounds such as pyrimidine, quinazolines, isoquinoline, purine, pyrazole, benzothiazole, imidazole, have received a lot of attention in cancer treatment due to their EGFR inhibition activity.

Conclusion: This review focuses on the diverse categories of synthetic entities compounds that were reported as potential EGFR and EGFR/ErbB-2 dual inhibitors. Furthermore, it will provide inexorable scope for investigators to design and synthesize potent EGFR inhibitors.

Keywords: EGFR, heterocycle, cancer, proliferation, apoptosis, EGFR inhibitors.

Graphical Abstract
[1]
Blackadar, C.B. Historical review of the causes of cancer. World J. Clin. Oncol., 2016, 7(1), 54-86.
[http://dx.doi.org/10.5306/wjco.v7.i1.54] [PMID: 26862491]
[2]
Pucci, C.; Martinelli, C.; Ciofani, G. Innovative approaches for cancer treatment: Current perspectives and new challenges. Ecancermedicalscience, 2019, 13, 961.
[http://dx.doi.org/10.3332/ecancer.2019.961] [PMID: 31537986]
[3]
Baudino, T. Targeted cancer therapy: The next generation of cancer treatment. Curr. Drug Discov. Technol., 2015, 12(1), 3-20.
[http://dx.doi.org/10.2174/1570163812666150602144310] [PMID: 26033233]
[4]
Arienti, C.; Pignatta, S.; Tesei, A. Epidermal growth factor receptor family and its role in gastric cancer. Front. Oncol., 2019, 9(9), 1308.
[http://dx.doi.org/10.3389/fonc.2019.01308] [PMID: 31850207]
[5]
Mitchell, R.A.; Luwor, R.B.; Burgess, A.W. Epidermal growth factor receptor: Structure-function informing the design of anticancer therapeutics. Exp. Cell Res., 2018, 371(1), 1-19.
[http://dx.doi.org/10.1016/j.yexcr.2018.08.009] [PMID: 30098332]
[6]
Guo, G.; Gong, K.; Wohlfeld, B.; Hatanpaa, K.J.; Zhao, D.; Habib, A.A. Ligand-independent EGFR signaling. Cancer Res., 2015, 75(17), 3436-3441.
[http://dx.doi.org/10.1158/0008-5472.CAN-15-0989] [PMID: 26282175]
[7]
Singh, B.; Carpenter, G.; Coffey, R.J. EGF receptor ligands: Recent advances. F1000 Res., 2016, 5, 2270.
[http://dx.doi.org/10.12688/f1000research.9025.1] [PMID: 27635238]
[8]
Liu, Q.; Yu, S.; Zhao, W.; Qin, S.; Chu, Q.; Wu, K. EGFR-TKIs resistance via EGFR-independent signaling pathways. Mol. Cancer, 2018, 17(1), 53.
[http://dx.doi.org/10.1186/s12943-018-0793-1] [PMID: 29455669]
[9]
Sigismund, S.; Avanzato, D.; Lanzetti, L. Emerging functions of the EGFR in cancer. Mol. Oncol., 2018, 12(1), 3-20.
[http://dx.doi.org/10.1002/1878-0261.12155] [PMID: 29124875]
[10]
Kwapiszewski, R.; Pawlak, S.D.; Adamkiewicz, K. Anti-EGFR agents: Current status, forecasts and future directions. Target. Oncol., 2016, 11(6), 739-752.
[http://dx.doi.org/10.1007/s11523-016-0456-3] [PMID: 27515815]
[11]
Sharma, V.; Kamal, R.; Kumar, V. Heterocyclic analogues as kinase inhibitors: A focus review. Curr. Top. Med. Chem., 2017, 17(22), 2482-2494.
[PMID: 28270087]
[12]
Brand, T.M.; Iida, M.; Li, C.; Wheeler, D.L. The nuclear epidermal growth factor receptor signaling network and its role in cancer. Discov. Med., 2011, 12(66), 419-432.
[PMID: 22127113]
[13]
Roskoski, R., Jr The ErbB/HER family of protein-tyrosine kinases and cancer. Pharmacol. Res., 2014, 79(79), 34-74.
[http://dx.doi.org/10.1016/j.phrs.2013.11.002] [PMID: 24269963]
[14]
Caldieri, G.; Malabarba, M.G.; Fiore, P.P.; Sigismund, S. EGFR trafficking in physiology and cancer. In: Endocytosis and Signaling; Lamaze, C.; Prior, I., Eds.; Springer: Cham, 2018; pp. 235-272.
[15]
Chen, J.; Zeng, F.; Forrester, S.J.; Eguchi, S.; Zhang, M.Z.; Harris, R.C. Expression and function of the epidermal growth factor receptor in physiology and disease. Physiol. Rev., 2016, 96(3), 1025-1069.
[http://dx.doi.org/10.1152/physrev.00030.2015] [PMID: 33003261]
[16]
Kovacs, E.; Zorn, J.A.; Huang, Y.; Barros, T.; Kuriyan, J. A structural perspective on the regulation of the epidermal growth factor receptor. Annu. Rev. Biochem., 2015, 84(1), 739-764.
[http://dx.doi.org/10.1146/annurev-biochem-060614-034402] [PMID: 25621509]
[17]
Seshacharyulu, P.; Ponnusamy, M.P.; Haridas, D.; Jain, M.; Ganti, A.K.; Batra, S.K. Targeting the EGFR signaling pathway in cancer therapy. Expert Opin. Ther. Targets, 2012, 16(1), 15-31.
[http://dx.doi.org/10.1517/14728222.2011.648617] [PMID: 22239438]
[18]
Sabbah, D.A.; Hajjo, R.; Sweidan, K. Review on epidermal growth factor receptor (EGFR) structure, signaling pathways, interactions, and recent updates of EGFR inhibitors. Curr. Top. Med. Chem., 2020, 20(10), 815-834.
[http://dx.doi.org/10.2174/1568026620666200303123102] [PMID: 32124699]
[19]
Abdullah, M.I.; Ali, Y.; Abd Hamid, S. Insights into the structure and drug design of benzimidazole derivatives targeting the epidermal growth factor receptor (EGFR). Chem. Biol. Drug Des., 2021, 15.
[PMID: 34651438]
[20]
Uribe, M.L.; Marrocco, I.; Yarden, Y. EGFR in cancer: Signaling mechanisms, drugs, and acquired resistance. Cancers, 2021, 13(11), 2748.
[http://dx.doi.org/10.3390/cancers13112748] [PMID: 34206026]
[21]
Hrustanovic, G.; Lee, B.J.; Bivona, T.G. Mechanisms of resistance to EGFR targeted therapies. Cancer Biol. Ther., 2013, 14(4), 304-314.
[http://dx.doi.org/10.4161/cbt.23627] [PMID: 23358468]
[22]
Liu, T.C.; Jin, X.; Wang, Y.; Wang, K. Role of epidermal growth factor receptor in lung cancer and targeted therapies. Am. J. Cancer Res., 2017, 7(2), 187-202.
[PMID: 28337370]
[23]
Marmé, F.; Schneeweiss, A. Targeted therapies in triple-negative breast cancer. Breast Care, 2015, 10(3), 159-166.
[http://dx.doi.org/10.1159/000433622] [PMID: 26557820]
[24]
Morgillo, F.; Della Corte, C.M.; Fasano, M.; Ciardiello, F. Mechanisms of resistance to EGFR-targeted drugs: Lung cancer. ESMO Open, 2016, 1(3), e000060.
[http://dx.doi.org/10.1136/esmoopen-2016-000060] [PMID: 27843613]
[25]
García-Foncillas, J.; Sunakawa, Y.; Aderka, D.; Wainberg, Z.; Ronga, P.; Witzler, P.; Stintzing, S. Distinguishing features of cetuximab and panitumumab in colorectal cancer and other solid tumors. Front. Oncol., 2019, 9(9), 849.
[http://dx.doi.org/10.3389/fonc.2019.00849] [PMID: 31616627]
[26]
Yazdi, M.H.; Faramarzi, M.A.; Nikfar, S.; Abdollahi, M. A comprehensive review of clinical trials on EGFR inhibitors such as cetuximab and panitumumab as monotherapy and in combination for treatment of metastatic colorectal cancer. Avicenna J. Med. Biotechnol., 2015, 7(4), 134-144.
[PMID: 26605007]
[27]
Le, T.; Gerber, D. Newer-generation EGFR inhibitors in lung cancer: How are they best used? Cancers, 2019, 11(3), 366.
[http://dx.doi.org/10.3390/cancers11030366] [PMID: 30875928]
[28]
Gong, H.; Li, Y.; Yuan, Y.; Li, W.; Zhang, H.; Zhang, Z.; Shi, R.; Liu, M.; Liu, C.; Chen, C.; Liu, H.; Chen, J. EZH2 inhibitors reverse resistance to gefitinib in primary EGFR wild-type lung cancer cells. BMC Cancer, 2020, 20(1), 1189.
[http://dx.doi.org/10.1186/s12885-020-07667-7] [PMID: 33276757]
[29]
Lau, S.C.M.; Batra, U.; Mok, T.S.K.; Loong, H.H. Dacomitinib in the management of advanced non-small-cell lung cancer. Drugs, 2019, 79(8), 823-831.
[http://dx.doi.org/10.1007/s40265-019-01115-y] [PMID: 31069718]
[30]
Tagliamento, M.; Genova, C.; Rijavec, E.; Rossi, G.; Biello, F.; Dal Bello, M.G.; Alama, A.; Coco, S.; Boccardo, S.; Grossi, F. Afatinib and Erlotinib in the treatment of squamous-cell lung cancer. Expert Opin. Pharmacother., 2018, 19(18), 2055-2062.
[http://dx.doi.org/10.1080/14656566.2018.1540591] [PMID: 30392436]
[31]
Liu, J.; Ming, B.; Gong, G.H.; Wang, D.; Bao, G.L.; Yu, L.J. Current research on anti-breast cancer synthetic compounds. RSC Advances, 2018, 8(8), 4386-4416.
[http://dx.doi.org/10.1039/C7RA12912B]
[32]
Ayati, A.; Moghimi, S.; Salarinejad, S.; Safavi, M.; Pouramiri, B.; Foroumadi, A. A review on progression of epidermal growth factor receptor (EGFR) inhibitors as an efficient approach in cancer targeted therapy. Bioorg. Chem., 2020, 99(99), 103811.
[http://dx.doi.org/10.1016/j.bioorg.2020.103811] [PMID: 32278207]
[33]
Cocco, E.; Javier Carmona, F.; Razavi, P.; Won, H.H.; Cai, Y.; Rossi, V.; Chan, C.; Cownie, J.; Soong, J.; Toska, E.; Shifman, S.G.; Sarotto, I.; Savas, P.; Wick, M.J.; Papadopoulos, K.P.; Moriarty, A.; Cutler, R.E., Jr; Avogadri-Connors, F.; Lalani, A.S.; Bryce, R.P.; Chandarlapaty, S.; Hyman, D.M.; Solit, D.B.; Boni, V.; Loi, S.; Baselga, J.; Berger, M.F.; Montemurro, F.; Scaltriti, M. Neratinib is effective in breast tumors bearing both amplification and mutation of ERBB2 (HER2). Sci. Signal., 2018, 11(551), eaat9773.
[http://dx.doi.org/10.1126/scisignal.aat9773] [PMID: 30301790]
[34]
Zhu, Y.; Zhang, H.; Han, X.; Wang, Z.; Cui, Y.; Tian, R.; Wang, Z.; Han, B.; Tian, J.; Zhang, F.; Niu, R. STAT3 mediated upregulation of C-MET signaling acts as a compensatory survival mechanism upon EGFR family inhibition in chemoresistant breast cancer cells. Cancer Lett., 2021, 519(519), 328-342.
[http://dx.doi.org/10.1016/j.canlet.2021.07.048] [PMID: 34348188]
[35]
Baidoo, J.N.E.; Mukherjee, S.; Kashfi, K.; Banerjee, P. A new perspective on cancer therapy: Changing the treaded path? Int. J. Mol. Sci., 2021, 22(18), 9836.
[http://dx.doi.org/10.3390/ijms22189836] [PMID: 34575998]
[36]
Schroeder, R.; Stevens, C.; Sridhar, J. Small molecule tyrosine kinase inhibitors of ErbB2/HER2/Neu in the treatment of aggressive breast cancer. Molecules, 2014, 19(9), 15196-15212.
[http://dx.doi.org/10.3390/molecules190915196] [PMID: 25251190]
[37]
Gangjee, A.; Kurup, S.; Ihnat, M.A.; Thorpe, J.E.; Shenoy, S.S. Synthesis and biological activity of N4-phenylsubstituted-6-(2,4-dichloro phenylmethyl)-7H-pyrrolo[2,3-d]pyrimidine-2,4-diamines as vascular endothelial growth factor receptor-2 inhibitors and antiangiogenic and antitumor agents. Bioorg. Med. Chem., 2010, 18(10), 3575-3587.
[http://dx.doi.org/10.1016/j.bmc.2010.03.052] [PMID: 20403700]
[38]
Hao, Y.; Lyu, J.; Qu, R.; Tong, Y.; Sun, D.; Feng, F.; Tong, L.; Yang, T.; Zhao, Z.; Zhu, L.; Ding, J.; Xu, Y.; Xie, H.; Li, H. Design, Synthesis, and Biological Evaluation of Pyrimido[4,5- d]pyrimidine-2,4(1 H, 3 H)-diones as Potent and Selective Epidermal Growth Factor Receptor (EGFR) Inhibitors against L858R/T790M Resistance Mutation. J. Med. Chem., 2018, 61(13), 5609-5622.
[http://dx.doi.org/10.1021/acs.jmedchem.8b00346] [PMID: 29906114]
[39]
Jorda, R.; Paruch, K.; Krystof, V. Cyclin-dependent kinase inhibitors inspired by roscovitine: purine bioisosteres. Curr. Pharm. Des., 2012, 18(20), 2974-2980.
[http://dx.doi.org/10.2174/138161212800672804] [PMID: 22571665]
[40]
Xu, Y.; Hao, S.Y.; Zhang, X.J.; Li, W.B.; Qiao, X.P.; Wang, Z.X.; Chen, S.W. Discovery of novel 2,4-disubstituted pyrimidines as Aurora kinase inhibitors. Bioorg. Med. Chem. Lett., 2020, 30(3), 126885.
[http://dx.doi.org/10.1016/j.bmcl.2019.126885] [PMID: 31862411]
[41]
Hu, S.; Xie, G.; Zhang, D.X.; Davis, C.; Long, W.; Hu, Y.; Wang, F.; Kang, X.; Tan, F.; Ding, L.; Wang, Y. Synthesis and biological evaluation of crown ether fused quinazoline analogues as potent EGFR inhibitors. Bioorg. Med. Chem. Lett., 2012, 22(19), 6301-6305.
[http://dx.doi.org/10.1016/j.bmcl.2012.06.067] [PMID: 22959248]
[42]
Kitano, Y.; Suzuki, T.; Kawahara, E.; Yamazaki, T. Synthesis and inhibitory activity of 4-alkynyl and 4-alkenylquinazolines: Identification of new scaffolds for potent EGFR tyrosine kinase inhibitors. Bioorg. Med. Chem. Lett., 2007, 17(21), 5863-5867.
[http://dx.doi.org/10.1016/j.bmcl.2007.08.020] [PMID: 17869510]
[43]
Das, D.; Xie, L.; Wang, J.; Xu, X.; Zhang, Z.; Shi, J.; Le, X.; Hong, J. Discovery of new quinazoline derivatives as irreversible dual EGFR/HER2 inhibitors and their anticancer activities – Part 1. Bioorg. Med. Chem. Lett., 2019, 29(4), 591-596.
[http://dx.doi.org/10.1016/j.bmcl.2018.12.056] [PMID: 30600209]
[44]
Jiang, N.; Bu, Y.; Wang, Y.; Nie, M.; Zhang, D.; Zhai, X. Design, synthesis and structure-activity relationships of novel diaryl urea derivatives as potential EGFR inhibitors. Molecules, 2016, 21(11), 1572.
[http://dx.doi.org/10.3390/molecules21111572] [PMID: 27869742]
[45]
Rode, H.B.; Sos, M.L.; Grütter, C.; Heynck, S.; Simard, J.R.; Rauh, D. Synthesis and biological evaluation of 7-substituted-1-(3-bromophenylamino)isoquinoline-4-carbonitriles as inhibitors of myosin light chain kinase and epidermal growth factor receptor. Bioorg. Med. Chem., 2011, 19(1), 429-439.
[http://dx.doi.org/10.1016/j.bmc.2010.11.007] [PMID: 21130659]
[46]
Yang, J.; Wang, L.J.; Liu, J.J.; Zhong, L.; Zheng, R.L.; Xu, Y.; Ji, P.; Zhang, C.H.; Wang, W.J.; Lin, X.D.; Li, L.L.; Wei, Y.Q.; Yang, S.Y. Structural optimization and structure-activity relationships of N2-(4-(4-Methylpiperazin-1-yl)phenyl)-N8-phenyl-9H-purine-2,8-diamine derivatives, a new class of reversible kinase inhibitors targeting both EGFR-activating and resistance mutations. J. Med. Chem., 2012, 55(23), 10685-10699.
[http://dx.doi.org/10.1021/jm301365e] [PMID: 23116168]
[47]
Yang, W.; Hu, Y.; Yang, YS; Zhang, F.; Zhang, Y. Design, modification and 3D QSAR studies of novel naphthalin-containing pyrazoline derivatives with/without thiourea skeleton as anticancer agents. Bioorg. Med. Chem., 2013, 21(5), 1050-1063.
[48]
Belal, A. Abdelgawad, M.A. New benzothiazole/benzoxazole-pyrazole hybrids with potential as COX inhibitors: design, synthesis and anticancer activity evaluation. Res. Chem. Intermed., 2017, 43(7), 3859-3872.
[http://dx.doi.org/10.1007/s11164-016-2851-x]
[49]
Gabr, M.T.; El-Gohary, N.S.; El-Bendary, E.R.; El-Kerdawy, M.M. New series of benzothiazole and pyrimido[2,1-b]benzothiazole derivatives: synthesis, antitumor activity, EGFR tyrosine kinase inhibitory activity and molecular modeling studies. Med. Chem. Res., 2015, 24(2), 860-878.
[http://dx.doi.org/10.1007/s00044-014-1114-x]
[50]
Philoppes, J.N.; Lamie, P.F. Design and synthesis of new benzoxazole/benzothiazole-phthalimide hybrids as antitumor-apoptotic agents. Bioorg. Chem., 2019, 89(89), 102978.
[http://dx.doi.org/10.1016/j.bioorg.2019.102978] [PMID: 31136900]
[51]
Modi, A.; Singh, M.; Gutti, G.; Shanker, O.R.; Singh, V.K.; Singh, S.; Singh, S.K.; Pradhan, S.; Narayan, G. Benzothiazole derivative bearing amide moiety induces p53-mediated apoptosis in HPV16 positive cervical cancer cells. Invest. New Drugs, 2020, 38(4), 934-945.
[http://dx.doi.org/10.1007/s10637-019-00848-7] [PMID: 31432292]
[52]
Liu, D.C.; Gao, M.J.; Huo, Q.; Ma, T.; Wang, Y.; Wu, C.Z. Design, synthesis, and apoptosis-promoting effect evaluation of novel pyrazole with benzo[ d]thiazole derivatives containing aminoguanidine units. J. Enzyme Inhib. Med. Chem., 2019, 34(1), 829-837.
[http://dx.doi.org/10.1080/14756366.2019.1591391] [PMID: 30915869]
[53]
Baig, M.F.; Nayak, V.L.; Budaganaboyina, P.; Mullagiri, K.; Sunkari, S.; Gour, J.; Kamal, A. Synthesis and biological evaluation of imidazo[2,1-b]thiazole-benzimidazole conjugates as microtubule-targeting agents. Bioorg. Chem., 2018, 77(77), 515-526.
[http://dx.doi.org/10.1016/j.bioorg.2018.02.005] [PMID: 29459129]
[54]
Donthiboina, K.; Anchi, P.; Gurram, S.; Sai Mani, G. Lakshmi Uppu, J.; Godugu, C.; Shankaraiah, N.; Kamal, A. Synthesis and biological evaluation of substituted N-(2-(1H-benzo[d]imidazol-2-yl)phenyl)cinnamides as tubulin polymerization inhibitors. Bioorg. Chem., 2020, 103(103), 104191.
[http://dx.doi.org/10.1016/j.bioorg.2020.104191] [PMID: 32891862]
[55]
Kalra, S.; Joshi, G.; Kumar, M.; Arora, S.; Kaur, H.; Singh, S.; Munshi, A.; Kumar, R. Anticancer potential of some imidazole and fused imidazole derivatives: exploring the mechanism via epidermal growth factor receptor (EGFR) inhibition. RSC Medicinal Chemistry, 2020, 11(8), 923-939.
[http://dx.doi.org/10.1039/D0MD00146E] [PMID: 33479688]
[56]
Hisham, M.; Youssif, B.G.M.; Osman, E.E.A.; Hayallah, A.M.; Abdel-Aziz, M. Synthesis and biological evaluation of novel xanthine derivatives as potential apoptotic antitumor agents. Eur. J. Med. Chem., 2019, 176(176), 117-128.
[http://dx.doi.org/10.1016/j.ejmech.2019.05.015] [PMID: 31108261]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy