Generic placeholder image

Letters in Drug Design & Discovery

Editor-in-Chief

ISSN (Print): 1570-1808
ISSN (Online): 1875-628X

Mini-Review Article

Importance of Thymoquinone, Sulforaphane, Phloretin, and Epigallocatechin and their Health Benefits

Author(s): Mohamad Hesam Shahrajabian* and Wenli Sun*

Volume 21, Issue 2, 2024

Published on: 13 October, 2022

Page: [209 - 225] Pages: 17

DOI: 10.2174/1570180819666220902115521

Price: $65

Abstract

Natural products have a broad diversity of multidimensional chemical formations, which play an important role, and indicate the crucial nature as a golden source for gaining herbal drug discovery. Thymoquinone performs various functions and impacts anticancer, anti-inflammatory, antioxidant, and anti-diabetic. It shows the significant influence on the treatment of different cancer types, such as bone cancer, bladder cancer, lung cancer, breast cancer, prostate cancer, and colon cancer. Sulforaphane has anticancer and antimicrobial properties and anticarcinogenic constituents. Phloretin is a dihydrochalcone flavonoid that indicates a potent antioxidant activity in peroxynitrite scavenging and restraint of lipid peroxidation. The most important health benefits of phloretin are anti-inflammatory and antioxidant activity and its impacts on cancer cells. Its antioxidant activity occurs through a reducer of lipid peroxidation, the scavenger of ROS, and its anti-inflammatory impacts happen through a declined level of cytokines, adhesion molecules, chemokines, suppression of NF-κβ transcription, and decreased expression of COX- 2 and iNOS. Phloretin impacts cancer cells through cytotoxic and apoptotic activity and activation of immune cells against the tumor. Epigallocatechin-3-gallate is the most abundant tea polyphenol, followed by other polyphenols, namely, catechin, epicatechin, epigallocatechin, and epicatechin-3-gallate. This review manuscript mentions some important medical health advantages and pharmaceutical effects of thymoquinone, sulforaphane, phloretin, and epigallocatechin.

Keywords: Natural compounds, thymoquinone, sulforaphane, phloretin, epigallocatechin, lipid peroxidation, antiinflammatory, anticancer.

Graphical Abstract
[1]
Wenli, S.; Mohamad, H.S.; Qi, C. The insight and survey on medicinal properties and nutritive components of Shallot. J. Med. Plants Res., 2019, 13(18), 452-457.
[http://dx.doi.org/10.5897/JMPR2019.6836]
[2]
Sun, W.; Shahrajabian, M.H.; Cheng, Q. Anise (Pimpinella anisum L.), a dominant spice and traditional medicinal herb for both food and medicinal purposes. Cogent Biol., 2019, 5(1), 1673688.
[http://dx.doi.org/10.1080/23312025.2019.1673688]
[3]
Shahrajabian, M.H.; Sun, W.; Cheng, Q. Clinical aspects and health benefits of ginger (Zingiber officinale) in both traditional Chinese Med. Mod. Ind., 2019, 69(6), 546-556.
[http://dx.doi.org/10.1080/09064710.2019.1606930]
[4]
Shahrajabina, M.H.; Sun, W.; Cheng, Q. A review of ginseng species in different regions as a multipurpose herb in traditional Chinese medicine, modern herbology and pharmacological science. J. Med. Plants Res., 2019, 13(10), 213-226.
[5]
Khoshkharam, M.; Shahrajabian, M.H.; Sun, W.; Cheng, Q. Sumac (Rhus coriaria L.) a spice and medicinal plant – A mini review. Amazonian J. Plant Res., 2020, 4(2), 517-523.
[http://dx.doi.org/10.26545/ajpr.2020.b00061x]
[6]
Soleymani, A.; Shahrajabian, M.H. Response of different cultivars of fennel (Foeniculum vulgare) to irrigation and planting dates in Isfahan, Iran. Res. Crops, 2012, 13(2), 656-660.
[7]
Shahrajabian, M.H.; Sun, Q.; Cheng, Q. A review of astragalus species as foodstuffs, dietary supplements, a traditional Chinese medicine and a part of modern pharmaceutical science. Appl. Ecol. Environ. Res., 2019, 17(6), 13371-13382.
[http://dx.doi.org/10.15666/aeer/1706_1337113382]
[8]
Shahrajabian, M.H.; Sun, W.; Cheng, Q. Chinese star anise (Illicium verum) and pyrethrum (Chrysanthemum cinerariifolium) as natural alternatives for organic farming and health care- A review. Aust. J. Crop Sci., 2020, 14(03), 517-523.
[http://dx.doi.org/10.21475/ajcs.20.14.03.p2209]
[9]
Sun, W.; Shahrajabian, M.H.; Khoshkharam, M.; Cheng, Q. Adaptation of acupuncture and traditional Chinese herbal medicines models because of climate change. J. Stress Physiol. Biochem., 2020, 16(1), 85-90.
[10]
Shahrajabian, M.H.; Sun, W.; Shen, H.; Cheng, Q. Chinese herbal medicine for SARS and SARS-CoV-2 treatment and prevention, encouraging using herbal medicine for COVID-19 outbreak. Acta Agr Scand, 2020, 70(5), 437-443.
[http://dx.doi.org/10.1080/09064710.2020.1763448]
[11]
Soleymani, A.; Shahrajabian, M.H. Changes in germination and seedling growth of different cultivars of cumin to drought stress. Cercet. Agron. Mold., 2018, 51(1), 91-100.
[http://dx.doi.org/10.2478/cerce-2018-0008]
[12]
Khoshkharam, M.; Shahrajabian, M.; Sun, W.; Cheng, Q. Survey the allelopathic effects of tobacco (Nicotiana tabacum L.) on corn (Zea mays L.) growth and germination. Cercet. Agron. Mold., 2019, 4(180), 332-340.
[13]
Effenberger-Neidnicht, K.; Schobert, R. Combinatorial effects of thymoquinone on the anti-cancer activity of doxorubicin. Cancer Chemother. Pharmacol., 2011, 67(4), 867-874.
[http://dx.doi.org/10.1007/s00280-010-1386-x] [PMID: 20582416]
[14]
Farkhondeh, T.; Samarghandian, S.; Borji, A. An overview on cardioprotective and anti-diabetic effects of thymoquinone. Asian Pac. J. Trop. Med., 2017, 10(9), 849-854.
[http://dx.doi.org/10.1016/j.apjtm.2017.08.020] [PMID: 29080612]
[15]
Karaman, K. Characterization of Saccharomyces cerevisiae based microcarriers for encapsulation of black cumin seed oil: Stability of thymoquinone and bioactive properties. Food Chem., 2020, 313, 126129.
[http://dx.doi.org/10.1016/j.foodchem.2019.126129] [PMID: 31935665]
[16]
Mahboubi, M. Natural therapeutic approach of Nigella sativa (Black seed) fixed oil in management of sinusitis. Integr. Med. Res., 2018, 7(1), 27-32.
[http://dx.doi.org/10.1016/j.imr.2018.01.005] [PMID: 29629288]
[17]
Mashayekhi-Sardoo, H.; Rezaee, R.; Karimi, G. An overview of in vivo toxicological profile of thymoquinone. Toxin Rev., 2020, 39(2), 115-122.
[http://dx.doi.org/10.1080/15569543.2018.1514637]
[18]
Mahmoud, Y.K.; Abdelrazek, H.M.A. Cancer: Thymoquinone antioxidant/pro-oxidant effect as potential anticancer remedy. Biomed. Pharmacother., 2019, 115, 108783.
[http://dx.doi.org/10.1016/j.biopha.2019.108783] [PMID: 31060003]
[19]
Taborsky, J.; Kunt, M.; Kloucek, P.; Lachman, J.; Zeleny, V.; Kokoska, L. Identification of potential sources of thymoquinone and related compounds in Asteraceae, Cupressaceae, lamiaceae and Ranuculaceae families. Cent. Eur. J. Chem., 2012, 10, 1899-1906.
[20]
Attoub, S.; Sperandio, O.; Raza, H.; Arafat, K.; Al-Salam, S.; Al Sultan, M.A.; Al Safi, M.; Takahashi, T.; Adem, A. Thymoquinone as an anticancer agent: Evidence from inhibition of cancer cells viability and invasion in vitro and tumor growth in vivo. Fundam. Clin. Pharmacol., 2013, 27(5), 557-569.
[http://dx.doi.org/10.1111/j.1472-8206.2012.01056.x] [PMID: 22788741]
[21]
Fatfat, M.; Fakhoury, I.; Habli, Z.; Mismar, R.; Gali-Muhtasib, H. Thymoquinone enhances the anticancer activity of doxorubicin against adult T-cell leukemia in vitro and in vivo through ROS-dependent mechanisms. Life Sci., 2019, 232, 116628.
[http://dx.doi.org/10.1016/j.lfs.2019.116628] [PMID: 31278946]
[22]
Rahmani, A.H.; Alzohairy, M.A.; Khan, M.A.; Aly, S. Therapeutic implications of black seed and it constituent thymoquinone in the prevention of cancer through inactivation and activation of molecular pathways. Evid. Based Complementary. Altern. Med., 2014, 2014, 724658.
[23]
Imran, M.; Rauf, A.; Khan, I.A.; Shahbaz, M.; Qaisrani, T.B.; Fatmawati, S.; Abu-Izneid, T.; Imran, A.; Rahman, K.U.; Gondal, T.A. Thymoquinone: A novel strategy to combat cancer: A review. Biomed. Pharmacother., 2018, 106, 390-402.
[http://dx.doi.org/10.1016/j.biopha.2018.06.159] [PMID: 29966985]
[24]
Kapan, M.; Tekin, R.; Onder, A.; Firat, U.; Evliyaoglu, O.; Taskesen, F.; Arikanoglu, Z. Thymoquinone ameliorates bacterial translocation and inflammatory response in rats with intestinal obstruction. Int. J. Surg., 2012, 10(9), 484-488.
[http://dx.doi.org/10.1016/j.ijsu.2012.06.006] [PMID: 22750428]
[25]
Majdalawieh, A.F.; Fayyad, M.W.; Nasrallah, G.K. Anti-cancer properties and mechanisms of action of thymoquinone, the major active ingredient of Nigella sativa. Crit. Rev. Food Sci. Nutr., 2017, 57(18), 3911-3928.
[http://dx.doi.org/10.1080/10408398.2016.1277971] [PMID: 28140613]
[26]
Salem, M.L.; Alenzi, F.Q.; Attia, W.Y. Thymoquinone, the active ingredient of Nigella sativa seeds, enhances survival and activity of antigen-specific CD8-positive T cells in vitro. Br. J. Biomed. Sci., 2011, 68(3), 131-137.
[http://dx.doi.org/10.1080/09674845.2011.11730340] [PMID: 21950205]
[27]
Norouzi, F.; Abareshi, A.; Anaeigoudari, A.; Shafei, M.N.; Gholamnezhad, Z.; Saeedjalali, M.; Mohebbati, R.; Hosseini, M. The effects of Nigella sativa on sickness behavior induced by lipopolysaccharide in male Wistar rats. Avicenna J. Phytomed., 2016, 6(1), 104-116.
[PMID: 27247927]
[28]
Russo, M.; Spagnuolo, C.; Russo, G.L. Skalicka-Woźniak, K.; Daglia, M.; Sobarzo-Sánchez, E.; Nabavi, S.F.; Nabavi, S.M. Nrf2 targeting by sulforaphane: A potential therapy for cancer treatment. Crit. Rev. Food Sci. Nutr., 2018, 58(8), 1391-1405.
[http://dx.doi.org/10.1080/10408398.2016.1259983] [PMID: 28001083]
[29]
Velagapudi, R.; Kumar, A.; Bhatia, H.S.; El-Bakoush, A.; Lepiarz, I.; Fiebich, B.L.; Olajide, O.A. Inhibition of neuroinflammation by thymoquinone requires activation of Nrf2/ARE signalling. Int. Immunopharmacol., 2017, 48, 17-29.
[http://dx.doi.org/10.1016/j.intimp.2017.04.018] [PMID: 28458100]
[30]
Tantivitayakul, P.; Kaypetch, R.; Muadchiengka, T. Thymoquinone inhibits biofilm formation and virulence properties of periodontal bacteria. Arch. Oral Biol., 2020, 115, 104744.
[http://dx.doi.org/10.1016/j.archoralbio.2020.104744] [PMID: 32416351]
[31]
Kausar, H.; Mujeeb, M.; Ahad, A.; Moolakkadath, T.; Aqil, M.; Ahmad, A.; Akhter, M.H. Optimization of ethosomes for topical thymoquinone delivery for the treatment of skin acne. J. Drug Deliv. Sci. Technol., 2019, 49, 177-187.
[http://dx.doi.org/10.1016/j.jddst.2018.11.016]
[32]
Firdaus, F.; Zafeer, M.F.; Anis, E.; Ahmad, F.; Hossain, M.M.; Ali, A.; Afzal, M. Evaluation of phyto-medicinal efficacy of thymoquinone against Arsenic induced mitochondrial dysfunction and cytotoxicity in SH-SY5Y cells. Phytomedicine, 2019, 54, 224-230.
[http://dx.doi.org/10.1016/j.phymed.2018.09.197] [PMID: 30668372]
[33]
Rezaei, N.; Sardarzadeh, T.; Sisakhtnezhad, S. Thymoquinone promotes mouse mesenchymal stem cells migration in vitro and induces their immunogenicity in vivo. Toxicol. Appl. Pharmacol., 2020, 387, 114851.
[http://dx.doi.org/10.1016/j.taap.2019.114851] [PMID: 31812774]
[34]
Khazaei, M.; Pazhouhi, M. Temozolomide-mediated apoptotic death is improved by thymoquinone in U87MG cell lines. Cancer Invest., 2017, 35(4), 225-236.
[http://dx.doi.org/10.1080/07357907.2017.1289383] [PMID: 28355088]
[35]
Ogden, M.; Karaca, S.B.; Aydin, G.; Yuksel, U.; Dagli, A.T.; Akkaya, S.; Bakar, B. The healing effects of thymoquinone and dexpanthenol in sciatic nerve compression injury in rats. J. Invest. Surg., 2021, 34(5), 504-512.
[http://dx.doi.org/10.1080/08941939.2019.1658831] [PMID: 31462122]
[36]
Üstün, R. Oğuz, E.K.; Şeker, A.; Korkaya, H. Thymoquinone protects DRG neurons from axotomy-induced cell death. Neurol. Res., 2018, 40(11), 930-937.
[http://dx.doi.org/10.1080/01616412.2018.1504157] [PMID: 30088803]
[37]
Safhi, M.M.; Qumayri, H.M.; Masmali, A.U.M.; Siddiqui, R.; Alam, M.F.; Khan, G.; Anwer, T. Thymoquinone and fluoxetine alleviate depression via attenuating oxidative damage and inflammatory markers in type-2 diabetic rats. Arch. Physiol. Biochem., 2019, 125(2), 150-155.
[http://dx.doi.org/10.1080/13813455.2018.1443141] [PMID: 29482373]
[38]
Barnawi, J.; Tran, H.B.; Roscioli, E.; Hodge, G.; Jersmann, H.; Hodge, S. Pro-phagocytic effects of thymoquinone on cigarette smoke-exposed macrophages occur by modulation of the sphingosine-1-phosphate signaling system. COPD, 2016, 13(5), 653-661.
[http://dx.doi.org/10.3109/15412555.2016.1153614] [PMID: 27144721]
[39]
Kassab, R.B.; El-Hennamy, R.E. The role of thymoquinone as a potent antioxidant in ameliorating the neurotoxic effect of sodium arsenate in female rat. Egypt. J. Basic Appl. Sci., 2017, 4(3), 160-167.
[http://dx.doi.org/10.1016/j.ejbas.2017.07.002]
[40]
Sener, U.; Uygur, R.; Aktas, C.; Uygur, E.; Erboga, M.; Balkas, G.; Caglar, V.; Kumral, B.; Gurel, A.; Erdogan, H. Protective effects of thymoquinone against apoptosis and oxidative stress by arsenic in rat kidney. Ren. Fail., 2016, 38(1), 117-123.
[http://dx.doi.org/10.3109/0886022X.2015.1103601] [PMID: 26513487]
[41]
Zhang, M.; Du, H.; Huang, Z.; Zhang, P.; Yue, Y.; Wang, W.; Liu, W.; Zeng, J.; Ma, J.; Chen, G.; Wang, X.; Fan, J. Thymoquinone induces apoptosis in bladder cancer cell via endoplasmic reticulum stress-dependent mitochondrial pathway. Chem. Biol. Interact., 2018, 292, 65-75.
[http://dx.doi.org/10.1016/j.cbi.2018.06.013] [PMID: 29981725]
[42]
Zhang, M.; Du, H.; Wang, L.; Yue, Y.; Zhang, P.; Huang, Z.; Lv, W.; Ma, J.; Shao, Q.; Ma, M.; Liang, X.; Yang, T.; Wang, W.; Zeng, J.; Chen, G.; Wang, X.; Fan, J. Thymoquinone suppresses invasion and metastasis in bladder cancer cells by reversing EMT through the Wnt/β-catenin signaling pathway. Chem. Biol. Interact., 2020, 320, 109022.
[http://dx.doi.org/10.1016/j.cbi.2020.109022] [PMID: 32112862]
[43]
Pham, N.A.; Jacobberger, J.W.; Schimmer, A.D.; Cao, P.; Gronda, M.; Hedley, D.W. The dietary isothiocyanate sulforaphane targets pathways of apoptosis, cell cycle arrest, and oxidative stress in human pancreatic cancer cells and inhibits tumor growth in severe combined immunodeficient mice. Mol. Cancer Ther., 2004, 3(10), 1239-1248.
[http://dx.doi.org/10.1158/1535-7163.1239.3.10] [PMID: 15486191]
[44]
Yu, S.M.; Kim, S.J. Thymoquinone (TQ) regulates cyclooxygenase-2 expression and prostaglandin E2 production through PI3kinase (PI3K)/p38 kinase pathway in human breast cancer cell line, MDA-MB-231. Anim. Cells Syst., 2012, 16(4), 274-279.
[http://dx.doi.org/10.1080/19768354.2011.647834]
[45]
Rajput, S.; Kumar, B.N.P.; Dey, K.K.; Pal, I.; Parekh, A.; Mandal, M. Molecular targeting of Akt by thymoquinone promotes G1 arrest through translation inhibition of cyclin D1 and induces apoptosis in breast cancer cells. Life Sci., 2013, 93(21), 783-790.
[http://dx.doi.org/10.1016/j.lfs.2013.09.009] [PMID: 24044882]
[46]
Sutton, K.M.; Greenshields, A.L.; Hoskin, D.W. Thymoquinone, a bioactive component of black caraway seeds, causes G1 phase cell cycle arrest and apoptosis in triple-negative breast cancer cells with mutant p53. Nutr. Cancer, 2014, 66(3), 408-418.
[http://dx.doi.org/10.1080/01635581.2013.878739] [PMID: 24579801]
[47]
Darakhshan, S.; Bidmeshki, P.A.; Hosseinzadeh, C.A.; Sisakhtnezhad, S. Thymoquinone and its therapeutic potentials. Pharmacol. Res., 2015, 95-96, 138-158.
[http://dx.doi.org/10.1016/j.phrs.2015.03.011] [PMID: 25829334]
[48]
Alobaedi, O.H.; Talib, W.H.; Basheti, I.A. Antitumor effect of thymoquinone combined with resveratrol on mice transplanted with breast cancer. Asian Pac. J. Trop. Med., 2017, 10(4), 400-408.
[http://dx.doi.org/10.1016/j.apjtm.2017.03.026] [PMID: 28552110]
[49]
Bashmail, H.A.; Alamoudi, A.A.; Noorwali, A.; Hegazy, G.A. AJabnoor, G.; Choudhry, H.; Al-Abd, A.M. Thymoquinone synergizes gemcitabine anti-breast cancer activity via modulating its apoptotic and autophagic activities. Sci. Rep., 2018, 8(1), 11674.
[http://dx.doi.org/10.1038/s41598-018-30046-z] [PMID: 30076320]
[50]
Kommineni, N.; Saka, R.; Bulbake, U.; Khan, W. Cabazitaxel and thymoquinone co-loaded lipospheres as a synergistic combination for breast cancer. Chem. Phys. Lipids, 2019, 224, 104707.
[http://dx.doi.org/10.1016/j.chemphyslip.2018.11.009] [PMID: 30521787]
[51]
Aslan, M.; Afsar, E.; Kirimlioglu, E.; Ceker, T.; Yilmaz, C. Antiproliferative effects of thymoquinone in MCF-7 breast and HepG2 liver cancer cells: Possible role of ceramide and ER stress. Nutr. Cancer, 2021, 73(3), 460-472.
[http://dx.doi.org/10.1080/01635581.2020.1751216] [PMID: 32286088]
[52]
Bhattacharya, S.; Ghosh, A.; Maiti, S.; Ahir, M.; Debnath, G.H.; Gupta, P.; Bhattacharjee, M.; Ghosh, S.; Chattopadhyay, S.; Mukherjee, P.; Adhikary, A. Delivery of thymoquinone through hyaluronic acid-decorated mixed Pluronic® nanoparticles to attenuate angiogenesis and metastasis of triple-negative breast cancer. J. Control. Release, 2020, 322, 357-374.
[http://dx.doi.org/10.1016/j.jconrel.2020.03.033] [PMID: 32243981]
[53]
Zafar, S.; Akhter, S.; Ahmad, I.; Hafeez, Z.; Alam Rizvi, M.M.; Jain, G.K.; Ahmad, F.J. Improved chemotherapeutic efficacy against resistant human breast cancer cells with co-delivery of Docetaxel and Thymoquinone by Chitosan grafted lipid nanocapsules: Formulation optimization, in vitro and in vivo studies. Colloids Surf. B Biointerfaces, 2020, 186, 110603.
[http://dx.doi.org/10.1016/j.colsurfb.2019.110603] [PMID: 31846892]
[54]
Shoieb, A.; Elgayyar, M.; Dudrick, P.; Bell, J.; Tithof, P. In vitro inhibition of growth and induction of apoptosis in cancer cell lines by thymoquinone. Int. J. Oncol., 2003, 22(1), 107-113.
[http://dx.doi.org/10.3892/ijo.22.1.107] [PMID: 12469192]
[55]
Kaseb, A.O.; Chinnakannu, K.; Chen, D.; Sivanandam, A.; Tejwani, S.; Menon, M.; Dou, Q.P.; Reddy, G.P.V. Androgen receptor and E2F-1 targeted thymoquinone therapy for hormone-refractory prostate cancer. Cancer Res., 2007, 67(16), 7782-7788.
[http://dx.doi.org/10.1158/0008-5472.CAN-07-1483] [PMID: 17699783]
[56]
Yi, T.; Cho, S.G.; Yi, Z.; Pang, X.; Rodriguez, M.; Wang, Y.; Sethi, G.; Aggarwal, B.B.; Liu, M. Thymoquinone inhibits tumor angiogenesis and tumor growth through suppressing AKT and extracellular signal-regulated kinase signaling pathways. Mol. Cancer Ther., 2008, 7(7), 1789-1796.
[http://dx.doi.org/10.1158/1535-7163.MCT-08-0124] [PMID: 18644991]
[57]
El-Najjar, N.; Chatila, M.; Moukadem, H.; Vuorela, H.; Ocker, M.; Gandesiri, M.; Schneider-Stock, R.; Gali-Muhtasib, H. Reactive oxygen species mediate thymoquinone-induced apoptosis and activate ERK and JNK signaling. Apoptosis, 2010, 15(2), 183-195.
[http://dx.doi.org/10.1007/s10495-009-0421-z] [PMID: 19882352]
[58]
Gali-Muhtasib, H.; Ocker, M.; Kuester, D.; Krueger, S.; El-Hajj, Z.; Diestel, A.; Evert, M.; El-Najjar, N.; Peters, B.; Jurjus, A.; Roessner, A.; Schneider-Stock, R. Thymoquinone reduces mouse colon tumor cell invasion and inhibits tumor growth in murine colon cancer models. J. Cell. Mol. Med., 2008, 12(1), 330-342.
[http://dx.doi.org/10.1111/j.1582-4934.2007.00095.x] [PMID: 18366456]
[59]
Gali-Muhtasib, H.; Kuester, D.; Mawrin, C.; Bajbouj, K.; Diestel, A.; Ocker, M.; Habold, C.; Foltzer-Jourdainne, C.; Schoenfeld, P.; Peters, B.; Diab-Assaf, M.; Pommrich, U.; Itani, W.; Lippert, H.; Roessner, A.; Schneider-Stock, R. Thymoquinone triggers inactivation of the stress response pathway sensor CHEK1 and contributes to apoptosis in colorectal cancer cells. Cancer Res., 2008, 68(14), 5609-5618.
[http://dx.doi.org/10.1158/0008-5472.CAN-08-0884] [PMID: 18632613]
[60]
Chae, I.G.; Song, N.Y.; Kim, D.H.; Lee, M.Y.; Park, J.M.; Chun, K.S. Thymoquinone induces apoptosis of human renal carcinoma Caki-1 cells by inhibiting JAK2/STAT3 through pro-oxidant effect. Food Chem. Toxicol., 2020, 139, 111253.
[http://dx.doi.org/10.1016/j.fct.2020.111253] [PMID: 32165235]
[61]
Costa, J.G.; Keser, V.; Jackson, C.; Saraiva, N.; Guerreiro, Í.; Almeida, N.; Camões, S.P.; Manguinhas, R.; Castro, M.; Miranda, J.P.; Fernandes, A.S.; Oliveira, N.G. A multiple endpoint approach reveals potential in vitro anticancer properties of thymoquinone in human renal carcinoma cells. Food Chem. Toxicol., 2020, 136, 111076.
[http://dx.doi.org/10.1016/j.fct.2019.111076] [PMID: 31883990]
[62]
Park, J.E.; Kim, D.H.; Ha, E.; Choi, S.M.; Choi, J.S.; Chun, K.S.; Joo, S.H. Thymoquinone induces apoptosis of human epidermoid carcinoma A431 cells through ROS-mediated suppression of STAT3. Chem. Biol. Interact., 2019, 312, 108799.
[http://dx.doi.org/10.1016/j.cbi.2019.108799] [PMID: 31433961]
[63]
Hosseinian, S.; Rad, A.K.; Bideskan, A.E.; Soukhtanloo, M.; Sadeghnia, H.; Shafei, M.N.; Motejadded, F.; Mohebbati, R.; Shahraki, S.; Beheshti, F. Thymoquinone ameliorates renal damage in unilateral ureteral obstruction in rats. Pharmacol. Rep., 2017, 69(4), 648-657.
[http://dx.doi.org/10.1016/j.pharep.2017.03.002] [PMID: 28521173]
[64]
Nessa, M.U.; Beale, P.; Chan, C.; Yu, J.Q.; Huq, F. Synergism from combinations of cisplatin and oxaliplatin with quercetin and thymoquinone in human ovarian tumour models. Anticancer Res., 2011, 31(11), 3789-3797.
[PMID: 22110201]
[65]
Huq, F.; Yu, J.Q.; Beale, P.; Chan, C.; Arzuman, L.; Nessa, M.U.; Mazumder, M.E. Combinations of platinums and selected phytochemicals as a means of overcoming resistance in ovarian cancer. Anticancer Res., 2014, 34(1), 541-545.
[PMID: 24403514]
[66]
Wilson, A.J.; Saskowski, J.; Barham, W.; Yull, F.; Khabele, D. Thymoquinone enhances cisplatin-response through direct tumor effects in a syngeneic mouse model of ovarian cancer. J. Ovarian Res., 2015, 8(1), 46.
[http://dx.doi.org/10.1186/s13048-015-0177-8] [PMID: 26215403]
[67]
Liu, Z.; Nakashima, S.; Nakamura, T.; Munemasa, S.; Murata, Y.; Nakamura, Y. (-)-Epigallocatechin-3-gallate inhibits human angiotensin-converting enzyme activity through an autoxidation-dependent mechanism. J. Biochem. Mol. Toxicol., 2017, 31(9), e21932.
[http://dx.doi.org/10.1002/jbt.21932] [PMID: 28544013]
[68]
Johnson-Ajinwo, O.R.; Ullah, I.; Mbye, H.; Richardson, A.; Horrocks, P.; Li, W.W. The synthesis and evaluation of thymoquinone analogues as anti-ovarian cancer and antimalarial agents. Bioorg. Med. Chem. Lett., 2018, 28(7), 1219-1222.
[http://dx.doi.org/10.1016/j.bmcl.2018.02.051] [PMID: 29519737]
[69]
Nagi, M.N.; Mansour, M.A. Protective effect of thymoquinone against doxorubicin-induced cardiotoxicity in rats: A possible mechanism of protection. Pharmacol. Res., 2000, 41(3), 283-289.
[http://dx.doi.org/10.1006/phrs.1999.0585] [PMID: 10675279]
[70]
Badary, O.A.; Gamal El-Din, A.M. Inhibitory effects of thymoquinone against 20-methylcholanthrene-induced fibrosarcoma tumorigenesis. Cancer Detect. Prev., 2001, 25(4), 362-368.
[PMID: 11531013]
[71]
Mansour, M.A.; Nagi, M.N.; El-Khatib, A.S.; Al-Bekairi, A.M. Effects of thymoquinone on antioxidant enzyme activities, lipid peroxidation and DT-diaphorase in different tissues of mice: A possible mechanism of action. Cell Biochem. Funct., 2002, 20(2), 143-151.
[http://dx.doi.org/10.1002/cbf.968] [PMID: 11979510]
[72]
Badary, O.A.; Taha, R.A.; Gamal El-Din, A.M.; Abdel-Wahab, M.H. Thymoquinone is a potent superoxide anion scavenger. Drug Chem. Toxicol., 2003, 26(2), 87-98.
[http://dx.doi.org/10.1081/DCT-120020404] [PMID: 12816394]
[73]
Kanter, M.; Demir, H.; Karakaya, C.; Ozbek, H. Gastroprotective activity of Nigella sativa L oil and its constituent, thymoquinone against acute alcohol-induced gastric mucosal injury in rats. World J. Gastroenterol., 2005, 11(42), 6662-6666.
[http://dx.doi.org/10.3748/wjg.v11.i42.6662] [PMID: 16425361]
[74]
Elbarbry, F.; Ragheb, A.; Marfleet, T.; Shoker, A. Modulation of hepatic drug metabolizing enzymes by dietary doses of thymoquinone in female New Zealand White rabbits. Phytother. Res., 2012, 26(11), 1726-1730.
[http://dx.doi.org/10.1002/ptr.4628] [PMID: 22422469]
[75]
Ince, S.; Kucukkurt, I.; Demirel, H.H.; Turkmen, R.; Zemheri, F.; Akbel, E. The role of thymoquinone as antioxidant protection on oxidative stress induced by imidacloprid in male and female Swiss albino mice. Toxicol. Environ. Chem., 2013, 95(2), 318-329.
[http://dx.doi.org/10.1080/02772248.2013.764672]
[76]
Banerjee, S.; Kaseb, A.O.; Wang, Z.; Kong, D.; Mohammad, M.; Padhye, S.; Sarkar, F.H.; Mohammad, R.M. Antitumor activity of gemcitabine and oxaliplatin is augmented by thymoquinone in pancreatic cancer. Cancer Res., 2009, 69(13), 5575-5583.
[http://dx.doi.org/10.1158/0008-5472.CAN-08-4235] [PMID: 19549912]
[77]
Acharya, B.R.; Chatterjee, A.; Ganguli, A.; Bhattacharya, S.; Chakrabarti, G. Thymoquinone inhibits microtubule polymerization by tubulin binding and causes mitotic arrest following apoptosis in A549 cells. Biochimie, 2014, 97, 78-91.
[http://dx.doi.org/10.1016/j.biochi.2013.09.025] [PMID: 24113316]
[78]
Jafri, S.H.; Glass, J.; Shi, R.; Zhang, S.; Prince, M.; Kleiner-Hancock, H. Thymoquinone and cisplatin as a therapeutic combination in lung cancer: in vitro and in vivo. J. Exp. Clin. Cancer Res., 2010, 29(1), 87.
[http://dx.doi.org/10.1186/1756-9966-29-87] [PMID: 20594324]
[79]
Fararh, K.M.; Ibrahim, A.K.; Elsonosy, Y.A. Thymoquinone enhances the activities of enzymes related to energy metabolism in peripheral leukocytes of diabetic rats. Res. Vet. Sci., 2010, 88(3), 400-404.
[http://dx.doi.org/10.1016/j.rvsc.2009.10.008] [PMID: 19931880]
[80]
Rani, R.; Dahiya, S.; Dhingra, D.; Dilbaghi, N.; Kim, K.H.; Kumar, S. Improvement of antihyperglycemic activity of nano-thymoquinone in rat model of type-2 diabetes. Chem. Biol. Interact., 2018, 295, 119-132.
[http://dx.doi.org/10.1016/j.cbi.2018.02.006] [PMID: 29421519]
[81]
Bule, M.; Nikfar, S.; Amini, M.; Abdollahi, M. The antidiabetic effect of thymoquinone: A systematic review and meta-analysis of animal studies. Food Res. Int., 2020, 127, 108736.
[http://dx.doi.org/10.1016/j.foodres.2019.108736] [PMID: 31882078]
[82]
Farkhondeh, T.; Samarghandian, S.; Hozeifi, S.; Azimi-Nezhad, M. Therapeutic effects of thymoquinone for the treatment of central nervous system tumors: A review. Biomed. Pharmacother., 2017, 96, 1440-1444.
[http://dx.doi.org/10.1016/j.biopha.2017.12.013] [PMID: 29223556]
[83]
Zidan, A.A.A.; El-Ashmawy, N.E.; Khedr, E.G.; Ebeid, E.Z.M.; Salem, M.L.; Mosalam, E.M. Loading of doxorubicin and thymoquinone with F2 gel nanofibers improves the antitumor activity and ameliorates doxorubicin-associated nephrotoxicity. Life Sci., 2018, 207, 461-470.
[http://dx.doi.org/10.1016/j.lfs.2018.06.008] [PMID: 29885348]
[84]
Fakhria, A.; Gilani, S.J.; Imam, S.S. Chandrakala, Formulation of thymoquinone loaded chitosan nano vesicles: In-vitro evaluation and in-vivo anti-hyperlipidemic assessment. J. Drug Deliv. Sci. Technol., 2019, 50, 339-346.
[http://dx.doi.org/10.1016/j.jddst.2019.01.033]
[85]
Akhondian, J.; Kianifar, H.; Raoofziaee, M.; Moayedpour, A.; Toosi, M.B.; Khajedaluee, M. The effect of thymoquinone on intractable pediatric seizures (pilot study). Epilepsy Res., 2011, 93(1), 39-43.
[http://dx.doi.org/10.1016/j.eplepsyres.2010.10.010] [PMID: 21112742]
[86]
Mabrouk, A.; Cheikh, H.B. Thymoquinone ameliorates lead-induced suppression of the antioxidant system in rat kidneys. Libyan J. Med., 2016, 11(1), 31018.
[http://dx.doi.org/10.3402/ljm.v11.31018] [PMID: 28349843]
[87]
Hassan, E.; El-Neweshy, M.; Hassan, M.; Noreldin, A. Thymoquinone attenuates testicular and spermotoxicity following subchronic lead exposure in male rats: Possible mechanisms are involved. Life Sci., 2019, 230, 132-140.
[http://dx.doi.org/10.1016/j.lfs.2019.05.067] [PMID: 31136753]
[88]
Amin, B.; Hosseinzadeh, H. Black cumin (Nigella sativa) and its active constituent, thymoquinone: An overview on the analgesic and anti-inflammatory effects. Planta Med., 2016, 82(1-2), 8-16.
[PMID: 26366755]
[89]
Ammar, E.S.M.; Gameil, N.M.; Shawky, N.M.; Nader, M.A. Comparative evaluation of anti-inflammatory properties of thymoquinone and curcumin using an asthmatic murine model. Int. Immunopharmacol., 2011, 11(12), 2232-2236.
[http://dx.doi.org/10.1016/j.intimp.2011.10.013] [PMID: 22051975]
[90]
Ahmad, A.; Alkharfy, K.M.; Jan, B.L.; Ahad, A.; Ansari, M.A.; Al-Jenoobi, F.I.; Raish, M. Thymoquinone treatment modulates the Nrf2/HO-1 signaling pathway and abrogates the inflammatory response in an animal model of lung fibrosis. Exp. Lung Res., 2020, 46(3-4), 53-63.
[http://dx.doi.org/10.1080/01902148.2020.1726529] [PMID: 32053036]
[91]
Aslam, H.; Shahzad, M.; Shabbir, A.; Irshad, S. Immunomodulatory effect of thymoquinone on atopic dermatitis. Mol. Immunol., 2018, 101, 276-283.
[http://dx.doi.org/10.1016/j.molimm.2018.07.013] [PMID: 30031280]
[92]
Aziz, N.; Son, Y.J.; Cho, J. -.Y; Cho, J. Thymoquinone suppresses IRF-3-mediated expression of type I interferons via suppression of TBK1. Int. J. Mol. Sci., 2018, 19(5), 1355.
[http://dx.doi.org/10.3390/ijms19051355] [PMID: 29751576]
[93]
Alkharfy, K.M.; Ahmad, A.; Jan, B.L.; Raish, M. Thymoquinone reduces mortality and suppresses early acute inflammatory markers of sepsis in a mouse model. Biomed. Pharmacother., 2018, 98, 801-805.
[http://dx.doi.org/10.1016/j.biopha.2018.01.028] [PMID: 29571249]
[94]
Vaillancourt, F.; Silva, P.; Shi, Q.; Fahmi, H.; Fernandes, J.C.; Benderdour, M. Elucidation of molecular mechanisms underlying the protective effects of thymoquinone against rheumatoid arthritis. J. Cell. Biochem., 2011, 112(1), 107-117.
[http://dx.doi.org/10.1002/jcb.22884] [PMID: 20872780]
[95]
El Mezayen, R.; El Gazzar, M.; Nicolls, M.R.; Marecki, J.C.; Dreskin, S.C.; Nomiyama, H. Effect of thymoquinone on cyclooxygenase expression and prostaglandin production in a mouse model of allergic airway inflammation. Immunol. Lett., 2006, 106(1), 72-81.
[http://dx.doi.org/10.1016/j.imlet.2006.04.012] [PMID: 16762422]
[96]
Chehl, N.; Chipitsyna, G.; Gong, Q.; Yeo, C.J.; Arafat, H.A. Anti-inflammatory effects of the Nigella sativa seed extract, thymoquinone, in pancreatic cancer cells. HPB (Oxford), 2009, 11(5), 373-381.
[http://dx.doi.org/10.1111/j.1477-2574.2009.00059.x] [PMID: 19768141]
[97]
Kanter, M. Thymoquinone attenuates lung injury induced by chronic toluene exposure in rats. Toxicol. Ind. Health, 2011, 27(5), 387-395.
[http://dx.doi.org/10.1177/0748233710387630] [PMID: 21088054]
[98]
Houghton, P.; Zarka, R.; de las Heras, B.; Hoult, J. Fixed oil of Nigella sativa and derived thymoquinone inhibit eicosanoid generation in leukocytes and membrane lipid peroxidation. Planta Med., 1995, 61(1), 33-36.
[http://dx.doi.org/10.1055/s-2006-957994] [PMID: 7700988]
[99]
Mansour, M.; Tornhamre, S. Inhibition of 5-lipoxygenase and leukotriene C4 synthase in human blood cells by thymoquinone. J. Enzyme Inhib. Med. Chem., 2004, 19(5), 431-436.
[http://dx.doi.org/10.1080/14756360400002072] [PMID: 15648658]
[100]
Tekeoglu, I.; Dogan, A.; Demiralp, L. Retracted: Effects of thymoquinone (volatile oil of black cumin) on rheumatoid arthritis in rat models. Phytother. Res., 2006, 20(10), 869-871.
[http://dx.doi.org/10.1002/ptr.1964] [PMID: 16835876]
[101]
Sayed, A.A.R.; Morcos, M. Thymoquinone decreases AGE-induced NF-κB activation in proximal tubular epithelial cells. Phytother. Res., 2007, 21(9), 898-899.
[http://dx.doi.org/10.1002/ptr.2177] [PMID: 17582594]
[102]
Woo, C.C.; Loo, S.Y.; Gee, V.; Yap, C.W.; Sethi, G.; Kumar, A.P.; Benny, T.K.H. Anticancer activity of thymoquinone in breast cancer cells: Possible involvement of PPAR-γ pathway. Biochem. Pharmacol., 2011, 82(5), 464-475.
[http://dx.doi.org/10.1016/j.bcp.2011.05.030] [PMID: 21679698]
[103]
Suddek, G.M.; Ashry, N.A.; Gameil, N.M. Thymoquinone attenuates cyclophosphamide-induced pulmonary injury in rats. Inflammopharmacol., 2013, 21(6), 427-435.
[http://dx.doi.org/10.1007/s10787-012-0160-6] [PMID: 23196752]
[104]
Khader, M.; Eckl, P.M. Thymoquinone: An emerging natural drug with a wide range of medical applications. Iran. J. Basic Med. Sci., 2014, 17(12), 950-957.
[PMID: 25859298]
[105]
Yetkin, N.A. Büyükoğlan, H.; Sönmez, M.F.; tutar, N.; Gülmez, I.; Yilmaz, I. The protective effects of thymoquinone on lung damage caused by cigarette smoke. Biotech. Histochem., 2020, 95(4), 268-275.
[http://dx.doi.org/10.1080/10520295.2019.1681511] [PMID: 31687851]
[106]
Cobourne-Duval, M.K.; Taka, E.; Mendonca, P.; Soliman, K.F.A. Thymoquinone increases the expression of neuroprotective proteins while decreasing the expression of pro-inflammatory cytokines and the gene expression NFκB pathway signaling targets in LPS/IFNγ -activated BV-2 microglia cells. J. Neuroimmunol., 2018, 320, 87-97.
[http://dx.doi.org/10.1016/j.jneuroim.2018.04.018] [PMID: 29759145]
[107]
Gülmez, M. İ.; Okuyucu, Ş.; Dokuyucu, R.; Gökçe, H. The effect of caffeic acid phenethyl ester and thymoquinone on otitis media with effusion in rats. Int. J. Pediatr. Otorhinolaryngol., 2017, 96, 94-99.
[http://dx.doi.org/10.1016/j.ijporl.2017.03.011] [PMID: 28390622]
[108]
Chaieb, K.; Kouidhi, B.; Jrah, H.; Mahdouani, K.; Bakhrouf, A. Antibacterial activity of Thymoquinone, an active principle of Nigella sativa and its potency to prevent bacterial biofilm formation. BMC Complement. Altern. Med., 2011, 11(1), 29.
[http://dx.doi.org/10.1186/1472-6882-11-29] [PMID: 21489272]
[109]
Khan, M.A.U.; Ashfaq, M.K.; Zuberi, H.S.; Mahmood, M.S.; Gilani, A.H. The in vivo antifungal activity of the aqueous extract from Nigella sativa seeds. Phytother. Res., 2003, 17(2), 183-186.
[http://dx.doi.org/10.1002/ptr.1146] [PMID: 12601685]
[110]
Kokoska, L.; Havlik, J.; Valterova, I.; Sovova, H.; Sajfrtova, M.; Jankovska, I. Comparison of chemical composition and antibacterial activity of Nigella sativa seed essential oils obtained by different extraction methods. J. Food Prot., 2008, 71(12), 2475-2480.
[http://dx.doi.org/10.4315/0362-028X-71.12.2475] [PMID: 19244901]
[111]
Kouidhi, B.; Zmantar, T.; Jrah, H.; Souiden, Y.; Chaieb, K.; Mahdouani, K.; Bakhrouf, A. Antibacterial and resistance-modifying activities of thymoquinone against oral pathogens. Ann. Clin. Microbiol. Antimicrob., 2011, 10(1), 29.
[http://dx.doi.org/10.1186/1476-0711-10-29] [PMID: 21707998]
[112]
Piras, A.; Rosa, A.; Marongiu, B.; Porcedda, S.; Falconieri, D.; Dessì, M.A.; Ozcelik, B.; Koca, U. Chemical composition and in vitro bioactivity of the volatile and fixed oils of Nigella sativa L. extracted by supercritical carbon dioxide. Ind. Crops Prod., 2013, 46, 317-323.
[http://dx.doi.org/10.1016/j.indcrop.2013.02.013]
[113]
Randhawa, M.A. In vitro antituberculous activity of thymoquinone, an active principle of Nigella sativa. J. Ayub Med. Coll. Abbottabad, 2011, 23(2), 78-81.
[PMID: 24800349]
[114]
Mahmoudvand, H.; Sepahvand, A.; Jahanbakhsh, S.; Ezatpour, B.; Ayatollahi Mousavi, S.A. Evaluation of antifungal activities of the essential oil and various extracts of Nigella sativa and its main component, thymoquinone against pathogenic dermatophyte strains. J. Mycol. Med., 2014, 24(4), e155-e161.
[http://dx.doi.org/10.1016/j.mycmed.2014.06.048] [PMID: 25442918]
[115]
Novy, P.; Kloucek, P.; Rondevaldova, J.; Havlik, J.; Kourimska, L.; Kokoska, L. Thymoquinone vapor significantly affects the results of Staphylococcus aureus sensitivity tests using the standard broth microdilution method. Fitoterapia, 2014, 94, 102-107.
[http://dx.doi.org/10.1016/j.fitote.2014.01.024] [PMID: 24508861]
[116]
Al-Qubaisi, M.S.; Rasedee, A.; Flaifel, M.H.; Eid, E.E.M.; Hussein-Al-Ali, S.; Alhassan, F.H.; Salih, A.M.; Hussein, M.Z.; Zainal, Z.; Sani, D.; Aljumaily, A.H.; Saeed, M.I. Characterization of thymoquinone/hydroxypropyl-β-cyclodextrin inclusion complex: Application to anti-allergy properties. Eur. J. Pharm. Sci., 2019, 133, 167-182.
[http://dx.doi.org/10.1016/j.ejps.2019.03.015] [PMID: 30902654]
[117]
Arjumand, S.; Shahzad, M.; Shabbir, A.; Yousaf, M.Z. Thymoquinone attenuates rheumatoid arthritis by downregulating TLR2, TLR4, TNF-α IL-1, and NFκB expression levels. Biomed. Pharmacother., 2019, 111, 958-963.
[http://dx.doi.org/10.1016/j.biopha.2019.01.006] [PMID: 30841475]
[118]
Kapil, H.; Suresh, D.K.; Bathla, S.C.; Arora, K.S. Assessment of clinical efficacy of locally delivered 0.2% Thymoquinone gel in the treatment of periodontitis. Saudi Dent. J., 2018, 30(4), 348-354.
[http://dx.doi.org/10.1016/j.sdentj.2018.06.001] [PMID: 30202173]
[119]
Zeinvand-Lorestani, H. Nili-Ahmad vabadi, A.; Balak, F.; Hasanzadeh, G.; Sabzevari, O. Protective role of thymoquinone against paraquat-induced hepatotoxicity in mice. Pestic. Biochem. Physiol., 2018, 148, 16-21.
[http://dx.doi.org/10.1016/j.pestbp.2018.03.006] [PMID: 29891368]
[120]
Rathore, C.; Upadhyay, N.; Kaundal, R.; Dwivedi, R.P.; Rahatekar, S.; John, A.; Dua, K.; Tambuwala, M.M.; Jain, S.; Chaudari, D.; Negi, P. Enhanced oral bioavailability and hepatoprotective activity of thymoquinone in the form of phospholipidic nano-constructs. Expert Opin. Drug Deliv., 2020, 17(2), 237-253.
[http://dx.doi.org/10.1080/17425247.2020.1716728] [PMID: 32003249]
[121]
Kokotou, M.G.; Revelou, P.K.; Pappas, C.; Constantinou-Kokotou, V. High resolution mass spectrometry studies of sulforaphane and indole-3-carbinol in broccoli. Food Chem., 2017, 237, 566-573.
[http://dx.doi.org/10.1016/j.foodchem.2017.05.139] [PMID: 28764036]
[122]
Akbari, E.; Namazian, M. Sulforaphane: A natural product against reactive oxygen species. Comput. Theor. Chem., 2020, 1183, 112850.
[http://dx.doi.org/10.1016/j.comptc.2020.112850]
[123]
Ahn, Y.H.; Hwang, Y.; Liu, H.; Wang, X.J.; Zhang, Y.; Stephenson, K.K.; Boronina, T.N.; Cole, R.N.; Dinkova-Kostova, A.T.; Talalay, P.; Cole, P.A. Electrophilic tuning of the chemoprotective natural product sulforaphane. Proc. Natl. Acad. Sci. USA, 2010, 107(21), 9590-9595.
[http://dx.doi.org/10.1073/pnas.1004104107] [PMID: 20439747]
[124]
Liang, H.; Yuan, Q. Natural sulforaphane as a functional chemopreventive agent: Including a review of isolation, purification and analysis methods. Crit. Rev. Biotechnol., 2012, 32(3), 218-234.
[http://dx.doi.org/10.3109/07388551.2011.604838] [PMID: 21942647]
[125]
Cierpiał T.; Kiełbasiński, P.; Kwiatkowska, M.; Łyżwa, P.; Lubelska, K.; Kuran, D.; Dąbrowska, A.; Kruszewska, H.; Mielczarek, L.; Chilmonczyk, Z.; Wiktorska, K. Fluoroaryl analogs of sulforaphane – A group of compounds of anticancer and antimicrobial activity. Bioorg. Chem., 2020, 94, 103454.
[http://dx.doi.org/10.1016/j.bioorg.2019.103454] [PMID: 31787344]
[126]
Negrette-Guzmán, M. Combinations of the antioxidants sulforaphane or curcumin and the conventional antineoplastics cisplatin or doxorubicin as prospects for anticancer chemotherapy. Eur. J. Pharmacol., 2019, 859, 172513.
[http://dx.doi.org/10.1016/j.ejphar.2019.172513] [PMID: 31260654]
[127]
Hafezian, S.M.; Azizi, S.N.; Biparva, P.; Bekhradnia, A. High-efficiency purification of sulforaphane from the broccoli extract by nanostructured SBA-15 silica using solid-phase extraction method. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2019, 1108, 1-10.
[http://dx.doi.org/10.1016/j.jchromb.2019.01.007] [PMID: 30660041]
[128]
Arcidiacono, P.; Stabile, A.M.; Ragonese, F.; Pistilli, A.; Calvieri, S.; Bottoni, U.; Crisanti, A.; Spaccapelo, R.; Rende, M. Anticarcinogenic activities of sulforaphane are influenced by Nerve Growth Factor in human melanoma A375 cells. Food Chem. Toxicol., 2018, 113, 154-161.
[http://dx.doi.org/10.1016/j.fct.2018.01.051] [PMID: 29407470]
[129]
Li, X.; Zhao, Z.; Li, M.; Liu, M.; Bahena, A.; Zhang, Y.; Zhang, Y.; Nambiar, C.; Liu, G. Sulforaphane promotes apoptosis, and inhibits proliferation and self-renewal of nasopharyngeal cancer cells by targeting STAT signal through miRNA-124-3p. Biomed. Pharmacother., 2018, 103, 473-481.
[http://dx.doi.org/10.1016/j.biopha.2018.03.121] [PMID: 29677532]
[130]
Lv, X.; Meng, G.; Li, W.; Fan, D.; Wang, X.; Espinoza-Pinochet, C.A.; Cespedes-Acuña, C.L. Sulforaphane and its antioxidative effects in broccoli seeds and sprouts of different cultivars. Food Chem., 2020, 316, 126216.
[http://dx.doi.org/10.1016/j.foodchem.2020.126216] [PMID: 32044707]
[131]
Wang, H.; Yang, T.; Wang, T.; Hao, N.; Shen, Y.; Wu, Y.; Yuan, Z.; Chen, L.; Wen, F. Phloretin attenuates mucus hypersecretion and airway inflammation induced by cigarette smoke. Int. Immunopharmacol., 2018, 55, 112-119.
[http://dx.doi.org/10.1016/j.intimp.2017.12.009] [PMID: 29245072]
[132]
Isaacson, R.H.; Beier, J.I.; Khoo, N.K.H.; Freeman, B.A.; Freyberg, Z.; Arteel, G.E. Olanzapine-induced liver injury in mice: Aggravation by high-fat diet and protection with sulforaphane. J. Nutr. Biochem., 2020, 81, 108399.
[http://dx.doi.org/10.1016/j.jnutbio.2020.108399] [PMID: 32388251]
[133]
Lee, J.H.; Jeong, J.K.; Park, S.Y. Sulforaphane-induced autophagy flux prevents prion protein-mediated neurotoxicity through AMPK pathway. Neuroscience, 2014, 278, 31-39.
[http://dx.doi.org/10.1016/j.neuroscience.2014.07.072] [PMID: 25130556]
[134]
Guadarrama-Enríquez, O.; González-Trujano, M.E.; Ventura-Martínez, R.; Rodríguez, R.; Ángeles-López, G.E.; Reyes-Chilpa, R.; Baenas, N.; Moreno, D.A. Broccoli sprouts produce abdominal antinociception but not spasmolytic effects like its bioactive metabolite sulforaphane. Biomed. Pharmacother., 2018, 107, 1770-1778.
[http://dx.doi.org/10.1016/j.biopha.2018.09.010] [PMID: 30257396]
[135]
Langston-Cox, A.; Muccini, A.M.; Marshall, S.A.; Yap, Y.; Palmer, K.R.; Wallace, E.M.; Ellery, S.J. Sulforaphane improves syncytiotrophoblast mitochondrial function after in vitro hypoxic and superoxide injury. Placenta, 2020, 96(1), 44-54.
[http://dx.doi.org/10.1016/j.placenta.2020.05.005]
[136]
Zhao, F.; Zhang, J.; Chang, N. Epigenetic modification of Nrf2 by sulforaphane increases the antioxidative and anti-inflammatory capacity in a cellular model of Alzheimer’s disease. Eur. J. Pharmacol., 2018, 824, 1-10.
[http://dx.doi.org/10.1016/j.ejphar.2018.01.046] [PMID: 29382536]
[137]
Thejass, P.; Kuttan, G. Modulation of cell-mediated immune response in B16F-10 melanoma-induced metastatic tumor-bearing C57BL/6 mice by sulforaphane. Immunopharmacol. Immunotoxicol., 2007, 29(2), 173-186.
[http://dx.doi.org/10.1080/08923970701511728] [PMID: 17849266]
[138]
Alkharashi, N.A.O.; Periasamy, V.S.; Athinarayanan, J.; Alshatwi, A.A. Sulforaphane alleviates cadmium-induced toxicity in human mesenchymal stem cells through POR and TNFSF10 genes expression. Biomed. Pharmacother., 2019, 115, 108896.
[http://dx.doi.org/10.1016/j.biopha.2019.108896] [PMID: 31035011]
[139]
Checker, R.; Gambhir, L.; Thoh, M.; Sharma, D.; Sandur, S.K. Sulforaphane, a naturally occurring isothiocyanate, exhibits anti-inflammatory effects by targeting GSK3β/Nrf-2 and NF-κB pathways in T cells. J. Funct. Foods, 2015, 19, 426-438.
[http://dx.doi.org/10.1016/j.jff.2015.08.030]
[140]
Lee, E.J.; Kim, J.L.; Kim, Y.H.; Kang, M.K.; Gong, J.H.; Kang, Y.H. Phloretin promotes osteoclast apoptosis in murine macrophages and inhibits estrogen deficiency-induced osteoporosis in mice. Phytomedicine, 2014, 21(10), 1208-1215.
[http://dx.doi.org/10.1016/j.phymed.2014.04.002] [PMID: 24932975]
[141]
Wei, L.; Wang, J.; Yan, L.; Shui, S.; Wang, L.; Zheng, W.; Liu, S.; Liu, C.; Zheng, L. Sulforaphane attenuates 5-fluorouracil induced intestinal injury in mice. J. Funct. Foods, 2020, 69, 103965.
[http://dx.doi.org/10.1016/j.jff.2020.103965]
[142]
Su, X.; Jiang, X.; Meng, L.; Dong, X.; Shen, Y.; Xin, Y. Anticancer activity of sulforaphane: The epigenetic mechanisms and the Nrf2 signaling pathway. Oxid. Med. Cell. Longev., 2018, 2018(6), 1-10.
[http://dx.doi.org/10.1155/2018/5438179] [PMID: 29977456]
[143]
Burnett, J.P.; Lim, G.; Li, Y.; Shah, R.B.; Lim, R.; Paholak, H.J.; McDermott, S.P.; Sun, L.; Tsume, Y.; Bai, S.; Wicha, M.S.; Sun, D.; Zhang, T. Sulforaphane enhances the anticancer activity of taxanes against triple negative breast cancer by killing cancer stem cells. Cancer Lett., 2017, 394, 52-64.
[http://dx.doi.org/10.1016/j.canlet.2017.02.023] [PMID: 28254410]
[144]
Lubecka, K.; Kaufman-Szymczyk, A.; Fabianowska-Majewska, K. Inhibition of breast cancer cell growth by the combination of clofarabine and sulforaphane involves epigenetically mediated CDKN2A upregulation. Nucleosides Nucleotides Nucleic Acids, 2018, 37(5), 280-289.
[http://dx.doi.org/10.1080/15257770.2018.1453075] [PMID: 29634384]
[145]
Yang, F.; Wang, F.; Liu, Y.; Wang, S.; Li, X.; Huang, Y.; Xia, Y.; Cao, C. Sulforaphane induces autophagy by inhibition of HDAC6-mediated PTEN activation in triple negative breast cancer cells. Life Sci., 2018, 213, 149-157.
[http://dx.doi.org/10.1016/j.lfs.2018.10.034] [PMID: 30352240]
[146]
Mielczarek, L.; Krug, P.; Mazur, M.; Milczarek, M.; Chilmonczyk, Z.; Wiktorska, K. In the triple-negative breast cancer MDA-MB-231 cell line, sulforaphane enhances the intracellular accumulation and anticancer action of doxorubicin encapsulated in liposomes. Int. J. Pharm., 2019, 558, 311-318.
[http://dx.doi.org/10.1016/j.ijpharm.2019.01.008] [PMID: 30641176]
[147]
Jabbarzadeh, K.P.; Afzalipour, K.M.; Mohammadi, M.; Abiri, A.; Mokhtarian, R.; Vazifemand, R.; Amanollahi, S.; Yazdi, S.S.; Li, M.; Zhao, Y.; Wu, X.; Shen, J.; Cho, C.H.; Xiao, Z. Targets and mechanisms of sulforaphane derivatives obtained from cruciferous plants with special focus on breast cancer – Contradictory effects and future perspectives. Biomed. Pharmacother., 2020, 121, 109635.
[http://dx.doi.org/10.1016/j.biopha.2019.109635] [PMID: 31739165]
[148]
Chen, Y.; Chen, J.; Ge, M.; Zhang, Q.; Wang, X.; Zhu, J.; Xie, C.; Li, X.; Zhong, C.; Han, H. Sulforaphane inhibits epithelial–mesenchymal transition by activating extracellular signal-regulated kinase 5 in lung cancer cells. J. Nutr. Biochem., 2019, 72, 108219.
[http://dx.doi.org/10.1016/j.jnutbio.2019.108219] [PMID: 31473507]
[149]
Lee, C.; Yang, S.; Lee, B.S.; Jeong, S.Y.; Kim, K.M.; Ku, S.K.; Bae, J.S. Hepatic protective effects of sulforaphane through the modulation of inflammatory pathways. J. Asian Nat. Prod. Res., 2020, 22(4), 386-396.
[http://dx.doi.org/10.1080/10286020.2019.1581174] [PMID: 30821482]
[150]
dos Santos, P.W.S.; Machado, A.R.T.; De Grandis, R.A.; Ribeiro, D.L.; Tuttis, K.; Morselli, M.; Aissa, A.F.; Pellegrini, M.; Antunes, L.M.G. Transcriptome and DNA methylation changes modulated by sulforaphane induce cell cycle arrest, apoptosis, DNA damage, and suppression of proliferation in human liver cancer cells. Food Chem. Toxicol., 2020, 136, 111047.
[http://dx.doi.org/10.1016/j.fct.2019.111047] [PMID: 31838189]
[151]
Ge, M.; Zhang, L.; Cao, L.; Xie, C.; Li, X.; Li, Y.; Meng, Y.; Chen, Y.; Wang, X.; Chen, J.; Zhang, Q.; Shao, J.; Zhong, C. Sulforaphane inhibits gastric cancer stem cells via suppressing sonic hedgehog pathway. Int. J. Food Sci. Nutr., 2019, 70(5), 570-578.
[http://dx.doi.org/10.1080/09637486.2018.1545012] [PMID: 30624124]
[152]
Kiani, S.; Akhavan-Niaki, H.; Fattahi, S.; Kavoosian, S.; Babaian, J.N.; Bagheri, N.; Najafi, Z.H. Purified sulforaphane from broccoli (Brassica oleracea var. italica) leads to alterations of CDX1 and CDX2 expression and changes in miR-9 and miR-326 levels in human gastric cancer cells. Gene, 2018, 678, 115-123.
[http://dx.doi.org/10.1016/j.gene.2018.08.026] [PMID: 30096452]
[153]
Kim, S.C.; Choi, B.; Kwon, Y. Thiol-reducing agents prevent sulforaphane-induced growth inhibition in ovarian cancer cells. Food Nutr. Res., 2017, 61(1), 1368321.
[http://dx.doi.org/10.1080/16546628.2017.1368321] [PMID: 28970779]
[154]
Cho, S.D.; Li, G.; Hu, H.; Jiang, C.; Kang, K.S.; Lee, Y.S.; Kim, S.H.; Lu, J. Involvement of c-Jun N-terminal kinase in G2/M arrest and caspase-mediated apoptosis induced by sulforaphane in DU145 prostate cancer cells. Nutr. Cancer, 2005, 52(2), 213-224.
[http://dx.doi.org/10.1207/s15327914nc5202_11] [PMID: 16201852]
[155]
Li, Y.; Zhang, T.; Schwartz, S.J.; Sun, D. Sulforaphane potentiates the efficacy of 17-allylamino 17-demethoxygeldanamycin against pancreatic cancer through enhanced abrogation of HSP 90 chaperone function. Nutr. Cancer, 2011, 63(7), 1151-1159.
[http://dx.doi.org/10.1080/01635581.2011.596645] [PMID: 21875325]
[156]
Naumann, P.; Fortunato, F.; Zentgraf, H.; Büchler, M.W.; Herr, I.; Werner, J. Autophagy and cell death signaling following dietary sulforaphane act independently of each other and require oxidative stress in pancreatic cancer. Int. J. Oncol., 2011, 39(1), 101-109.
[PMID: 21537844]
[157]
Zeng, H.; Trujillo, O.; Moyer, M.; Botnen, J. Prolonged sulforaphane treatment activates survival signaling in nontumorigenic NCM460 colon cells but apoptotic signaling in tumorigenic HCT116 colon cells. Nutr. Cancer, 2011, 63(2), 248-255.
[http://dx.doi.org/10.1080/01635581.2011.523500] [PMID: 21271458]
[158]
Rajendran, P.; Kidane, A.I.; Yu, T.W.; Dashwood, W.M.; Bisson, W.H.; Löhr, C.V.; Ho, E.; Williams, D.E.; Dashwood, R.H. HDAC turnover, CtIP acetylation and dysregulated DNA damage signaling in colon cancer cells treated with sulforaphane and related dietary isothiocyanates. Epigenetics, 2013, 8(6), 612-623.
[http://dx.doi.org/10.4161/epi.24710] [PMID: 23770684]
[159]
Lubelska, K.; Wiktorska, K.; Mielczarek, L.; Milczarek, M. Zbroińska-Bregisz, I.; Chilmonczyk, Z. Sulforaphane regulated NFE2L2/Nrf2-dependent xenobiotic metabolim phase II and phase III enzymes differently in human colorectal cancer and untransformed epithelial colon cells. Nutr. Cancer, 2016, 68(8), 1338-1348.
[http://dx.doi.org/10.1080/01635581.2016.1224369] [PMID: 27636860]
[160]
Pocasap, P.; Weerapreeyakul, N. Sulforaphene and sulforaphane in commonly consumed cruciferous plants contributed to antiproliferation in HCT116 colon cancer cells. Asian Pac. J. Trop. Biomed., 2016, 6(2), 119-124.
[http://dx.doi.org/10.1016/j.apjtb.2015.11.003]
[161]
Bessler, H.; Djaldetti, M. Broccoli and human health: Immunomodulatory effect of sulforaphane in a model of colon cancer. Int. J. Food Sci. Nutr., 2018, 69(8), 946-953.
[http://dx.doi.org/10.1080/09637486.2018.1439901] [PMID: 29513123]
[162]
Yasuda, S.; Horinaka, M.; Sakai, T. Sulforaphane enhances apoptosis induced by Lactobacillus pentosus strain S-PT84 via the TNFα pathway in human colon cancer cells. Oncol. Lett., 2019, 18(4), 4253-4261.
[http://dx.doi.org/10.3892/ol.2019.10739] [PMID: 31579089]
[163]
Royston, K.J.; Paul, B.; Nozell, S.; Rajbhandari, R.; Tollefsbol, T.O. Withaferin A and sulforaphane regulate breast cancer cell cycle progression through epigenetic mechanisms. Exp. Cell Res., 2018, 368(1), 67-74.
[http://dx.doi.org/10.1016/j.yexcr.2018.04.015] [PMID: 29689276]
[164]
An, Y.W.; Jhang, K.A.; Woo, S.Y.; Kang, J.L.; Chong, Y.H. Sulforaphane exerts its anti-inflammatory effect against amyloid-β peptide via STAT-1 dephosphorylation and activation of Nrf2/HO-1 cascade in human THP-1 macrophages. Neurobiol. Aging, 2016, 38, 1-10.
[http://dx.doi.org/10.1016/j.neurobiolaging.2015.10.016] [PMID: 26827637]
[165]
Lee, J.; Ahn, H.; Hong, E.J.; An, B.S.; Jeung, E.B.; Lee, G.S. Sulforaphane attenuates activation of NLRP3 and NLRC4 inflammasomes but not AIM2 inflammasome. Cell. Immunol., 2016, 306-307, 53-60.
[http://dx.doi.org/10.1016/j.cellimm.2016.07.007] [PMID: 27423466]
[166]
Haodang, L.; Lianmei, Q.; Ranhui, L.; Liesong, C.; Jun, H.; Yihua, Z.; Cuiming, Z.; Yimou, W.; Xiaoxing, Y. HO-1 mediates the anti-inflammatory actions of Sulforaphane in monocytes stimulated with a mycoplasmal lipopeptide. Chem. Biol. Interact., 2019, 306, 10-18.
[http://dx.doi.org/10.1016/j.cbi.2019.04.007] [PMID: 30965051]
[167]
Vuong, L.D.; Nguyen, Q.N.; Truong, V.L. Anti-inflammatory and anti-oxidant effects of combination between sulforaphane and acetaminophen in LPS-stimulated RAW 264.7 macrophage cells. Immunopharmacol. Immunotoxicol., 2019, 41(3), 413-419.
[http://dx.doi.org/10.1080/08923973.2019.1569049] [PMID: 31142171]
[168]
Liu, Y.; Zhang, Z.; Lu, X.; Meng, J.; Qin, X.; Jiang, J. Anti-nociceptive and anti-inflammatory effects of sulforaphane on sciatic endometriosis in a rat model. Neurosci. Lett., 2020, 723, 134858.
[http://dx.doi.org/10.1016/j.neulet.2020.134858] [PMID: 32097704]
[169]
Negrette-Guzmán, M.; Huerta-Yepez, S.; Vega, M.I.; León-Contreras, J.C.; Hernández-Pando, R.; Medina-Campos, O.N.; Rodríguez, E.; Tapia, E.; Pedraza-Chaverri, J. Sulforaphane induces differential modulation of mitochondrial biogenesis and dynamics in normal cells and tumor cells. Food Chem. Toxicol., 2017, 100, 90-102.
[http://dx.doi.org/10.1016/j.fct.2016.12.020] [PMID: 27993529]
[170]
Cox, A.G.; Gurusinghe, S.; Abd Rahman, R.; Leaw, B.; Chan, S.T.; Mockler, J.C.; Murthi, P.; Marshall, S.A.; Lim, R.; Wallace, E.M. Sulforaphane improves endothelial function and reduces placental oxidative stress in vitro. Pregnancy Hypertens., 2019, 16, 1-10.
[http://dx.doi.org/10.1016/j.preghy.2019.02.002] [PMID: 31056142]
[171]
Al-Harbi, N.O.; Nadeem, A.; Ahmad, S.F.; AlThagfan, S.S.; Alqinyah, M.; Alqahtani, F.; Ibrahim, K.E.; Al-Harbi, M.M. Sulforaphane treatment reverses corticosteroid resistance in a mixed granulocytic mouse model of asthma by upregulation of antioxidants and attenuation of Th17 immune responses in the airways. Eur. J. Pharmacol., 2019, 855, 276-284.
[http://dx.doi.org/10.1016/j.ejphar.2019.05.026] [PMID: 31100413]
[172]
Uddin, M.S.; Mamun, A.A.; Jakaria, M.; Thangapandiyan, S.; Ahmad, J.; Rahman, M.A.; Mathew, B.; Abdel-Daim, M.M.; Aleya, L. Emerging promise of sulforaphane-mediated Nrf2 signaling cascade against neurological disorders. Sci. Total Environ., 2020, 707, 135624.
[http://dx.doi.org/10.1016/j.scitotenv.2019.135624] [PMID: 31784171]
[173]
Wang, M.; Pu, D.; Zhao, Y.; Chen, J.; Zhu, S.; Lu, A.; Liao, Z.; Sun, Y.; Xiao, Q. Sulforaphane protects against skeletal muscle dysfunction in spontaneous type 2 diabetic db/db mice. Life Sci., 2020, 255, 117823.
[http://dx.doi.org/10.1016/j.lfs.2020.117823] [PMID: 32445760]
[174]
Jeon, M.; Lee, J.; Lee, H.K.; Cho, S.; Lim, J.H.; Choi, Y.; Pak, S.; Jeong, H.J. Sulforaphane mitigates mast cell-mediated allergic inflammatory reactions in in silico simulation and in vitro models. Immunopharmacol. Immunotoxicol., 2020, 42(2), 74-83.
[http://dx.doi.org/10.1080/08923973.2020.1724141] [PMID: 32041439]
[175]
Yang, Y.C.; Lii, C.K.; Lin, A.H.; Yeh, Y.W.; Yao, H.T.; Li, C.C.; Liu, K.L.; Chen, H.W. Induction of glutathione synthesis and heme oxygenase 1 by the flavonoids butein and phloretin is mediated through the ERK/Nrf2 pathway and protects against oxidative stress. Free Radic. Biol. Med., 2011, 51(11), 2073-2081.
[http://dx.doi.org/10.1016/j.freeradbiomed.2011.09.007] [PMID: 21964506]
[176]
Gosch, C.; Halbwirth, H.; Kuhn, J.; Miosic, S.; Stich, K. Biosynthesis of phloridzin in apple (Malus domestica Borkh.). Plant Sci., 2009, 176(2), 223-231.
[http://dx.doi.org/10.1016/j.plantsci.2008.10.011]
[177]
Xü, K.; Lü, H.; Qü, B.; Shan, H.; Song, J. High-speed counter-current chromatography preparative separation and purification of phloretin from apple tree bark. Separ. Purif. Tech., 2010, 72(3), 406-409.
[http://dx.doi.org/10.1016/j.seppur.2010.02.020]
[178]
Rezk, B.M.; Haenen, G.R.M.M.; van der Vijgh, W.J.F.; Bast, A. The antioxidant activity of phloretin: The disclosure of a new antioxidant pharmacophore in flavonoids. Biochem. Biophys. Res. Commun., 2002, 295(1), 9-13.
[http://dx.doi.org/10.1016/S0006-291X(02)00618-6] [PMID: 12083758]
[179]
Han, L.; Fang, C.; Zhu, R.; Peng, Q.; Li, D.; Wang, M. Inhibitory effect of phloretin on α-glucosidase: Kinetics, interaction mechanism and molecular docking. Int. J. Biol. Macromol., 2017, 95, 520-527.
[http://dx.doi.org/10.1016/j.ijbiomac.2016.11.089] [PMID: 27894824]
[180]
Wei, Y.; Zhang, J.; Memon, A.H.; Liang, H. Molecular model and in vitro antioxidant activity of a water-soluble and stable phloretin/hydroxypropyl-β-cyclodextrin inclusion complex. J. Mol. Liq., 2017, 236, 68-75.
[http://dx.doi.org/10.1016/j.molliq.2017.03.098]
[181]
Cseh, R.; Benz, R. Interaction of phloretin with lipid monolayers: Relationship between structural changes and dipole potential change. Biophys. J., 1999, 77(3), 1477-1488.
[http://dx.doi.org/10.1016/S0006-3495(99)76995-X] [PMID: 10465758]
[182]
Behzad, S.; Sureda, A.; Barreca, D.; Nabavi, S.F.; Rastrelli, L.; Nabavi, S.M. Health effects of phloretin: From chemistry to medicine. Phytochem. Rev., 2017, 16(3), 527-533.
[http://dx.doi.org/10.1007/s11101-017-9500-x]
[183]
Forman, S.A.; Verkman, A.S.; Dix, J.A.; Solomon, A.K. Interaction of phloretin with the anion transport protein of the red blood cell membrane. Biochim. Biophys. Acta Biomembr., 1982, 689(3), 531-538.
[http://dx.doi.org/10.1016/0005-2736(82)90311-X] [PMID: 7126563]
[184]
De Jonge, P.C.; Wieringa, T.; Van Putten, J.P.M.; Michiel, H.; Krans, J.; Van Dam, K. Phloretin - An uncoupler and an inhibitor of mitochondrial oxidative phosphorylation. Biochim. Biophys. Acta Bioenerg., 1983, 722(1), 219-225.
[http://dx.doi.org/10.1016/0005-2728(83)90177-9] [PMID: 6130789]
[185]
Shefcyk, J.; Molski, T.F.P.; Volpi, M.; Naccache, P.H.; Sha’afi, R.I. Phloretin is a potent inhibitor of rabbit neutrophil activation by chemotactic factors. Biochim. Biophys. Acta Biomembr., 1983, 728(1), 97-102.
[http://dx.doi.org/10.1016/0005-2736(83)90441-8] [PMID: 6830775]
[186]
Kobori, M.; Shinmoto, H.; Tsushida, T.; Shinohara, K. Phloretin-induced apoptosis in B16 melanoma 4A5 cells by inhibition of glucose transmembrane transport. Cancer Lett., 1997, 119(2), 207-212.
[http://dx.doi.org/10.1016/S0304-3835(97)00271-1] [PMID: 9570373]
[187]
Hassan, M.; Yazidi, C.E.; Malezet-Desmoulins, C.; Amiot, M.J.; Margotat, A. Gene expression profiling of 3T3-L1 adipocytes exposed to phloretin. J. Nutr. Biochem., 2010, 21(7), 645-652.
[http://dx.doi.org/10.1016/j.jnutbio.2009.04.006] [PMID: 19576747]
[188]
Wang, J.; Fang, J.; Wei, L.; Zhang, Y.; Deng, H.; Guo, Y.; Hu, C.; Meng, Y. Decrease of microbial community diversity, biogenic amines formation, and lipid oxidation by phloretin in Atlantic salmon fillets. Lebensm. Wiss. Technol., 2019, 101, 419-426.
[http://dx.doi.org/10.1016/j.lwt.2018.11.039]
[189]
Wei, L.; Zhao, J.; Meng, Y.; Guo, Y.; Luo, C. Antibacterial activity, safety and preservative effect of aminoethyl-phloretin on the quality parameters of salmon fillets. Lebensm. Wiss. Technol., 2020, 118, 108874.
[http://dx.doi.org/10.1016/j.lwt.2019.108874]
[190]
Huang, W.C.; Lai, C.L.; Liang, Y.T.; Hung, H.C.; Liu, H.C.; Liou, C.J. Phloretin attenuates LPS-induced acute lung injury in mice via modulation of the NF-κB and MAPK pathways. Int. Immunopharmacol., 2016, 40, 98-105.
[http://dx.doi.org/10.1016/j.intimp.2016.08.035] [PMID: 27588909]
[191]
Shu, G.; Lu, N.S.; Zhu, X.T.; Xu, Y.; Du, M.Q.; Xie, Q.P.; Zhu, C.J.; Xu, Q.; Wang, S.B.; Wang, L.N.; Gao, P.; Xi, Q.Y.; Zhang, Y.L.; Jiang, Q.Y. Phloretin promotes adipocyte differentiation in vitro and improves glucose homeostasis in vivo. J. Nutr. Biochem., 2014, 25(12), 1296-1308.
[http://dx.doi.org/10.1016/j.jnutbio.2014.07.007] [PMID: 25283330]
[192]
Wang, Y.; Mandal, A.K.; Son, Y.O.K.; Pratheeshkumar, P.; Wise, J.T.F.; Wang, L.; Zhang, Z.; Shi, X.; Chen, Z. Roles of ROS, Nrf2, and autophagy in cadmium-carcinogenesis and its prevention by sulforaphane. Toxicol. Appl. Pharmacol., 2018, 353, 23-30.
[http://dx.doi.org/10.1016/j.taap.2018.06.003] [PMID: 29885333]
[193]
Hassan, M.; Yazidi, C.E.; Landrier, J.F.; Lairon, D.; Margotat, A.; Amiot, M.J. Phloretin enhances adipocyte differentiation and adiponectin expression in 3T3-L1 cells. Biochem. Biophys. Res. Commun., 2007, 361(1), 208-213.
[http://dx.doi.org/10.1016/j.bbrc.2007.07.021] [PMID: 17658475]
[194]
Aliomrani, M.; Sepand, M.R.; Mirzaei, H.R. kazemi, A.R.; Nekonam, S.; Sabzevari, O. Effects of phloretin on oxidative and inflammatory reaction in rat model of cecal ligation and puncture induced sepsis. Daru, 2016, 24(1), 15.
[http://dx.doi.org/10.1186/s40199-016-0154-9] [PMID: 27150961]
[195]
Choi, B.M.; Chen, X.Y.; Gao, S.S.; Zhu, R.; Kim, B.R. Anti-apoptotic effect of phloretin on cisplatin-induced apoptosis in HEI-OC1 auditory cells. Pharmacol. Rep., 2011, 63(3), 708-716.
[http://dx.doi.org/10.1016/S1734-1140(11)70582-5] [PMID: 21857081]
[196]
Wu, M.; Li, P.; An, Y.; Ren, J.; Yan, D.; Cui, J.; Li, D.; Li, M.; Wang, M.; Zhong, G. Phloretin ameliorates dextran sulfate sodium-induced ulcerative colitis in mice by regulating the gut microbiota. Pharmacol. Res., 2019, 150, 104489.
[http://dx.doi.org/10.1016/j.phrs.2019.104489] [PMID: 31689519]
[197]
Chang, W.T.; Huang, W.C.; Liou, C.J. Evaluation of the anti-inflammatory effects of phloretin and phlorizin in lipopolysaccharide-stimulated mouse macrophages. Food Chem., 2012, 134(2), 972-979.
[http://dx.doi.org/10.1016/j.foodchem.2012.03.002] [PMID: 23107715]
[198]
Huang, W.C.; Dai, Y.W.; Peng, H.L.; Kang, C.W.; Kuo, C.Y.; Liou, C.J. Phloretin ameliorates chemokines and ICAM-1 expression via blocking of the NF-κB pathway in the TNF-α-induced HaCaT human keratinocytes. Int. Immunopharmacol., 2015, 27(1), 32-37.
[http://dx.doi.org/10.1016/j.intimp.2015.04.024] [PMID: 25929446]
[199]
Abu-Azzam, O.; Nasr, M. In vitro anti-inflammatory potential of phloretin microemulsion as a new formulation for prospective treatment of vaginitis. Pharm. Dev. Technol., 2020, 25(8), 930-935.
[http://dx.doi.org/10.1080/10837450.2020.1764032] [PMID: 32363977]
[200]
Zhu, S.P.; Liu, G.; Wu, X.T.; Chen, F.X.; Liu, J.Q.; Zhou, Z.H.; Zhang, J.F.; Fei, S.J. The effect of Phloretin on human γδ T cells killing colon cancer SW-1116 cells. Int. Immunopharmacol., 2013, 15(1), 6-14.
[http://dx.doi.org/10.1016/j.intimp.2012.11.001] [PMID: 23174508]
[201]
Ghumatkar, P.J.; Patil, S.P.; Jain, P.D.; Tambe, R.M.; Sathaye, S. Nootropic, neuroprotective and neurotrophic effects of phloretin in scopolamine induced amnesia in mice. Pharmacol. Biochem. Behav., 2015, 135, 182-191.
[http://dx.doi.org/10.1016/j.pbb.2015.06.005] [PMID: 26071678]
[202]
Liu, Y.; Zhang, L.; Liang, J. Activation of the Nrf2 defense pathway contributes to neuroprotective effects of phloretin on oxidative stress injury after cerebral ischemia/reperfusion in rats. J. Neurol. Sci., 2015, 351(1-2), 88-92.
[http://dx.doi.org/10.1016/j.jns.2015.02.045] [PMID: 25770876]
[203]
Zhang, G.; Yang, G.; Liu, J. Phloretin attenuates behavior deficits and neuroinflammatory response in MPTP induced Parkinson’s disease in mice. Life Sci., 2019, 232, 116600.
[http://dx.doi.org/10.1016/j.lfs.2019.116600] [PMID: 31251998]
[204]
Ren, D.; Liu, Y.; Zhao, Y.; Yang, X. Hepatotoxicity and endothelial dysfunction induced by high choline diet and the protective effects of phloretin in mice. Food Chem. Toxicol., 2016, 94, 203-212.
[http://dx.doi.org/10.1016/j.fct.2016.06.004] [PMID: 27316781]
[205]
Lu, Y.; Chen, J.; Ren, D.; Yang, X.; Zhao, Y. Hepatoprotective effects of phloretin against CCl4-induced liver injury in mice. Food Agric. Immunol., 2017, 28(2), 211-222.
[http://dx.doi.org/10.1080/09540105.2016.1258546]
[206]
Nithoya, T.; Udayakumar, R. Protective effect of phloretin on hyperglycemia mediated oxidative stress in experimental diabetic rats. Integr. Food. Nutr. Metab., 2017, 5(1), 1-6.
[207]
Balaha, M.; Kandeel, S.; Kabel, A. Phloretin either alone or in combination with duloxetine alleviates the STZ-induced diabetic neuropathy in rats. Biomed. Pharmacother., 2018, 101, 821-832.
[http://dx.doi.org/10.1016/j.biopha.2018.02.135] [PMID: 29635891]
[208]
Lu, M.; Kong, Q.; Xu, X.; Lu, H.; Lu, Z.; Yu, W.; Zuo, B.; Su, J.; Guo, R. Evaluation of apoptotic and growth inhibitory activity of phloretin in BGS823 gastric cancer cell. Trop. J. Pharm. Res., 2015, 14(1), 27-31.
[http://dx.doi.org/10.4314/tjpr.v14i1.5]
[209]
Hsiao, Y.H.; Hsieh, M.J.; Yang, S.F.; Chen, S.P.; Tsai, W.C.; Chen, P.N. Phloretin suppresses metastasis by targeting protease and inhibits cancer stemness and angiogenesis in human cervical cancer cells. Phytomedicine, 2019, 62, 152964.
[http://dx.doi.org/10.1016/j.phymed.2019.152964] [PMID: 31153059]
[210]
Xu, M.; Gu, W.; Shen, Z.; Wang, F. Anticancer activity of phloretin against human gastric cancer cell lines involves apoptosis, cell cycle arrest, and inhibition of cell invasion and JNK signaling pathway. Med. Sci. Monit., 2018, 24, 6551-6558.
[http://dx.doi.org/10.12659/MSM.910542] [PMID: 30224626]
[211]
Zan, L.; Chen, Q.; Zhang, L.; Li, X. Epigallocatechin Gallate (EGCG) suppresses growth and tumorigenicity in breast cancer cells by downregulation of miR-25. Bioengineered, 2019, 10(1), 374-382.
[http://dx.doi.org/10.1080/21655979.2019.1657327] [PMID: 31431131]
[212]
Cui, Y.; Oh, Y.J.; Lim, J.; Youn, M.; Lee, I.; Pak, H.K.; Park, W.; Jo, W.; Park, S. AFM study of the differential inhibitory effects of the green tea polyphenol (-)-Epigallocatechin-3-Gallate (EGCG) against gram-positive and gram-negative bacteria. Food Microbiol., 2012, 29(1), 80-87.
[http://dx.doi.org/10.1016/j.fm.2011.08.019] [PMID: 22029921]
[213]
Lin, S.C.; Chen, M.C.; Liu, S.; Callahan, V.M.; Bracci, N.R.; Lehman, C.W.; Dahal, B.; de la Fuente, C.L.; Lin, C.C.; Wang, T.T.; Kehn-Hall, K. Phloretin inhibits Zika virus infection by interfering with cellular glucose utilisation. Int. J. Antimicrob. Agents, 2019, 54(1), 80-84.
[http://dx.doi.org/10.1016/j.ijantimicag.2019.03.017] [PMID: 30930299]
[214]
Chu, C.; Deng, J.; Man, Y.; Qu, Y. Green tea extracts epigallocatechin-3-gallate for different treatments. BioMed Res. Int., 2017, 2017, 5615647.
[http://dx.doi.org/10.1155/2017/5615647]
[215]
Arun, K.G.; Sharanya, C.S.; Abhithaj, J.; Sadasivan, C. Biochemical and computational insights of adenosine deaminase inhibition by Epigallocatechin gallate. Comput. Biol. Chem., 2019, 83, 107111.
[http://dx.doi.org/10.1016/j.compbiolchem.2019.107111] [PMID: 31445420]
[216]
Nandy Chatterjee, T.; Das, D.; Banerjee Roy, R.; Tudu, B.; Hazarika, A.K.; Sabhapondit, S.; Tamuly, P.; Bandyopadhyay, R. Development of a nickel hydroxide nanopetal decorated molecular imprinted polymer based electrode for sensitive detection of epigallocatechin-3-gallate in green tea. Sens. Actuators B Chem., 2019, 283, 69-78.
[http://dx.doi.org/10.1016/j.snb.2018.11.159]
[217]
Hajipour, H.; Hamishehkar, H.; Nazari Soltan Ahmad, S.; Barghi, S.; Maroufi, N.F.; Taheri, R.A. . Improved anticancer effects of epigallocatechin gallate using RGD-containing nanostructured lipid carriers. Artif. Cells Nanomed. Biotechnol., 2018, 46(sup1), 283-292.
[http://dx.doi.org/ 10.1080/21691401.2017.1423493] [PMID: 29310467]
[218]
Tauber, A.L.; Schweiker, S.S.; Levonis, S.M. From tea to treatment; epigallocatechin gallate and its potential involvement in minimizing the metabolic changes in cancer. Nutr. Res., 2020, 74, 23-36.
[http://dx.doi.org/10.1016/j.nutres.2019.12.004] [PMID: 31918176]
[219]
Kian, K.; Khalatbary, A.R.; Ahmadvand, H.; Karimpour Malekshah, A.; Shams, Z. Neuroprotective effects of (-)-Epigallocatechin-3-Gallate (EGCG) against peripheral nerve transection-induced apoptosis. Nutr. Neurosci., 2019, 22(8), 578-586.
[http://dx.doi.org/10.1080/1028415X.2017.1419542] [PMID: 29292676]
[220]
Khalatbary, A.R.; Khademi, E. The green tea polyphenolic catechin epigallocatechin gallate and neuroprotection. Nutr. Neurosci., 2020, 23(4), 281-294.
[http://dx.doi.org/10.1080/1028415X.2018.1500124] [PMID: 30043683]
[221]
Kaviarasan, S.; Sundarapandiyan, R.; Anuradha, C.V. Epigallocatechin gallate, a green tea phytochemical, attenuates alcohol-induced hepatic protein and lipid damage. Toxicol. Mech. Methods, 2008, 18(8), 645-652.
[http://dx.doi.org/10.1080/15376510701884985] [PMID: 20020850]
[222]
Nilsuwan, K.; Guerrero, P.; de la Caba, K.; Benjakul, S.; Prodpran, T. Properties and application of bilayer films based on poly (lactic acid) and fish gelatin containing epigallocatechin gallate fabricated by thermo-compression molding. Food Hydrocoll., 2020, 105, 105792.
[http://dx.doi.org/10.1016/j.foodhyd.2020.105792]
[223]
Yang, Y.; Wang, Q.; Lei, L.; Li, F.; Zhao, J.; Zhang, Y.; Li, L.; Wang, Q.; Ming, J. Molecular interaction of soybean glycinin and β-conglycinin with (-)-epigallocatechin gallate induced by pH changes. Food Hydrocoll., 2020, 108, 106010.
[http://dx.doi.org/10.1016/j.foodhyd.2020.106010]
[224]
Dai, T.; Li, T.; He, X.; Li, X.; Liu, C.; Chen, J.; McClements, D.J. Analysis of inhibitory interaction between epigallocatechin gallate and alpha-glucosidase: A spectroscopy and molecular simulation study. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2020, 230, 118023.
[http://dx.doi.org/10.1016/j.saa.2019.118023] [PMID: 31927512]
[225]
Ruan, C.; Zhang, Y.; Wang, J.; Sun, Y.; Gao, X.; Xiong, G.; Liang, J. Preparation and antioxidant activity of sodium alginate and carboxymethyl cellulose edible films with epigallocatechin gallate. Int. J. Biol. Macromol., 2019, 134, 1038-1044.
[http://dx.doi.org/10.1016/j.ijbiomac.2019.05.143] [PMID: 31128181]
[226]
Aggarwal, V.; Tuli, H.S.; Tania, M.; Srivastava, S.; Ritzer, E.E.; Pandey, A.; Aggarwal, D.; Barwal, T.S.; Jain, A.; Kaur, G.; Sak, K.; Varol, M.; Bishayee, A. Molecular mechanisms of action of epigallocatechin gallate in cancer: Recent trends and advancement. Semin. Cancer Biol., 2022, 80, 256-275.
[PMID: 32461153]
[227]
Zhang, W.; Zhang, W.; Sun, L.; Xiang, L.; Lai, X.; Li, Q.; Sun, S. The effects and mechanisms of epigallocatechin-3-gallate on reversing multidrug resistance in cancer. Trends Food Sci. Technol., 2019, 93, 221-233.
[http://dx.doi.org/10.1016/j.tifs.2019.09.017]
[228]
Le, C.T.; Leenders, W.P.J.; Molenaar, R.J.; van Noorden, C.J.F. Effects of the green tea polyphenol epigallocatechin-3-gallate on glioma: A critical evaluation of the literature. Nutr. Cancer, 2018, 70(3), 317-333.
[http://dx.doi.org/10.1080/01635581.2018.1446090] [PMID: 29570984]
[229]
Hegde, S.; Poojary, K.K.; Rasquinha, R.; Crasta, D.N.; Gopalan, D.; Mutalin, S.; Siddiqui, S.; Adiga, S.K.; Kalthur, G. Epigallocateching-3-Gallate (EGCG) protects the oocytes from methyl parathion-induced cytoplasmic deformities by suppressing oxidative and endoplasmic reticulum stress. Pestic. Biochem. Physiol., 2020, 167, 104588.
[http://dx.doi.org/10.1016/j.pestbp.2020.104588]
[230]
Kaihatsu, K.; Yamabe, M.; Ebara, Y. Antiviral mechanism of action fo epigallocatechin-3-O-gallate and its fatty acid esters. Molecules, 2018, 23(10), 2475.
[http://dx.doi.org/10.3390/molecules23102475] [PMID: 30262731]
[231]
Ling, J.; Wei, F.; Li, N.; Li, J.; Chen, L.; Liu, Y.; Luo, F.; Xiong, H.; Hou, W.; Yang, Z. Amelioration of influenza virus-induced reactive oxygen species formation by epigallocatechin gallate derived from green tea. Acta Pharmacol. Sin., 2012, 33(12), 1533-1541.
[http://dx.doi.org/10.1038/aps.2012.80] [PMID: 22941291]
[232]
Nouri, H.; Shojaeian, K.; Samadian, F.; Lee, S.; Kohram, H.; Lee, J.I. Using resveratrol and epigallocatechin-3-gallate to improve cryopreservation of stallion spermatozoa with low quality. J. Equine Vet. Sci., 2018, 70, 18-25.
[http://dx.doi.org/10.1016/j.jevs.2018.07.003]
[233]
Xue, B.; Song, J.; Liu, L.; Luo, J.; Tian, G.; Yang, Y. Effect of epigallocatechin gallate on growth performance and antioxidant capacity in heat-stressed broilers. Arch. Anim. Nutr., 2017, 71(5), 362-372.
[http://dx.doi.org/10.1080/1745039X.2017.1355129] [PMID: 28741959]
[234]
Abd El-Hack, M.E.; Elnesr, S.S.; Alagawany, M.; Gado, A.; Noreldin, A.E.; Gabr, A.A. Impact of green tea (Camellia sinensis) and epigallocatechin gallate on poultry. Worlds Poult. Sci. J., 2020, 76(1), 49-63.
[http://dx.doi.org/10.1080/00439339.2020.1729672]
[235]
Hong, J.; Lu, H.; Meng, X.; Ryu, J-H.; Hara, Y.; Yang, C.S. Stability, cellular uptake, biotransformation, and efflux of tea polyphenol (-)-epigallocatechin-3-gallate in HT-29 human colon adenocarcinoma cells. Cancer Res., 2002, 62(24), 7241-7246.
[PMID: 12499265]
[236]
Hou, Z.; Sang, S.; You, H.; Lee, M.J.; Hong, J.; Chin, K.V.; Yang, C.S. Mechanism of action of (-)-epigallocatechin-3-gallate: Auto-oxidation-dependent inactivation of epidermal growth factor receptor and direct effects on growth inhibition in human esophageal cancer KYSE 150 cells. Cancer Res., 2005, 65(17), 8049-8056.
[http://dx.doi.org/10.1158/0008-5472.CAN-05-0480] [PMID: 16140980]
[237]
Naasani, I.; Oh-Hashi, F.; Oh-Hara, T.; Feng, W.Y.; Johnston, J.; Chan, K.; Tsuruo, T. Blocking telomerase by dietary polyphenols is a major mechanism for limiting the growth of human cancer cells in vitro and in vivo. Cancer Res., 2003, 63(4), 824-830.
[PMID: 12591733]
[238]
Sang, S.; Lee, M.J.; Hou, Z.; Ho, C.T.; Yang, C.S. Stability of tea polyphenol (-)-epigallocatechin-3-gallate and formation of dimers and epimers under common experimental conditions. J. Agric. Food Chem., 2005, 53(24), 9478-9484.
[http://dx.doi.org/10.1021/jf0519055] [PMID: 16302765]
[239]
Sang, S.; Yang, I.; Buckley, B.; Ho, C.T.; Yang, C.S. Autoxidative quinone formation in vitro and metabolite formation in vivo from tea polyphenol (-)-epigallocatechin-3-gallate: Studied by real-time mass spectrometry combined with tandem mass ion mapping. Free Radic. Biol. Med., 2007, 43(3), 362-371.
[http://dx.doi.org/10.1016/j.freeradbiomed.2007.04.008] [PMID: 17602952]
[240]
Ishii, T.; Mori, T.; Tanaka, T.; Mizuno, D.; Yamaji, R.; Kumazawa, S.; Nakayama, T.; Akagawa, M. Covalent modification of proteins by green tea polyphenol (–)-epigallocatechin-3-gallate through autoxidation. Free Radic. Biol. Med., 2008, 45(10), 1384-1394.
[http://dx.doi.org/10.1016/j.freeradbiomed.2008.07.023] [PMID: 18771724]
[241]
Mori, T.; Ishii, T.; Akagawa, M.; Nakamura, Y.; Nakayama, T. Covalent binding of tea catechins to protein thiols: The relationship between stability and electrophilic reactivity. Biosci. Biotechnol. Biochem., 2010, 74(12), 2451-2456.
[http://dx.doi.org/10.1271/bbb.100509] [PMID: 21150116]
[242]
Tanaka, T.; Ishii, T.; Mizuno, D.; Mori, T.; Yamaji, R.; Nakamura, Y.; Kumazawa, S.; Nakayama, T.; Akagawa, M. (-)-Epigallocatechin-3-gallate suppresses growth of AZ521 human gastric cancer cells by targeting the DEAD-box RNA helicase p68. Free Radic. Biol. Med., 2011, 50(10), 1324-1335.
[http://dx.doi.org/10.1016/j.freeradbiomed.2011.01.024] [PMID: 21277973]
[243]
Liu, X.; Dong, J.; Cai, W.; Pan, Y.; Li, R.; Li, B. The effect of thymoquinone on apoptosis of SK-OV-3 ovarian cancer cell by regulation of bcl-2 and bax. Int. J. Gynecol. Cancer, 2017, 27(8), 1596-1601.
[http://dx.doi.org/10.1097/IGC.0000000000001064] [PMID: 28692636]
[244]
Ghosh, S.; Pandey, N.K.; Dasgupta, S. (-)-Epicatechin gallate prevents alkali-salt mediated fibrillogenesis of hen egg white lysozyme. Int. J. Biol. Macromol., 2013, 54(1), 90-98.
[http://dx.doi.org/10.1016/j.ijbiomac.2012.11.031] [PMID: 23219698]
[245]
Rochet, J.C.; Lansbury, P.T. Jr Amyloid fibrillogenesis: Themes and variations. Curr. Opin. Struct. Biol., 2000, 10(1), 60-68.
[http://dx.doi.org/10.1016/S0959-440X(99)00049-4] [PMID: 10679462]
[246]
Sacchettini, J.C.; Kelly, J.W. Therapeutic strategies for human amyloid diseases. Nat. Rev. Drug Discov., 2002, 1(4), 267-275.
[http://dx.doi.org/10.1038/nrd769] [PMID: 12120278]
[247]
Taylor, J.P.; Hardy, J.; Fischbeck, K.H. Toxic proteins in neurodegenerative disease. Science, 2002, 296(5575), 1991-1995.
[http://dx.doi.org/10.1126/science.1067122] [PMID: 12065827]
[248]
Dobson, C.M. Protein folding and misfolding. Nature, 2003, 426(6968), 884-890.
[http://dx.doi.org/10.1038/nature02261] [PMID: 14685248]
[249]
Rezai-Zadeh, K.; Shytle, D.; Sun, N.; Mori, T.; Hou, H.; Jeanniton, D.; Ehrhart, J.; Townsend, K.; Zeng, J.; Morgan, D.; Hardy, J.; Town, T.; Tan, J. Green tea Epigallocatechin-3-Gallate (EGCG) modulates amyloid precursor protein cleavage and reduces cerebral amyloidosis in Alzheimer transgenic mice. J. Neurosci., 2005, 25(38), 8807-8814.
[http://dx.doi.org/10.1523/JNEUROSCI.1521-05.2005] [PMID: 16177050]
[250]
Ehrnhoefer, D.E.; Bieschke, J.; Boeddrich, A.; Herbst, M.; Masino, L.; Lurz, R.; Engemann, S.; Pastore, A.; Wanker, E.E. EGCG redirects amyloidogenic polypeptides into unstructured, off-pathway oligomers. Nat. Struct. Mol. Biol., 2008, 15(6), 558-566.
[http://dx.doi.org/10.1038/nsmb.1437] [PMID: 18511942]
[251]
Lin, C.L.; Chen, T.F.; Chiu, M.J.; Way, T.D.; Lin, J.K. Epigallocatechin Gallate (EGCG) suppresses β-amyloid-induced neurotoxicity through inhibiting c-Abl/FE65 nuclear translocation and GSK3β activation. Neurobiol. Aging, 2009, 30(1), 81-92.
[http://dx.doi.org/10.1016/j.neurobiolaging.2007.05.012] [PMID: 17590240]
[252]
Chang, X.; Rong, C.; Chen, Y.; Yang, C.; Hu, Q.; Mo, Y.; Zhang, C.; Gu, X.; Zhang, L.; He, W.; Cheng, S.; Hou, X.; Su, R.; Liu, S.; Dun, W.; Wang, Q.; Fang, S. (-)-Epigallocatechin-3-gallate attenuates cognitive deterioration in Alzheimer׳s disease model mice by upregulating neprilysin expression. Exp. Cell Res., 2015, 334(1), 136-145.
[http://dx.doi.org/10.1016/j.yexcr.2015.04.004] [PMID: 25882496]
[253]
Chesser, A.S.; Ganeshan, V.; Yang, J.; Johnson, G.V.W. Epigallocatechin-3-gallate enhances clearance of phosphorylated tau in primary neurons. Nutr. Neurosci., 2016, 19(1), 21-31.
[http://dx.doi.org/10.1179/1476830515Y.0000000038] [PMID: 26207957]
[254]
Cheng-Chung Wei, J.; Huang, H.C.; Chen, W.J.; Huang, C.N.; Peng, C.H.; Lin, C.L. Epigallocatechin gallate attenuates amyloid β-induced inflammation and neurotoxicity in EOC 13.31 microglia. Eur. J. Pharmacol., 2016, 770, 16-24.
[http://dx.doi.org/10.1016/j.ejphar.2015.11.048] [PMID: 26643169]
[255]
Cascella, M.; Bimonte, S.; Muzio, M.R.; Schiavone, V.; Cuomo, A. The efficacy of Epigallocatechin-3-gallate (green tea) in the treatment of Alzheimer’s disease: An overview of pre-clinical studies and translational perspectives in clinical practice. Infect. Agent. Cancer, 2017, 12(1), 36.
[http://dx.doi.org/10.1186/s13027-017-0145-6] [PMID: 28642806]
[256]
Xu, Q.; Langley, M.; Kanthasamy, A.G.; Reddy, M.B. Epigallocatechin gallate has a neurorescue effect in a mouse model of Parkinson disease. J. Nutr., 2017, 147(10), 1926-1931.
[http://dx.doi.org/10.3945/jn.117.255034] [PMID: 28835392]
[257]
Zhang, Z.X.; Li, Y.B.; Zhao, R.P. Epigallocateching Gallate attenuates β-Amyloid generation and oxidative stress involvement of PPARγ in N2a/APP695 cells. Neurochem. Res., 2017, 42(2), 468-480.
[http://dx.doi.org/10.1007/s11064-016-2093-8] [PMID: 27889855]
[258]
Liu, R.; Zhang, T.; Wang, T.; Chang, M.; Jin, Q.; Wang, X. Microwave-assisted synthesis and antioxidant activity of palmitoyl-epigallocatechin gallate. Lebensm. Wiss. Technol., 2019, 101, 663-669.
[http://dx.doi.org/10.1016/j.lwt.2018.11.075]
[259]
Song, J.M.; Lee, K.H.; Seong, B.L. Antiviral effect of catechins in green tea on influenza virus. Antiviral Res., 2005, 68(2), 66-74.
[http://dx.doi.org/10.1016/j.antiviral.2005.06.010] [PMID: 16137775]
[260]
Isaacs, C.E.; Wen, G.Y.; Xu, W.; Jia, J.H.; Rohan, L.; Corbo, C.; Di Maggio, V.; Jenkins, E.C., Jr; Hillier, S. Epigallocatechin gallate inactivates clinical isolates of herpes simplex virus. Antimicrob. Agents Chemother., 2008, 52(3), 962-970.
[http://dx.doi.org/10.1128/AAC.00825-07] [PMID: 18195068]
[261]
Nance, C.L.; Siwak, E.B.; Shearer, W.T. Preclinical development of the green tea catechin, epigallocatechin gallate, as an HIV-1 therapy. J. Allergy Clin. Immunol., 2009, 123(2), 459-465.
[http://dx.doi.org/10.1016/j.jaci.2008.12.024] [PMID: 19203663]
[262]
Li, S.; Hattori, T.; Kodama, E.N. Epigallocatechin gallate inhibits the HIV reverse transcription step. Antivir. Chem. Chemother., 2011, 21(6), 239-243.
[http://dx.doi.org/10.3851/IMP1774] [PMID: 21730371]
[263]
Calland, N.; Albecka, A.; Belouzard, S.; Wychowski, C.; Duverlie, G.; Descamps, V.; Hober, D.; Dubuisson, J.; Rouillé, Y.; Séron, K. (-)-Epigallocatechin-3-gallate is a new inhibitor of hepatitis C virus entry. Hepatology, 2012, 55(3), 720-729.
[http://dx.doi.org/10.1002/hep.24803] [PMID: 22105803]
[264]
Li, J.; Song, D.; Wang, S.; Dai, Y.; Zhou, J.; Gu, J. Antiviral effect of epigallocateching gallate via impairing porcine circovirus type 2 attachment to host cell receptor. Viruses, 2020, 12(2), 176.
[http://dx.doi.org/10.3390/v12020176]
[265]
Sakata, R.; Ueno, T.; Nakamura, T.; Sakamoto, M.; Torimura, T.; Sata, M. Green tea polyphenol epigallocatechin-3-gallate inhibits platelet-derived growth factor-induced proliferation of human hepatic stellate cell line LI90. J. Hepatol., 2004, 40(1), 52-59.
[http://dx.doi.org/10.1016/S0168-8278(03)00477-X] [PMID: 14672614]
[266]
Higashi, N.; Kohjima, M.; Fukushima, M.; Ohta, S.; Kotoh, K.; Enjoji, M.; Kobayashi, N.; Nakamuta, M. Epigallocatechin-3-gallate, a green-tea polyphenol, suppresses Rho signaling in TWNT-4 human hepatic stellate cells. J. Lab. Clin. Med., 2005, 145(6), 316-322.
[http://dx.doi.org/10.1016/j.lab.2005.03.017] [PMID: 15976760]
[267]
Nakamuta, M.; Higashi, N.; Kohjima, M.; Fukushima, M.; Ohta, S.; Kotoh, K.; Kobayashi, N.; Enjoji, M. Epigallocatechin-3-gallate, a polyphenol component of green tea, suppresses both collagen production and collagenase activity in hepatic stellate cells. Int. J. Mol. Med., 2005, 16(4), 677-681.
[PMID: 16142404]
[268]
Zhen, M.; Wang, Q.; Huang, X.; Cao, L.; Chen, X.; Sun, K.; Liu, Y.; Li, W.; Zhang, L. Green tea polyphenol epigallocatechin-3-gallate inhibits oxidative damage and preventive effects on carbon tetrachloride–induced hepatic fibrosis. J. Nutr. Biochem., 2007, 18(12), 795-805.
[http://dx.doi.org/10.1016/j.jnutbio.2006.12.016] [PMID: 17481882]
[269]
Kitamura, M.; Nishino, T.; Obata, Y.; Furusu, A.; Hishikawa, Y.; Koji, T.; Kohno, S. Epigallocatechin gallate suppresses peritoneal fibrosis in mice. Chem. Biol. Interact., 2012, 195(1), 95-104.
[http://dx.doi.org/10.1016/j.cbi.2011.11.002] [PMID: 22101032]
[270]
Nakayama, M.; Shimatani, K.; Ozawa, T.; Shigemune, N.; Tomiyama, D.; Yui, K.; Katsuki, M.; Ikeda, K.; Nonaka, A.; Miyamoto, T. Mechanism for the antibacterial action of epigallocatechin gallate (EGCg) on Bacillus subtilis. Biosci. Biotechnol. Biochem., 2015, 79(5), 845-854.
[http://dx.doi.org/10.1080/09168451.2014.993356] [PMID: 25559894]
[271]
Kwon, Y.S.; Kim, H.J.; Hwang, Y.C.; Rosa, V.; Yu, M.K.; Min, K.S. Effects of epigallocateching gallate, an antibacterial cross-linking agent, on proliferation and differentiation of human dental pulp cells cultured in collagen scaffolds. J. Endod., 2017, 43(2), 289-296.
[http://dx.doi.org/10.1016/j.joen.2016.10.017] [PMID: 28132713]
[272]
Huang, T.W.; Ho, Y.C.; Tsai, T.N.; Tseng, C.L.; Lin, C.; Mi, F.L. Enhancement of the permeability and activities of epigallocatechin gallate by quaternary ammonium chitosan/fucoidan nanoparticles. Carbohydr. Polym., 2020, 242, 116312.
[http://dx.doi.org/10.1016/j.carbpol.2020.116312] [PMID: 32564860]
[273]
Vilela, M.M.; Salvador, S.L.; Teixeira, I.G.L.; Del Arco, M.C.G.; De Rossi, A. Efficacy of green tea and its extract, epigallocatechin-3-gallate, in the reduction of cariogenic microbiota in children: A randomized clinical trial. Arch. Oral Biol., 2020, 114, 104727.
[http://dx.doi.org/10.1016/j.archoralbio.2020.104727] [PMID: 32361019]
[274]
Okubo, S.; Toda, M.; Hara, Y.; Shimamura, T. Antifungal and fungicidal activities of tea extract and catechin against Trichophyton. Jpn. J. Bacteriol., 1991, 46(2), 509-514.
[http://dx.doi.org/10.3412/jsb.46.509] [PMID: 2062004]
[275]
Toyoshima, Y.; Okubo, S.; Toda, M.; Hara, Y.; Shimamura, T. Effect of catechin on the ultrastructure of Trichophyton mentagrophytes. J. Japan. Assoc. Infect. Dis., 1994, 68(3), 295-303.
[http://dx.doi.org/10.11150/kansenshogakuzasshi1970.68.295] [PMID: 8176271]
[276]
Hirasawa, M.; Takada, K. Multiple effects of green tea catechin on the antifungal activity of antimycotics against Candida albicans. J. Antimicrob. Chemother., 2004, 53(2), 225-229.
[http://dx.doi.org/10.1093/jac/dkh046] [PMID: 14688042]
[277]
Park, B.J.; Park, J.C.; Taguchi, H.; Fukushima, K.; Hyon, S.H.; Takatori, K. Antifungal susceptibility of epigallocatechin 3-O-gallate (EGCg) on clinical isolates of pathogenic yeasts. Biochem. Biophys. Res. Commun., 2006, 347(2), 401-405.
[http://dx.doi.org/10.1016/j.bbrc.2006.06.037] [PMID: 16831406]
[278]
Navarro-Martínez, M.D.; García-Cánovas, F.; Rodríguez-López, J.N. Tea polyphenol epigallocatechin-3-gallate inhibits ergosterol synthesis by disturbing folic acid metabolism in Candida albicans. J. Antimicrob. Chemother., 2006, 57(6), 1083-1092.
[http://dx.doi.org/10.1093/jac/dkl124] [PMID: 16585130]
[279]
Evensen, N.A.; Braun, P.C. The effects of tea polyphenols on Candida albicans: Inhibition of biofilm formation and proteasome inactivation. Can. J. Microbiol., 2009, 55(9), 1033-1039.
[http://dx.doi.org/10.1139/W09-058] [PMID: 19898545]
[280]
Behbehani, J.M.; Irshad, M.; Shreaz, S.; Karched, M. Synergistic effects of tea polyphenol epigallocatechin 3-O-gallate and azole drugs against oral Candida isolates. J. Mycol. Med., 2019, 29(2), 158-167.
[http://dx.doi.org/10.1016/j.mycmed.2019.01.011] [PMID: 30797684]
[281]
Okubo, S.; Sasaki, T.; Hara, Y.; Mori, F.; Shimamura, T. Bactericidal and anti-toxin activities of catechin on enterohemorrhagic Escherichia coli. J. Japan. Assoc. Infect. Dis., 1998, 72(3), 211-217.
[http://dx.doi.org/10.11150/kansenshogakuzasshi1970.72.211] [PMID: 9585693]
[282]
Mabe, K.; Yamada, M.; Oguni, I.; Takahashi, T. In vitro and in vivo activities of tea catechins against Helicobacter pylori. Antimicrob. Agents Chemother., 1999, 43(7), 1788-1791.
[http://dx.doi.org/10.1128/AAC.43.7.1788] [PMID: 10390246]
[283]
Sugita-Konishi, Y.; Hara-Kudo, Y.; Amano, F.; Okubo, T.; Aoi, N.; Iwaki, M.; Kumagai, S. Epigallocatechin gallate and gallocatechin gallate in green tea catechins inhibit extracellular release of Vero toxin from enterohemorrhagic Escherichia coli O157:H7. Biochim. Biophys. Acta, Gen. Subj., 1999, 1472(1-2), 42-50.
[http://dx.doi.org/10.1016/S0304-4165(99)00102-6] [PMID: 10572924]
[284]
Sakanaka, S.; Juneja, L.R.; Taniguchi, M. Antimicrobial effects of green tea polyphenols on thermophilic spore-forming bacteria. J. Biosci. Bioeng., 2000, 90(1), 81-85.
[http://dx.doi.org/10.1016/S1389-1723(00)80038-9] [PMID: 16232822]
[285]
Yamamoto, Y.; Yanagawa, Y.; Hara, Y.; Shimamura, T. A combination effect of epigallocatechin gallate, a major compound of green tea catechins, with antibiotics on Helicobacter pylori growth in vitro. Curr. Microbiol., 2003, 47(3), 244-249.
[http://dx.doi.org/10.1007/s00284-002-3956-6] [PMID: 14570277]
[286]
Yoda, Y.; Hu, Z.Q.; Shimamura, T.; Zhao, W-H. Different susceptibilities of Staphylococcus and Gram-negative rods to epigallocatechin gallate. J. Infect. Chemother., 2004, 10(1), 55-58.
[http://dx.doi.org/10.1007/s10156-003-0284-0] [PMID: 14991521]
[287]
Lee, K.M.; Kim, W.S.; Lim, J.; Nam, S.; Youn, M.; Nam, S.W.; Kim, Y.; Kim, S.H.; Park, W.; Park, S. Antipathogenic properties of green tea polyphenol epigallocatechin gallate at concentrations below the MIC against enterohemorrhagic Escherichia coli O157:H7. J. Food Prot., 2009, 72(2), 325-331.
[http://dx.doi.org/10.4315/0362-028X-72.2.325] [PMID: 19350976]
[288]
Isaacs, C.E.; Xu, W.; Merz, G.; Hillier, S.; Rohan, L.; Wen, G.Y. Digallate dimers of (-)-epigallocatechin gallate inactivate herpes simplex virus. Antimicrob. Agents Chemother., 2011, 55(12), 5646-5653.
[http://dx.doi.org/10.1128/AAC.05531-11] [PMID: 21947401]
[289]
He, W.; Li, L.X.; Liao, Q.J.; Liu, C.L.; Chen, X.L. Epigallocatechin gallate inhibits HBV DNA synthesis in a viral replication - inducible cell line. World J. Gastroenterol., 2011, 17(11), 1507-1514.
[http://dx.doi.org/10.3748/wjg.v17.i11.1507] [PMID: 21472112]
[290]
Jiang, F.; Chen, W.; Yi, K.; Wu, Z.; Si, Y.; Han, W.; Zhao, Y. The evaluation of catechins that contain a galloyl moiety as potential HIV-1 integrase inhibitors. Clin. Immunol., 2010, 137(3), 347-356.
[http://dx.doi.org/10.1016/j.clim.2010.08.007] [PMID: 20832370]
[291]
Chen, C.; Qiu, H.; Gong, J.; Liu, Q.; Xiao, H.; Chen, X.W.; Sun, B.L.; Yang, R.G. (-)-Epigallocatechin-3-gallate inhibits the replication cycle of hepatitis C virus. Arch. Virol., 2012, 157(7), 1301-1312.
[http://dx.doi.org/10.1007/s00705-012-1304-0] [PMID: 22491814]
[292]
Ho, H.Y.; Cheng, M.L.; Weng, S.F.; Leu, Y.L.; Chiu, D.T.Y. Antiviral effect of epigallocatechin gallate on enterovirus 71. J. Agric. Food Chem., 2009, 57(14), 6140-6147.
[http://dx.doi.org/10.1021/jf901128u] [PMID: 19537794]
[293]
Xu, J.; Wang, J.; Deng, F.; Hu, Z.; Wang, H. Green tea extract and its major component epigallocatechin gallate inhibits hepatitis B virus in vitro. Antiviral Res., 2008, 78(3), 242-249.
[http://dx.doi.org/10.1016/j.antiviral.2007.11.011] [PMID: 18313149]
[294]
Chang, L.K.; Wei, T.T.; Chiu, Y.F.; Tung, C.P.; Chuang, J.Y.; Hung, S.K.; Li, C.; Liu, S.T. Inhibition of Epstein–Barr virus lytic cycle by (-)-epigallocatechin gallate. Biochem. Biophys. Res. Commun., 2003, 301(4), 1062-1068.
[http://dx.doi.org/10.1016/S0006-291X(03)00067-6] [PMID: 12589821]
[295]
Weber, J.M.; Ruzindana-Umunyana, A.; Imbeault, L.; Sircar, S. Inhibition of adenovirus infection and adenain by green tea catechins. Antiviral Res., 2003, 58(2), 167-173.
[http://dx.doi.org/10.1016/S0166-3542(02)00212-7] [PMID: 12742577]
[296]
Imanishi, N.; Tuji, Y.; Katada, Y.; Maruhashi, M.; Konosu, S.; Mantani, N.; Terasawa, K.; Ochiai, H. Additional inhibitory effect of tea extract on the growth of influenza A and B viruses in MDCK cells. Microbiol. Immunol., 2002, 46(7), 491-494.
[http://dx.doi.org/10.1111/j.1348-0421.2002.tb02724.x] [PMID: 12222936]
[297]
Liu, J.; Zhong, T.; Yi, P.; Fan, C.; Zhang, Z.; Liang, G.; Xu, Y.; Fan, Y. A new epigallocatechin gallate derivative isolated from Anhua dark tea sensitizes the chemosensitivity of gefitinib via the suppression of PI3K/mTOR and epithelial-mesenchymal transition. Fitoterapia, 2020, 143, 104590.
[http://dx.doi.org/10.1016/j.fitote.2020.104590] [PMID: 32272164]
[298]
Nagai, K.; Jiang, M.H.; Hada, J.; Nagata, T.; Yajima, Y.; Yamamoto, S.; Nishizaki, T. (-)-Epigallocatechin gallate protects against NO stress-induced neuronal damage after ischemia by acting as an anti-oxidant. Brain Res., 2002, 956(2), 319-322.
[http://dx.doi.org/10.1016/S0006-8993(02)03564-3] [PMID: 12445701]
[299]
Tedeschi, E.; Menegazzi, M.; Yao, Y.; Suzuki, H.; Förstermann, U.; Kleinert, H. Green tea inhibits human inducible nitric-oxide synthase expression by down-regulating signal transducer and activator of transcription-1α activation. Mol. Pharmacol., 2004, 65(1), 111-120.
[http://dx.doi.org/10.1124/mol.65.1.111] [PMID: 14722242]
[300]
Kim, I.B.; Kim, D.Y.; Lee, S.J.; Sun, M.J.; Lee, M.S.; Li, H.; Cho, J.J.; Park, C.S. Inhibition of IL-8 production by green tea polyphenols in human nasal fibroblasts and A549 epithelial cells. Biol. Pharm. Bull., 2006, 29(6), 1120-1125.
[http://dx.doi.org/10.1248/bpb.29.1120] [PMID: 16755003]
[301]
Annabi, B.; Lee, Y.T.; Martel, C.; Pilorget, A.; Bahary, J-P.; Béliveau, R. Radiation induced-tubulogenesis in endothelial cells is antagonized by the antiangiogenic properties of green tea polyphenol (-) epigallocatechin-3-gallate. Cancer Biol. Ther., 2003, 2(6), 640-647.
[http://dx.doi.org/10.4161/cbt.2.6.529] [PMID: 14688468]
[302]
Sakamoto, Y.; Terashita, N.; Muraguchi, T.; Fukusato, T.; Kubota, S. effects Of Epigallocatechin-3-Gallate (EGCG) on A549 lung cancer tumor growth and angiogenesis. Biosci. Biotechnol. Biochem., 2013, 77(9), 1799-1803.
[http://dx.doi.org/10.1271/bbb.120882] [PMID: 24018658]
[303]
Hashimoto, O.; Nakamura, A.; Nakamura, T.; Iwamoto, H.; Hiroshi, M.; Inoue, K.; Torimura, T.; Ueno, T.; Sata, M. Methylated-(3ʹʹ)- Epigallocateching gallate analog suppresses tumor growth in Huh7 hepatoma cells via inhibition of angiogensis. Nutr. Cancer, 2014, 66(4), 728-735.
[http://dx.doi.org/10.1080/01635581.2013.783601] [PMID: 24033329]
[304]
Wang, R.; Huang, J.; Chen, J.; Yang, M.; Wang, H.; Qiao, H.; Chen, Z.; Hu, L.; Di, L.; Li, J. Enhanced anti-colon cancer efficacy of 5-fluorouracil by epigallocatechin-3- gallate co-loaded in wheat germ agglutinin-conjugated nanoparticles. Nanomedicine , 2019, 21, 102068.
[http://dx.doi.org/10.1016/j.nano.2019.102068] [PMID: 31374249]
[305]
Liao, Z.H.; Zhu, H.Q.; Chen, Y.Y.; Chen, R.L.; Fu, L.X.; Li, L.; Zhou, H.; Zhou, J.L.; Liang, G. The epigallocatechin gallate derivative Y6 inhibits human hepatocellular carcinoma by inhibiting angiogenesis in MAPK/ERK1/2 and PI3K/AKT/HIF-1α/VEGF dependent pathways. J. Ethnopharmacol., 2020, 259, 112852.
[http://dx.doi.org/10.1016/j.jep.2020.112852] [PMID: 32278759]
[306]
Takita, H.; Kikuchi, M.; Sato, Y.; Kuboki, Y. Inhibition of BMP-induced ectopic bone formation by an antiangiogenic agent (epigallocatechin 3-gallate). Connect. Tissue Res., 2002, 43(2-3), 520-523.
[http://dx.doi.org/10.1080/03008200290000772] [PMID: 12489208]
[307]
Shankar, S.; Marsh, L.; Srivastava, R.K. EGCG inhibits growth of human pancreatic tumors orthotopically implanted in Balb C nude mice through modulation of FKHRL1/FOXO3a and neuropilin. Mol. Cell. Biochem., 2013, 372(1-2), 83-94.
[http://dx.doi.org/10.1007/s11010-012-1448-y] [PMID: 22971992]
[308]
Rice-Evans, C.A.; Miller, N.J.; Paganga, G. Structure-antioxidant activity relationships of flavonoids and phenolic acids. Free Radic. Biol. Med., 1996, 20(7), 933-956.
[http://dx.doi.org/10.1016/0891-5849(95)02227-9] [PMID: 8743980]
[309]
Chung, J.E.; Kurisawa, M.; Kim, Y.J.; Uyama, H.; Kobayashi, S. Amplification of antioxidant activity of catechin by polycondensation with acetaldehyde. Biomacromolecules, 2004, 5(1), 113-118.
[http://dx.doi.org/10.1021/bm0342436] [PMID: 14715016]
[310]
Tipoe, G.; Leung, T.M.; Hung, M.W.; Fung, M.L. Green tea polyphenols as an anti-oxidant and anti-inflammatory agent for cardiovascular protection. Cardiovasc. Hematol. Disord. Drug Targets, 2007, 7(2), 135-144.
[http://dx.doi.org/10.2174/187152907780830905] [PMID: 17584048]
[311]
Meng, Q.; Velalar, C.N.; Ruan, R. Regulating the age-related oxidative damage, mitochondrial integrity, and antioxidative enzyme activity in Fischer 344 rats by supplementation of the antioxidant epigallocatechin-3-gallate. Rejuvenation Res., 2008, 11(3), 649-660.
[http://dx.doi.org/10.1089/rej.2007.0645] [PMID: 18593283]
[312]
Sabetkar, M.; Low, S.Y.; Bradley, N.J.; Jacobs, M.; Naseem, K.M.; Richard Bruckdorfer, K. The nitration of platelet vasodilator stimulated phosphoprotein following exposure to low concentrations of hydrogen peroxide. Platelets, 2008, 19(4), 282-292.
[http://dx.doi.org/10.1080/09537100801915142] [PMID: 18569864]
[313]
Tao, F.; Xiao, C.; Chen, W.; Zhang, Y.; Pan, J.; Jia, Z. Covalent modification of β-lactoglobulin by (-)-epigallocatechin-3-gallate results in a novel antioxidant molecule. Int. J. Biol. Macromol., 2019, 126, 1186-1191.
[http://dx.doi.org/10.1016/j.ijbiomac.2019.01.017] [PMID: 30615967]
[314]
McKay, D.L.; Blumberg, J.B. Roles for epigallocateching gallate in cardiovascular disease and obesity; an introduction. J. Am. Coll. Nutr., 2007, 26(4), 362S-365S.
[http://dx.doi.org/10.1080/07315724.2007.10719624]
[315]
Javaid, M.S.; Latief, N.; Ijaz, B.; Ashfaq, U.A. Epigallocatechin Gallate as an anti-obesity therapeutic compound: An in silico approach for structure-based drug designing. Nat. Prod. Res., 2018, 32(17), 2121-2125.
[http://dx.doi.org/10.1080/14786419.2017.1365074] [PMID: 28805446]
[316]
Thangapazham, R.L.; Passi, N.; Maheshwari, R.K. Green tea polyphenol and epigallocatechin gallate induce apoptosis and inhibit invasion in human breast cancer cells. Cancer Biol. Ther., 2007, 6(12), 1938-1943.
[http://dx.doi.org/10.4161/cbt.6.12.4974] [PMID: 18059161]
[317]
Braicu, C.; Gherman, C.D.; Irimie, A.; Berindan-Neagoe, I. Epigallocatechin-3-Gallate (EGCG) inhibits cell proliferation and migratory behaviour of triple negative breast cancer cells. J. Nanosci. Nanotechnol., 2013, 13(1), 632-637.
[http://dx.doi.org/10.1166/jnn.2013.6882] [PMID: 23646788]
[318]
Carneiro, B.M.; Batista, M.N.; Braga, A.C.S.; Nogueira, M.L.; Rahal, P. The green tea molecule EGCG inhibits Zika virus entry. Virology, 2016, 496, 215-218.
[http://dx.doi.org/10.1016/j.virol.2016.06.012] [PMID: 27344138]
[319]
Radhakrishnan, R.; Pooja, D.; Kulhari, H.; Gudem, S.; Ravuri, H.G.; Bhargava, S.; Ramakrishna, S. Bombesin conjugated solid lipid nanoparticles for improved delivery of epigallocatechin gallate for breast cancer treatment. Chem. Phys. Lipids, 2019, 224, 104770.
[http://dx.doi.org/10.1016/j.chemphyslip.2019.04.005] [PMID: 30965023]
[320]
Sharma, N.; Murali, A.; Singh, S.K.; Giri, R. Epigallocateching gallate, an active green tea compound inhibits the Zika virus entry into host cells via binding the envelope protein. Int. J. Biol. Macromol.,, 2017, 104(Part A), 1046-1054.
[321]
Rodriguez, R.; Kondo, H.; Nyan, M.; Hao, J.; Miyahara, T.; Ohya, K.; Kasugai, S. Implantation of green tea catechin α-tricalcium phosphate combination enhances bone repair in rat skull defects. J. Biomed. Mater. Res. B Appl. Biomater., 2011, 98B(2), 263-271.
[http://dx.doi.org/10.1002/jbm.b.31848] [PMID: 21591251]
[322]
Jin, P.; Wu, H.; Xu, G.; Zheng, L.; Zhao, J. RETRACTED ARTICLE: Epigallocatechin-3-gallate (EGCG) as a pro-osteogenic agent to enhance osteogenic differentiation of mesenchymal stem cells from human bone marrow: An in vitro study. Cell Tissue Res., 2014, 356(2), 381-390.
[http://dx.doi.org/10.1007/s00441-014-1797-9] [PMID: 24682582]
[323]
Shahrajabian, M.H.; Sun, W.; Cheng, Q. The importance of flavonoids and phytochemicals of medicinal plants with antiviral activities. Mini Rev. Org. Chem., 2022, 19(3), 293-318.
[http://dx.doi.org/10.2174/1570178618666210707161025]
[324]
Shahrajabian, M.H. Medicinal herbs with anti-inflammatory activities for natural and organic healing. Curr. Org. Chem., 2021, 25(23), 2885-2901.
[http://dx.doi.org/10.2174/1385272825666211110115656]
[325]
Shahrajabian, M.H.; Sun, W.; Cheng, Q. Different methods for molecular and rapid detection of human coronavirus. Curr. Pharm. Des., 2021, 27(25), 2893-2903.
[http://dx.doi.org/10.2174/1381612827666210604114411] [PMID: 34086547]
[326]
Marmitt, D.J.; Shahrajabian, M.H. Plant species used in Brazil and Asia regions with toxic properties. Phytother. Res., 2021, 35(9), 4703-4726.
[http://dx.doi.org/10.1002/ptr.7100] [PMID: 33793002]
[327]
Sun, W.; Shahrajabian, M.H.; Cheng, Q. Epigallocatechin gallate, a unique natural compound with tremendous health benefits. Res. Crop Ecophysiol., 2019, 14(1), 52-64.
[328]
Sun, W.; Shahrajabian, M.H.; Shen, H.; Khoshkharam, M.; Cheng, Q. Galactomannas and diosgenin, miracle of natural products. Res. Crop Ecophysiol., 2019, 14(1), 52-65.
[329]
Shahrajabian, M.H.; Sun, W.; Cheng, Q. The most important pharmaceutical benefits of sulforaphane, a sulfur-rich compound in Cruciferous. Res. Crop Ecophysiol., 2019, 14(2), 66-75.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy