Generic placeholder image

Letters in Drug Design & Discovery

Editor-in-Chief

ISSN (Print): 1570-1808
ISSN (Online): 1875-628X

Research Article

Affinity Prediction of Shikonins Towards Sirtuins and the Requisite Structural Motifs for the Selective Inhibition of SIRT2 and SIRT3

Author(s): Amin Goodarzi, Mehdi Valipour and Hamid Irannejad*

Volume 21, Issue 4, 2024

Published on: 23 January, 2023

Page: [724 - 737] Pages: 14

DOI: 10.2174/1570180820666230102094314

Price: $65

Abstract

Background: Shikonin and alkannin derivatives have various pharmacological activities with unknown mechanisms of action. Sirtuins are key intracellular enzymes involved in the cell cycle and metabolism and are ideal targets of therapeutic agents. Some evidence based on recent studies indicates that shikonins are possible modulators of sirtuins.

Objective: In this study, an extensive computational workflow was utilized to assess the affinity of 27 different derivatives of shikonins towards SIRT1-6 as possible molecular targets.

Methods: Molecular docking and dynamics simulation studies were performed, followed by MMPBSA analysis, and the results were compared with standard and selective sirtuin inhibitors. Subsequently, the scaffold hopping approach was used to find novel and more drug-like structures. Accordingly, the pharmacophoric features of 3,4-(Methylenedioxy)cinnamoyl alkannin in SIRT2 and SIRT3 were extracted and used for screening PubChem and Mcule databases.

Results: The results indicated that 3,4-(Methylenedioxy)cinnamoyl alkannin is a potent SIRT2 and SIRT3 inhibitor and even more potent than the standard sirtuin inhibitors AGK2 and selisistat. The results successfully revealed some privileged fragments for the selective inhibition of SIRT2 and SIRT3.

Conclusion: An indole or benzimidazole fragment linked to basic nitrogen through an amide would be an ideal structural feature for SIRT2 inhibition, and 3-methyl-2H-pyrazolo[3,4-b]pyridine was found to be a privileged fragment for optimal inhibition of SIRT3.

Keywords: Sirtuins, shikonin, alkannin, MMPBSA, pharmacophore mapping, scaffold-hopping.

Graphical Abstract
[1]
Zhang, X.; Cui, J-H.; Meng, Q-Q.; Li, S-S.; Zhou, W.; Xiao, S. Advance in anti-tumor mechanisms of shikonin, alkannin and their derivatives. Mini Rev. Med. Chem., 2018, 18(2)
[2]
Valipour, M. Recent advances of antitumor shikonin/alkannin derivatives: A comprehensive overview focusing on structural classification, synthetic approaches, and mechanisms of action. Eur. J. Med. Chem., 2022, 235, 114314.
[http://dx.doi.org/10.1016/j.ejmech.2022.114314] [PMID: 35367708]
[3]
Yeh, YC; Liu, TJ; Lai, HC Shikonin induces apoptosis, necrosis, and premature senescence of human A549 lung cancer cells through upregulation of p53 expression. Evidence-based Complement Altern Med, 2015, 2015
[http://dx.doi.org/10.1155/2015/620383]
[4]
Wang, F.; Mayca Pozo, F.; Tian, D.; Geng, X.; Yao, X.; Zhang, Y. Shikonin inhibits cancer through P21 upregulation and apoptosis induction. Front. Pharmacol., 2020, 11(June), 1-12.
[5]
Li, W.; Liu, J.; Jackson, K.; Shi, R.; Zhao, Y. Sensitizing the therapeutic efficacy of taxol with shikonin in human breast cancer cells. PLoS One, 2014, 9(4), e94079.
[http://dx.doi.org/10.1371/journal.pone.0094079] [PMID: 24710512]
[6]
Kim, D.J.; Lee, J.H.; Park, H.R.; Choi, Y.W. Acetylshikonin inhibits growth of oral squamous cell carcinoma by inducing apoptosis. Arch. Oral Biol., 2016, 70, 149-157.
[http://dx.doi.org/10.1016/j.archoralbio.2016.06.020] [PMID: 27371806]
[7]
Villalba, J.M.; Alcaín, F.J. Sirtuin activators and inhibitors. Biofactors, 2012, 38(5), 349-359.
[http://dx.doi.org/10.1002/biof.1032] [PMID: 22730114]
[8]
Hu, J.; Jing, H.; Lin, H. Sirtuin inhibitors as anticancer agents. Future Med. Chem., 2014, 6(8), 945-966.
[http://dx.doi.org/10.4155/fmc.14.44] [PMID: 24962284]
[9]
Roth, M.; Chen, W.Y. Sorting out functions of sirtuins in cancer. Oncogene, 2014, 33(13), 1609-1620.
[http://dx.doi.org/10.1038/onc.2013.120] [PMID: 23604120]
[10]
Alhazzazi, T.Y.; Kamarajan, P.; Joo, N.; Huang, J.Y.; Verdin, E.; D’Silva, N.J.; Kapila, Y.L. Sirtuin‐3 (SIRT3), a novel potential therapeutic target for oral cancer. Cancer, 2011, 117(8), 1670-1678.
[http://dx.doi.org/10.1002/cncr.25676] [PMID: 21472714]
[11]
Liu, S.; Ji, S.; Yu, Z.J.; Wang, H.L.; Cheng, X.; Li, W.J.; Jing, L.; Yu, Y.; Chen, Q.; Yang, L.L.; Li, G.B.; Wu, Y. Structure-based discovery of new selective small-molecule sirtuin 5 inhibitors. Chem. Biol. Drug Des., 2018, 91(1), 257-268.
[http://dx.doi.org/10.1111/cbdd.13077] [PMID: 28756638]
[12]
Bruzzone, S.; Daniele Parenti, M.; Grozio, A.; Ballestrero, A.; Bauer, I.; Del Rio, A.; Nencioni, A. Rejuvenating sirtuins: the rise of a new family of cancer drug targets. Curr. Pharm. Des., 2013, 19(4), 614-623.
[http://dx.doi.org/10.2174/138161213804581954] [PMID: 23016857]
[13]
Di Sotto, A.; Irannejad, H.; Eufemi, M.; Mancinelli, R.; Abete, L.; Mammola, C.L.; Altieri, F.; Mazzanti, G.; Di Giacomo, S. Potentiation of low-dose doxorubicin cytotoxicity by affecting p-glycoprotein through caryophyllane sesquiterpenes in HepG2 cells: An in vitro and in silico study. Int. J. Mol. Sci., 2020, 21(2), 633.
[http://dx.doi.org/10.3390/ijms21020633] [PMID: 31963614]
[14]
Kumari, R.; Kumar, R.; Lynn, A. g_mmpbsa--a GROMACS tool for high-throughput MM-PBSA calculations. J. Chem. Inf. Model., 2014, 54(7), 1951-1962.
[http://dx.doi.org/10.1021/ci500020m] [PMID: 24850022]
[15]
Hosseini Balef, S.S.; Chippindale, A.M.; Irannejad, H. A crystallographic and theoretical study of an (E)-2-Hydroxyiminoethanone derivative: prediction of cyclooxygenase inhibition selectivity of stilbenoids by MM-PBSA and the role of atomic charge. J. Biomol. Struct. Dyn., 2019, 37(6), 1555-1566.
[http://dx.doi.org/10.1080/07391102.2018.1462256] [PMID: 29697018]
[16]
Baell, J.B.; Nissink, J.W.M. Seven year itch: Pan-assay interference compounds (PAINS) in 2017-Utility and limitations. ACS Chem. Biol., 2018, 13(1), 36-44.
[http://dx.doi.org/10.1021/acschembio.7b00903] [PMID: 29202222]
[17]
Spinck, M.; Bischoff, M.; Lampe, P.; Meyer-Almes, F.J.; Sievers, S.; Neumann, H. Discovery of dihydro-1,4-benzoxazine carboxamides as potent and highly selective inhibitors of sirtuin-1. J. Med. Chem., 2021, 64(9), 5838-5849.
[http://dx.doi.org/10.1021/acs.jmedchem.1c00017] [PMID: 33876629]
[18]
Wawruszak, A.; Luszczki, J.; Czerwonka, A.; Okon, E.; Stepulak, A. Assessment of pharmacological interactions between SIRT2 inhibitor AGK2 and paclitaxel in different molecular subtypes of breast cancer cells. Cells, 2022, 11(7), 1211.
[http://dx.doi.org/10.3390/cells11071211] [PMID: 35406775]
[19]
Maurer, B.; Rumpf, T.; Scharfe, M.; Stolfa, D.A.; Schmitt, M.L.; He, W.; Verdin, E.; Sippl, W.; Jung, M. Inhibitors of the NAD + -Dependent protein desuccinylase and demalonylase sirt5. ACS Med. Chem. Lett., 2012, 3(12), 1050-1053.
[http://dx.doi.org/10.1021/ml3002709] [PMID: 24900427]
[20]
Yang, J.; Li, Y.; Zhang, Y.; Fang, X.; Chen, N.; Zhou, X.; Wang, X. Sirt6 promotes tumorigenesis and drug resistance of diffuse large B-cell lymphoma by mediating PI3K/Akt signaling. J. Exp. Clin. Cancer Res., 2020, 39(1), 142.
[http://dx.doi.org/10.1186/s13046-020-01623-w] [PMID: 32711549]
[21]
Yang, Q.; Ji, M.; Guan, H.; Shi, B.; Hou, P. Shikonin inhibits thyroid cancer cell growth and invasiveness through targeting major signaling pathways. J. Clin. Endocrinol. Metab., 2013, 98(12), E1909-E1917.
[http://dx.doi.org/10.1210/jc.2013-2583] [PMID: 24106286]
[22]
Guo, X.P.; Zhang, X.Y.; Zhang, S.D. Clinical trial on the effects of shikonin mixture on later stage lung cancer. Zhong xi yi jie he za zhi = Chinese J. Mod. Dev. Tradit. Med., 1991, 11(10), 598-599.
[23]
Lin, K.H.; Huang, M.Y.; Cheng, W.C.; Wang, S.C.; Fang, S.H.; Tu, H.P.; Su, C.C.; Hung, Y.L.; Liu, P.L.; Chen, C.S.; Wang, Y.T.; Li, C.Y. RNA-seq transcriptome analysis of breast cancer cell lines under shikonin treatment. Sci. Rep., 2018, 8(1), 2672.
[http://dx.doi.org/10.1038/s41598-018-21065-x] [PMID: 29422643]
[24]
Park, D.G.; Kim, D.J.; Woo, B.H.; Kim, H.J.; Choi, Y.W.; Park, H.R. Isobutyrylshikonin has a potentially stronger cytotoxic effect in oral cancer cells than its analogue shikonin in vitro. Arch. Oral Biol., 2020, 116, 104774.
[http://dx.doi.org/10.1016/j.archoralbio.2020.104774] [PMID: 32470830]
[25]
Kretschmer, N.; Deutsch, A.; Durchschein, C.; Rinner, B.; Stallinger, A.; Higareda-Almaraz, J.; Scheideler, M.; Lohberger, B.; Bauer, R. Comparative gene expression analysis in WM164 melanoma cells revealed that β-β-dimethylacrylshikonin leads to ros generation, loss of mitochondrial membrane potential, and autophagy induction. Molecules, 2018, 23(11), 2823.
[http://dx.doi.org/10.3390/molecules23112823] [PMID: 30380804]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy