Generic placeholder image

Letters in Drug Design & Discovery

Editor-in-Chief

ISSN (Print): 1570-1808
ISSN (Online): 1875-628X

Research Article

Lycopene-Loaded Solid Lipid Nanoparticles: Preparation, Characterization, ROS-Scavenging, and In vitro Anti-Melanogenesis Evaluations

Author(s): Omolbanin Shahraki and Sara Daneshmand*

Volume 20, Issue 11, 2023

Published on: 23 September, 2022

Page: [1768 - 1774] Pages: 7

DOI: 10.2174/1570180819666220819101532

Price: $65

Abstract

Background: Lycopene, a natural antioxidant from carotenoids, is produced by plants and microorganisms. It has been investigated in many studies in relation with potential health effects.

Objective: Due to the high lipid-solubility of lycopene, its skin penetration is challenged. Therefore, in the present study, lycopene was loaded into lipid nanoparticles to improve penetration and pharmacological properties.

Methods: Solid lipid nanoparticles (SLNs) containing lycopene were prepared and anti-tyrosinase properties were studied in the present study. The formulation was investigated in terms of drug release and antityrosinase properties. Determination of encapsulation efficiency was performed directly. Electron microscopy was used to examine the shape of the nanoparticles. Subsequently, the rate of drug release was investigated by the cell diffusion method. The present study applied cytotoxicity tests, cellular tyrosinase inhibition, melanin content, and free radical level to evaluate the effect of formulations on melanogenesis inhibition, and western blot assay was used to determine tyrosinase and MITF levels.

Results: The results from particle size investigation for LYC-SLNs were 151.1 ± 2.3, and exploring the data of electron microscopy showed that the shapes of nanoparticles were spherical, and the encapsulation efficiency was 85.76 ± 2.75%. In determining the anti-tyrosinase effects of LYC-SLNs, a significant reduction in cellular tyrosinase activity and melanin and ROS levels were observed; It is also worth noting that LYC-SLNs reduced melanin production with minimal toxicity against melanoma cells.

Conclusion: In general, the results confirm that SLNs can be an efficient delivery platform for the topical delivery of lycopene as a natural anti-oxidant and anti-melanogenic agent.

Keywords: Solid lipid nanoparticle, lycopene, tyrosinse, western blott, alamar blue, anti-melanogenic agent.

Graphical Abstract
[1]
Jimbow, K.; Minamitsuji, Y. Topical therapies for melasma and disorders of hyperpigmentation. Dermatol. Ther., 2001, 14(1), 35-45.
[http://dx.doi.org/10.1046/j.1529-8019.2001.014001035.x]
[2]
Kaulmann, A.; Bohn, T. Carotenoids, inflammation, and oxidative stress--implications of cellular signaling pathways and relation to chronic disease prevention. Nutr. Res., 2014, 34(11), 907-929.
[http://dx.doi.org/10.1016/j.nutres.2014.07.010] [PMID: 25134454]
[3]
Johnson, E.J. The role of carotenoids in human health. Nutr. Clin. Care, 2002, 5(2), 56-65.
[http://dx.doi.org/10.1046/j.1523-5408.2002.00004.x] [PMID: 12134711]
[4]
Grether-Beck, S.; Marini, A.; Jaenicke, T.; Stahl, W.; Krutmann, J. Molecular evidence that oral supplementation with lycopene or lutein protects human skin against ultraviolet radiation: Results from a double-blinded, placebo-controlled, crossover study. Br. J. Dermatol., 2017, 176(5), 1231-1240.
[http://dx.doi.org/10.1111/bjd.15080] [PMID: 27662341]
[5]
Jenkins, G.; Wainwright, L.J.; Holland, R.; Barrett, K.E.; Casey, J. Wrinkle reduction in post-menopausal women consuming a novel oral supplement: A double-blind placebo-controlled randomized study. Int. J. Cosmet. Sci., 2014, 36(1), 22-31.
[http://dx.doi.org/10.1111/ics.12087] [PMID: 23927381]
[6]
Tang, Z-X.; Wu, C-E.; Shi, L-E. Use of encapsulation technology for improving the stability of lycopene; Food Sources. Potential Role in Human Health and Antioxidant Effects, 2015, 115, 115.
[7]
Blume-Peytavi, U.; Rolland, A.; Darvin, M.E.; Constable, A.; Pineau, I.; Voit, C.; Zappel, K.; Schäfer-Hesterberg, G.; Meinke, M.; Clavez, R.L.; Sterry, W.; Lademann, J. Cutaneous lycopene and β-carotene levels measured by resonance Raman spectroscopy: High reliability and sensitivity to oral lactolycopene deprivation and supplementation. Eur. J. Pharm. Biopharm., 2009, 73(1), 187-194.
[http://dx.doi.org/10.1016/j.ejpb.2009.04.017] [PMID: 19442725]
[8]
Carvalho, G.C.; Sábio, R.M.; Chorilli, M. An overview of properties and analytical methods for lycopene in organic nanocarriers. Crit. Rev. Anal. Chem., 2021, 51(7), 674-686.
[PMID: 32412352]
[9]
Huang, Q.; Yu, H.; Ru, Q. Bioavailability and delivery of nutraceuticals using nanotechnology. J. Food Sci., 2010, 75(1), R50-R57.
[http://dx.doi.org/10.1111/j.1750-3841.2009.01457.x] [PMID: 20492195]
[10]
Taghipour, Y.D.; Hajialyani, M.; Naseri, R.; Hesari, M.; Mohammadi, P.; Stefanucci, A.; Mollica, A.; Farzaei, M.H.; Abdollahi, M. Nanoformulations of natural products for management of metabolic syndrome. Int. J. Nanomedicine, 2019, 14, 5303-5321.
[http://dx.doi.org/10.2147/IJN.S213831] [PMID: 31406461]
[11]
Ascenso, A.; Pinho, S.; Eleutério, C.; Praça, F.G.; Bentley, M.V.; Oliveira, H.; Santos, C.; Silva, O.; Simões, S. Lycopene from tomatoes: Vesicular nanocarrier formulations for dermal delivery. J. Agric. Food Chem., 2013, 61(30), 7284-7293.
[http://dx.doi.org/10.1021/jf401368w] [PMID: 23826819]
[12]
Mehnert, W.; Mäder, K. Solid lipid nanoparticles: Production, characterization and applications. Adv. Drug Deliv. Rev., 2012, 64, 83-101.
[http://dx.doi.org/10.1016/j.addr.2012.09.021] [PMID: 11311991]
[13]
Mosallaei, N.; Jaafari, M.R.; Hanafi-Bojd, M.Y.; Golmohammadzadeh, S.; Malaekeh-Nikouei, B. Docetaxel-loaded solid lipid nanoparticles: Preparation, characterization, in vitro, and in vivo evaluations. J. Pharm. Sci., 2013, 102(6), 1994-2004.
[http://dx.doi.org/10.1002/jps.23522] [PMID: 23558514]
[14]
Daneshmand, S.; Jaafari, M.R.; Movaffagh, J.; Malaekeh-Nikouei, B.; Iranshahi, M.; Seyedian Moghaddam, A.; Tayarani Najaran, Z.; Golmohammadzadeh, S. Preparation, characterization, and optimization of auraptene-loaded solid lipid nanoparticles as a natural anti-inflammatory agent: In vivo and in vitro evaluations. Colloids Surf. B Biointerfaces, 2018, 164, 332-339.
[http://dx.doi.org/10.1016/j.colsurfb.2018.01.054] [PMID: 29413613]
[15]
Bikkad, M.L.; Nathani, A.H.; Mandlik, S.K.; Shrotriya, S.N.; Ranpise, N.S. Halobetasol propionate-loaded solid lipid nanoparticles (SLN) for skin targeting by topical delivery. J. Liposome Res., 2014, 24(2), 113-123.
[http://dx.doi.org/10.3109/08982104.2013.843192] [PMID: 24131382]
[16]
O’Brien, J.; Wilson, I.; Orton, T.; Pognan, F. Investigation of the alamar blue (resazurin) fluorescent dye for the assessment of mammalian cell cytotoxicity. Eur. J. Biochem., 2000, 267(17), 5421-5426.
[http://dx.doi.org/10.1046/j.1432-1327.2000.01606.x] [PMID: 10951200]
[17]
Hashemi-Shahri, S.; Golshan, A.; Mohajeri, S.; Baharara, J.; Amini, E.; Salek, F. ROS-scavenging and anti-tyrosinase properties of crocetin on B16F10 murine melanoma cells. Anticancer. Agents Med. Chem., 2018, 18, 1064-1069.
[PMID: 29237384]
[18]
Yen, F-L.; Wang, M-C.; Liang, C-J.; Ko, H-H.; Lee, C-W. Melanogenesis inhibitor (s) from Phyla nodiflora extract. Evid. Based Complement. Alternat. Med., 2012, 2012, 867494.
[19]
Huang, H-C.; Hsieh, W-Y.; Niu, Y-L.; Chang, T-M. Inhibition of melanogenesis and antioxidant properties of Magnolia grandiflora L. flower extract. BMC Complement. Altern. Med., 2012, 12(1), 72.
[http://dx.doi.org/10.1186/1472-6882-12-72] [PMID: 22672352]
[20]
Vivek, K.; Reddy, H.; Murthy, R.S. Investigations of the effect of the lipid matrix on drug entrapment, in vitro release, and physical stability of olanzapine-loaded solid lipid nanoparticles. AAPS PharmSciTech, 2007, 8(4), E83.
[http://dx.doi.org/10.1208/pt0804083] [PMID: 18181544]
[21]
Müller, R.H.; Mäder, K.; Gohla, S. Solid lipid nanoparticles (SLN) for controlled drug delivery - a review of the state of the art. Eur. J. Pharm. Biopharm., 2000, 50(1), 161-177.
[http://dx.doi.org/10.1016/S0939-6411(00)00087-4] [PMID: 10840199]
[22]
Bunjes, H. Characterization of solid lipid nano-and microparticles; CRC Press: Boca Raton, FL, 2005.
[23]
Murakami, A.; Nakamura, Y.; Ohto, Y.; Yano, M.; Koshiba, T.; Koshimizu, K.; Tokuda, H.; Nishino, H.; Ohigashi, H. Suppressive effects of citrus fruits on free radical generation and nobiletin, an anti-inflammatory polymethoxyflavonoid. Biofactors, 2000, 12(1-4), 187-192.
[http://dx.doi.org/10.1002/biof.5520120130] [PMID: 11216485]
[24]
Limsuwan, T.; Boonme, P.; Khongkow, P.; Amnuaikit, T. Ethosomes of phenylethyl resorcinol as vesicular delivery system for skin lightening applications. Biomed Res. Int., 2017, 2017, 8310979.
[http://dx.doi.org/10.1155/2017/8310979]
[25]
Rigon, R.B.; Fachinetti, N.; Severino, P.; Santana, M.H.; Chorilli, M. Skin delivery and in vitro biological evaluation of trans-resveratrol-loaded solid lipid nanoparticles for skin disorder therapies. Molecules, 2016, 21(1), E116.
[http://dx.doi.org/10.3390/molecules21010116] [PMID: 26805794]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy