Generic placeholder image

Current Neuropharmacology

Editor-in-Chief

ISSN (Print): 1570-159X
ISSN (Online): 1875-6190

Abstract

Autism spectrum disorder (ASD) includes a heterogeneous group of complex neurodevelopmental disorders characterized by atypical behaviors with two core pathological manifestations: deficits in social interaction/communication and repetitive behaviors, which are associated with disturbed redox homeostasis. Modulation of cellular resilience mechanisms induced by low levels of stressors represents a novel approach for the development of therapeutic strategies, and in this context, neuroprotective effects of a wide range of polyphenol compounds have been demonstrated in several in vitro and in vivo studies and thoroughly reviewed. Mushrooms have been used in traditional medicine for many years and have been associated with a long list of therapeutic properties, including antitumor, immunomodulatory, antioxidant, antiviral, antibacterial, and hepatoprotective effects. Our recent studies have strikingly indicated the presence of polyphenols in nutritional mushrooms and demonstrated their protective effects in different models of neurodegenerative disorders in humans and rats. Although their therapeutic effects are exerted through multiple mechanisms, increasing attention is focusing on their capacity to induce endogenous defense systems by modulating cellular signaling processes such as nuclear factor erythroid 2 related factor 2 (Nrf2) and nuclear factor-kappa B (NF-κB) pathways. Here we discuss the protective role of hormesis and its modulation by hormetic nutrients in ASD.

Keywords: Autism spectrum disorders, vitagenes, antioxidants, hormesis, C. elegans, mushrooms.

Graphical Abstract
[1]
Bonomini, F.; Siniscalco, D.; Schultz, S.; Carnovale, C.; Barthélémy, C.; Fazzi, E.M. Editorial: Antioxidants in autism spectrum disorders. Front. Psychiatry, 2022, 13(13), 889865.
[http://dx.doi.org/10.3389/fpsyt.2022.889865] [PMID: 35463522]
[2]
Singla, R.K.; Dubey, A.K.; Garg, A.; Sharma, R.K.; Fiorino, M.; Ameen, S.M.; Haddad, M.A.; Al-Hiary, M. Natural polyphenols: Chemical classification, definition of classes, subcategories, and structures. J. AOAC Int., 2019, 102(5), 1397-1400.
[http://dx.doi.org/10.5740/jaoacint.19-0133] [PMID: 31200785]
[3]
Rudrapal, M.; Khairnar, S.J.; Khan, J.; Dukhyil, A.B.; Ansari, M.A.; Alomary, M.N.; Alshabrmi, F.M.; Palai, S.; Deb, P.K.; Devi, R. Dietary polyphenols and their role in oxidative stress-induced human diseases: insights into protective effects, antioxidant potentials and mechanism(s) of action. Front. Pharmacol., 2022, 13(13), 806470.
[http://dx.doi.org/10.3389/fphar.2022.806470] [PMID: 35237163]
[4]
Chugh, R.M.; Mittal, P.; Mp, N.; Arora, T.; Bhattacharya, T.; Chopra, H.; Cavalu, S.; Gautam, R.K. Fungal mushrooms: A natural compound with therapeutic applications. Front. Pharmacol., 2022, 13(13), 925387.
[http://dx.doi.org/10.3389/fphar.2022.925387] [PMID: 35910346]
[5]
D’Amico, R.; Salinaro, A.T.; Fusco, R.; Cordaro, M.; Impellizzeri, D.; Scuto, M.; Ontario, M.L.; Lo Dico, G.; Cuzzocrea, S.; Di Paola, R.; Siracusa, R.; Calabrese, V. Hericium erinaceus and Coriolus versicolor modulate molecular and biochemical changes after traumatic brain injury. Antioxidants, 2021, 10(6), 898.
[http://dx.doi.org/10.3390/antiox10060898] [PMID: 34199629]
[6]
Scuto, M.; Di Mauro, P.; Ontario, M.L.; Amato, C.; Modafferi, S.; Ciavardelli, D.; Salinaro, A.T.; Maiolino, L.; Calabrese, V. Nutritional mushroom treatment in Meniere’s disease with Coriolus versicolor: A rationale for therapeutic intervention in neuroinflammation and antineurodegeneration. Int. J. Mol. Sci., 2019, 21(1), 284.
[http://dx.doi.org/10.3390/ijms21010284] [PMID: 31906226]
[7]
Rose, S.; Niyazov, D.M.; Rossignol, D.A.; Goldenthal, M.; Kahler, S.G.; Frye, R.E. Clinical and molecular characteristics of mitochondrial dysfunction in autism spectrum disorder. Mol. Diagn. Ther., 2018, 22(5), 571-593.
[http://dx.doi.org/10.1007/s40291-018-0352-x] [PMID: 30039193]
[8]
Nabi, S.U.; Rehman, M.U.; Arafah, A.; Taifa, S.; Khan, I.S.; Khan, A.; Rashid, S.; Jan, F.; Wani, H.A.; Ahmad, S.F. Treatment of autism spectrum disorders by mitochondrial-targeted drug: Future of neurological diseases therapeutics. Curr. Neuropharmacol., 2023, 21(5), 1042-1064.
[http://dx.doi.org/10.2174/1570159X21666221121095618] [PMID: 36411568]
[9]
Friedman, S.D.; Shaw, D.W.; Artru, A.A.; Richards, T.L.; Gardner, J.; Dawson, G.; Posse, S.; Dager, S.R. Regional brain chemical alterations in young children with autism spectrum disorder. Neurology, 2003, 60(1), 100-107.
[http://dx.doi.org/10.1212/WNL.60.1.100] [PMID: 12525726]
[10]
Naviaux, R.K. Antipurinergic therapy for autism—An in-depth review. Mitochondrion, 2018, 43, 1-15.
[http://dx.doi.org/10.1016/j.mito.2017.12.007] [PMID: 29253638]
[11]
Minshew, N.J.; Goldstein, G.; Dombrowski, S.M.; Panchalingam, K.; Pettegrew, J.W. A preliminary 31P MRS study of autism: Evidence for undersynthesis and increased degradation of brain membranes. Biol. Psychiatry, 1993, 33(11-12), 762-773.
[http://dx.doi.org/10.1016/0006-3223(93)90017-8] [PMID: 8373914]
[12]
Chugani, D.C.; Sundram, B.S.; Behen, M.; Lee, M.L.; Moore, G.J. Evidence of altered energy metabolism in autistic children. Prog. Neuropsychopharmacol. Biol. Psychiatry, 1999, 23(4), 635-641.
[http://dx.doi.org/10.1016/S0278-5846(99)00022-6] [PMID: 10390722]
[13]
Filipek, P.A.; Juranek, J.; Smith, M.; Mays, L.Z.; Ramos, E.R.; Bocian, M.; Masser-Frye, D.; Laulhere, T.M.; Modahl, C.; Spence, M.A.; Gargus, J.J. Mitochondrial dysfunction in autistic patients with 15q inverted duplication. Ann. Neurol., 2003, 53(6), 801-804.
[http://dx.doi.org/10.1002/ana.10596] [PMID: 12783428]
[14]
Rossignol, D.A.; Frye, R.E. Mitochondrial dysfunction in autism spectrum disorders: A systematic review and meta-analysis. Mol. Psychiatry, 2012, 17(3), 290-314.
[http://dx.doi.org/10.1038/mp.2010.136] [PMID: 21263444]
[15]
Chauhan, A.; Audhya, T.; Chauhan, V. Brain region-specific glutathione redox imbalance in autism. Neurochem. Res., 2012, 37(8), 1681-1689.
[http://dx.doi.org/10.1007/s11064-012-0775-4] [PMID: 22528835]
[16]
Pacheva, I.; Ivanov, I. Targeted biomedical treatment for autism Spectrum disorders. Curr. Pharm. Des., 2020, 25(41), 4430-4453.
[http://dx.doi.org/10.2174/1381612825666191205091312] [PMID: 31801452]
[17]
Napoli, E.; Song, G.; Panoutsopoulos, A.; Riyadh, M.A.; Kaushik, G.; Halmai, J.; Levenson, R.; Zarbalis, K.S.; Giulivi, C. Beyond autophagy: A novel role for autism-linked Wdfy3 in brain mitophagy. Sci. Rep., 2018, 8(1), 11348.
[http://dx.doi.org/10.1038/s41598-018-29421-7] [PMID: 30054502]
[18]
Crespi, B.; Read, S.; Ly, A.; Hurd, P. AMBRA1, autophagy, and the extreme male brain theory of autism. Autism Res. Treat., 2019, 2019, 1-6.
[http://dx.doi.org/10.1155/2019/1968580] [PMID: 31687209]
[19]
Vecchia, E.D.; Mortimer, N.; Palladino, V.S.; Kittel-Schneider, S.; Lesch, K.P.; Reif, A.; Schenck, A.; Norton, W.H.J. Cross-species models of attention-deficit/hyperactivity disorder and autism spectrum disorder. Psychiatr. Genet., 2019, 29(1), 1-17.
[http://dx.doi.org/10.1097/YPG.0000000000000211] [PMID: 30376466]
[20]
Mitjans, M.; Begemann, M.; Ju, A.; Dere, E.; Wüstefeld, L.; Hofer, S.; Hassouna, I.; Balkenhol, J.; Oliveira, B.; van der Auwera, S.; Tammer, R.; Hammerschmidt, K.; Völzke, H.; Homuth, G.; Cecconi, F.; Chowdhury, K.; Grabe, H.; Frahm, J.; Boretius, S.; Dandekar, T.; Ehrenreich, H. Sexual dimorphism of AMBRA1-related autistic features in human and mouse. Transl. Psychiatry, 2017, 7(10), e1247.
[http://dx.doi.org/10.1038/tp.2017.213] [PMID: 28994820]
[21]
Glessner, J.T.; Wang, K.; Cai, G.; Korvatska, O.; Kim, C.E.; Wood, S.; Zhang, H.; Estes, A.; Brune, C.W.; Bradfield, J.P.; Imielinski, M.; Frackelton, E.C.; Reichert, J.; Crawford, E.L.; Munson, J.; Sleiman, P.M.A.; Chiavacci, R.; Annaiah, K.; Thomas, K.; Hou, C.; Glaberson, W.; Flory, J.; Otieno, F.; Garris, M.; Soorya, L.; Klei, L.; Piven, J.; Meyer, K.J.; Anagnostou, E.; Sakurai, T.; Game, R.M.; Rudd, D.S.; Zurawiecki, D.; McDougle, C.J.; Davis, L.K.; Miller, J.; Posey, D.J.; Michaels, S.; Kolevzon, A.; Silverman, J.M.; Bernier, R.; Levy, S.E.; Schultz, R.T.; Dawson, G.; Owley, T.; McMahon, W.M.; Wassink, T.H.; Sweeney, J.A.; Nurnberger, J.I.; Coon, H.; Sutcliffe, J.S.; Minshew, N.J.; Grant, S.F.A.; Bucan, M.; Cook, E.H.; Buxbaum, J.D.; Devlin, B.; Schellenberg, G.D.; Hakonarson, H. Autism genome-wide copy number variation reveals ubiquitin and neuronal genes. Nature, 2009, 459(7246), 569-573.
[http://dx.doi.org/10.1038/nature07953] [PMID: 19404257]
[22]
Ramoz, N.; Reichert, J.G.; Smith, C.J.; Silverman, J.M.; Bespalova, I.N.; Davis, K.L.; Buxbaum, J.D. Linkage and association of the mitochondrial aspartate/glutamate carrier SLC25A12 gene with autism. Am. J. Psychiatry, 2004, 161(4), 662-669.
[http://dx.doi.org/10.1176/appi.ajp.161.4.662] [PMID: 15056512]
[23]
Koch, S.V.; Larsen, J.T.; Mouridsen, S.E.; Bentz, M.; Petersen, L.; Bulik, C.; Mortensen, P.B.; Plessen, K.J. Autism spectrum disorder in individuals with anorexia nervosa and in their first- and second-degree relatives: Danish nationwide register-based cohort-study. Br. J. Psychiatry, 2015, 206(5), 401-407.
[http://dx.doi.org/10.1192/bjp.bp.114.153221] [PMID: 25657359]
[24]
Modabbernia, A.; Velthorst, E.; Reichenberg, A. Environmental risk factors for autism: An evidence-based review of systematic reviews and meta-analyses. Mol. Autism, 2017, 8(1), 13.
[http://dx.doi.org/10.1186/s13229-017-0121-4] [PMID: 28331572]
[25]
Frye, R.E. Metabolic and mitochondrial disorders associated with epilepsy in children with autism spectrum disorder. Epilepsy Behav., 2015, 47, 147-157.
[http://dx.doi.org/10.1016/j.yebeh.2014.08.134] [PMID: 25440829]
[26]
Guevara-Campos, J.; González-Guevara, L.; Cauli, O. Autism and intellectual disability associated with mitochondrial disease and hyperlactacidemia. Int. J. Mol. Sci., 2015, 16(2), 3870-3884.
[http://dx.doi.org/10.3390/ijms16023870] [PMID: 25679448]
[27]
Koenig, M.K. Presentation and diagnosis of mitochondrial disorders in children. Pediatr. Neurol., 2008, 38(5), 305-313.
[http://dx.doi.org/10.1016/j.pediatrneurol.2007.12.001] [PMID: 18410845]
[28]
Iossifov, I.; O’Roak, B.J.; Sanders, S.J.; Ronemus, M.; Krumm, N.; Levy, D.; Stessman, H.A.; Witherspoon, K.T.; Vives, L.; Patterson, K.E.; Smith, J.D.; Paeper, B.; Nickerson, D.A.; Dea, J.; Dong, S.; Gonzalez, L.E.; Mandell, J.D.; Mane, S.M.; Murtha, M.T.; Sullivan, C.A.; Walker, M.F.; Waqar, Z.; Wei, L.; Willsey, A.J.; Yamrom, B.; Lee, Y.; Grabowska, E.; Dalkic, E.; Wang, Z.; Marks, S.; Andrews, P.; Leotta, A.; Kendall, J.; Hakker, I.; Rosenbaum, J.; Ma, B.; Rodgers, L.; Troge, J.; Narzisi, G.; Yoon, S.; Schatz, M.C.; Ye, K.; McCombie, W.R.; Shendure, J.; Eichler, E.E.; State, M.W.; Wigler, M. The contribution of de novo coding mutations to autism spectrum disorder. Nature, 2014, 515(7526), 216-221.
[http://dx.doi.org/10.1038/nature13908] [PMID: 25363768]
[29]
Anderson, M.P.; Hooker, B.S.; Herbert, M.R. Bridging from cells to cognition in autism pathophysiology: Biological pathways to defective brain function and plasticity. Am. J. Biochem. Biotechnol., 2008, 4(2), 167-176.
[http://dx.doi.org/10.3844/ajbbsp.2008.167.176]
[30]
Wallace, D.C. Mitochondrial diseases in man and mouse. Science, 1999, 283(5407), 1482-1488.
[http://dx.doi.org/10.1126/science.283.5407.1482] [PMID: 10066162]
[31]
Adams, J.B.; Bhargava, A.; Coleman, D.M.; Frye, R.E.; Rossignol, D.A. Ratings of the effectiveness of nutraceuticals for autism spectrum disorders: Results of a national survey. J. Pers. Med., 2021, 11(9), 878.
[http://dx.doi.org/10.3390/jpm11090878] [PMID: 34575655]
[32]
Mattson, M.P.; Liu, D. Energetics and oxidative stress in synaptic plasticity and neurodegenerative disorders. Neuromolecular Med., 2002, 2(2), 215-232.
[http://dx.doi.org/10.1385/NMM:2:2:215] [PMID: 12428812]
[33]
Poling, J.S.; Frye, R.E.; Shoffner, J.; Zimmerman, A.W. Developmental regression and mitochondrial dysfunction in a child with autism. J. Child Neurol., 2006, 21(2), 170-172.
[http://dx.doi.org/10.1177/08830738060210021401] [PMID: 16566887]
[34]
Cypser, J.R.; Johnson, T.E. Multiple stressors in Caenorhabditis elegans induce stress hormesis and extended longevity. J. Gerontol. A Biol. Sci. Med. Sci., 2002, 57(3), B109-B114.
[http://dx.doi.org/10.1093/gerona/57.3.B109] [PMID: 11867647]
[35]
Krafczyk, N.; Klotz, L.O. FOXO transcription factors in antioxidant defense. IUBMB Life, 2022, 74(1), 53-61.
[http://dx.doi.org/10.1002/iub.2542] [PMID: 34423888]
[36]
Hartwig, K.; Heidler, T.; Moch, J.; Daniel, H.; Wenzel, U. Feeding a ROS-generator to Caenorhabditis elegans leads to increased expression of small heat shock protein HSP-16.2 and hormesis. Genes Nutr., 2009, 4(1), 59-67.
[http://dx.doi.org/10.1007/s12263-009-0113-x] [PMID: 19252938]
[37]
Ristow, M.; Schmeisser, S. Extending life span by increasing oxidative stress. Free Radic. Biol. Med., 2011, 51(2), 327-336.
[http://dx.doi.org/10.1016/j.freeradbiomed.2011.05.010] [PMID: 21619928]
[38]
Schulz, T.J.; Zarse, K.; Voigt, A.; Urban, N.; Birringer, M.; Ristow, M. Glucose restriction extends Caenorhabditis elegans life span by inducing mitochondrial respiration and increasing oxidative stress. Cell Metab., 2007, 6(4), 280-293.
[http://dx.doi.org/10.1016/j.cmet.2007.08.011] [PMID: 17908557]
[39]
Lee, G.D.; Wilson, M.A.; Zhu, M.; Wolkow, C.A.; de Cabo, R.; Ingram, D.K.; Zou, S. Dietary deprivation extends lifespan in Caenorhabditis elegans. Aging Cell, 2006, 5(6), 515-524.
[http://dx.doi.org/10.1111/j.1474-9726.2006.00241.x] [PMID: 17096674]
[40]
Wang, Y.; Tissenbaum, H.A. Overlapping and distinct functions for a Caenorhabditis elegans SIR2 and DAF-16/FOXO. Mech. Ageing Dev., 2006, 127(1), 48-56.
[http://dx.doi.org/10.1016/j.mad.2005.09.005] [PMID: 16280150]
[41]
Govindan, S.; Amirthalingam, M.; Duraisamy, K.; Govindhan, T.; Sundararaj, N.; Palanisamy, S. Phytochemicals-induced hormesis protects Caenorhabditis elegans against α-synuclein protein aggregation and stress through modulating HSF-1 and SKN-1/Nrf2 signaling pathways. Biomed. Pharmacother., 2018, 102, 812-822.
[http://dx.doi.org/10.1016/j.biopha.2018.03.128] [PMID: 29605769]
[42]
Atkuri, K.R.; Cowan, T.M.; Kwan, T.; Ng, A.; Herzenberg, L.A.; Herzenberg, L.A.; Enns, G.M. Inherited disorders affecting mitochondrial function are associated with glutathione deficiency and hypocitrullinemia. Proc. Natl. Acad. Sci. USA, 2009, 106(10), 3941-3945.
[http://dx.doi.org/10.1073/pnas.0813409106] [PMID: 19223582]
[43]
Refai, O.; Aggarwal, S.; Cheng, M.H.; Gichi, Z.; Salvino, J.M.; Bahar, I.; Blakely, R.D.; Mortensen, O.V. Allosteric modulator KM822 attenuates behavioral actions of amphetamine in Caenorhabditis elegans through Interactions with the Dopamine Transporter DAT-1. Mol. Pharmacol., 2022, 101(3), 123-131.
[http://dx.doi.org/10.1124/molpharm.121.000400] [PMID: 34906999]
[44]
Rawsthorne, H.; Calahorro, F.; Holden-Dye, L.; O’ Connor, V.; Dillon, J. Investigating autism associated genes in C. elegans reveals candidates with a role in social behaviour. PLoS One, 2021, 16(5), e0243121.
[http://dx.doi.org/10.1371/journal.pone.0243121] [PMID: 34043629]
[45]
Buddell, T.; Quinn, C.C. An autism-associated calcium channel variant causes defects in neuronal polarity in the ALM neuron of C. elegans. MicroPubl Biol.2021.
[http://dx.doi.org/10.17912/micropub.biology.000378]
[46]
Rawsthorne, H.; Calahorro, F.; Feist, E.; Holden-Dye, L.; O’Connor, V.; Dillon, J. Neuroligin dependence of social behaviour in Caenorhabditis elegans provides a model to investigate an autism-associated gene. Hum. Mol. Genet., 2021, 29(21), 3546-3553.
[http://dx.doi.org/10.1093/hmg/ddaa232] [PMID: 33206170]
[47]
Aguirre-Chen, C.; Stec, N.; Ramos, O.M.; Kim, N.; Kramer, M.; McCarthy, S.; Gillis, J.; McCombie, W.R.; Hammell, C.M. A Caenorhabditis elegans model for integrating the functions of neuropsychiatric risk genes identifies components required for normal dendritic morphology. G3 (Bethesda), 2020, 10(5), 1617-1628.
[http://dx.doi.org/10.1534/g3.119.400925] [PMID: 32132169]
[48]
McDiarmid, T.A.; Belmadani, M.; Liang, J.; Meili, F.; Mathews, E.A.; Mullen, G.P.; Hendi, A.; Wong, W.R.; Rand, J.B.; Mizumoto, K.; Haas, K.; Pavlidis, P.; Rankin, C.H. Systematic phenomics analysis of autism-associated genes reveals parallel networks underlying reversible impairments in habituation. Proc. Natl. Acad. Sci. USA, 2020, 117(1), 656-667.
[http://dx.doi.org/10.1073/pnas.1912049116] [PMID: 31754030]
[49]
Hart, M.P. Stress-induced neuron remodeling reveals differential interplay between neurexin and environmental factors in Caenorhabditis elegans. Genetics, 2019, 213(4), 1415-1430.
[http://dx.doi.org/10.1534/genetics.119.302415] [PMID: 31558583]
[50]
Wong, W.R.; Brugman, K.I.; Maher, S.; Oh, J.Y.; Howe, K.; Kato, M.; Sternberg, P.W. Autism-associated missense genetic variants impact locomotion and neurodevelopment in Caenorhabditis elegans. Hum. Mol. Genet., 2019, 28(13), 2271-2281.
[http://dx.doi.org/10.1093/hmg/ddz051] [PMID: 31220273]
[51]
Tong, X.J.; López-Soto, E.J.; Li, L.; Liu, H.; Nedelcu, D.; Lipscombe, D.; Hu, Z.; Kaplan, J.M. Retrograde synaptic inhibition is mediated by α-Neurexin binding to the α2δ subunits of N-type calcium channels. Neuron, 2017, 95(2), 326-340.e5.
[http://dx.doi.org/10.1016/j.neuron.2017.06.018] [PMID: 28669545]
[52]
Jia, F.; Cui, M.; Than, M.T.; Han, M. Developmental defects of Caenorhabditis elegans lacking branched-chain α-ketoacid dehydrogenase are mainly caused by monomethyl branched-chain fatty acid deficiency. J. Biol. Chem., 2016, 291(6), 2967-2973.
[http://dx.doi.org/10.1074/jbc.M115.676650] [PMID: 26683372]
[53]
Gyurkó, M.; Steták, A. Sőti, C.; Csermely, P. Multitarget network strategies to influence memory and forgetting: The Ras/MAPK pathway as a novel option. Mini Rev. Med. Chem., 2015, 15(8), 696-704.
[http://dx.doi.org/10.2174/1389557515666150219144336] [PMID: 25694072]
[54]
Opperman, K.; Moseley-Alldredge, M.; Yochem, J.; Bell, L.; Kanayinkal, T.; Chen, L. A novel nondevelopmental role of the sax-7/L1CAM cell adhesion molecule in synaptic regulation in Caenorhabditis elegans. Genetics, 2015, 199(2), 497-509.
[http://dx.doi.org/10.1534/genetics.114.169581] [PMID: 25488979]
[55]
Calabrese, V.; Cornelius, C.; Stella, A.M.G.; Calabrese, E.J. Cellular stress responses, mitostress and carnitine insufficiencies as critical determinants in aging and neurodegenerative disorders: role of hormesis and vitagenes. Neurochem. Res., 2010, 35(12), 1880-1915.
[http://dx.doi.org/10.1007/s11064-010-0307-z] [PMID: 21080068]
[56]
Calabrese, V.; Cornelius, C.; Dinkova-Kostova, A.T.; Calabrese, E.J. Vitagenes, cellular stress response, and acetylcarnitine: Relevance to hormesis. Biofactors, 2009, 35(2), 146-160.
[http://dx.doi.org/10.1002/biof.22] [PMID: 19449442]
[57]
Calabrese, V.; Cornelius, C.; Dinkova-Kostova, A.T.; Calabrese, E.J.; Mattson, M.P. Cellular stress responses, the hormesis paradigm, and vitagenes: novel targets for therapeutic intervention in neurodegenerative disorders. Antioxid. Redox Signal., 2010, 13(11), 1763-1811.
[http://dx.doi.org/10.1089/ars.2009.3074] [PMID: 20446769]
[58]
Calabrese, V.; Cornelius, C.; Mancuso, C.; Pennisi, G.; Calafato, S.; Bellia, F.; Bates, T.E.; Giuffrida, S.A.M.; Schapira, T.; Dinkova Kostova, A.T.; Rizzarelli, E. Cellular stress response: A novel target for chemoprevention and nutritional neuroprotection in aging, neurodegenerative disorders and longevity. Neurochem. Res., 2008, 33(12), 2444-2471.
[http://dx.doi.org/10.1007/s11064-008-9775-9] [PMID: 18629638]
[59]
Cornelius, C.; Perrotta, R.; Graziano, A.; Calabrese, E.J.; Calabrese, V. Stress responses, vitagenes and hormesis as critical determinants in aging and longevity: Mitochondria as a “chi”. Immun. Ageing, 2013, 10(1), 15.
[http://dx.doi.org/10.1186/1742-4933-10-15] [PMID: 23618527]
[60]
Castejon, A.M.; Spaw, J.A.; Rozenfeld, I.; Sheinberg, N.; Kabot, S.; Shaw, A.; Hardigan, P.; Faillace, R.; Packer, E.E. Improving antioxidant capacity in children with autism: A randomized, double-blind controlled study with cysteine-rich whey protein. Front. Psychiatry, 2021, 12, 669089.
[http://dx.doi.org/10.3389/fpsyt.2021.669089] [PMID: 34658941]
[61]
Erten, F. Lycopene ameliorates propionic acid-induced autism spectrum disorders by inhibiting inflammation and oxidative stress in rats. J. Food Biochem., 2021, 45(10), e13922.
[http://dx.doi.org/10.1111/jfbc.13922]
[62]
Bent, S.; Lawton, B.; Warren, T.; Widjaja, F.; Dang, K.; Fahey, J.; Cornblatt, B.; Kinchen, J.M.; Delucchi, K.; Hendren, R.L. Identification of urinary metabolites that correlate with clinical improvements in children with autism treated with sulforaphane from broccoli. Mol. Autism, 2018, 9, 35.
[http://dx.doi.org/10.1186/s13229-018-0218-4]
[63]
Salinaro, A.T.; Cornelius, C.; Koverech, G.; Koverech, A.; Scuto, M.; Lodato, F.; Fronte, V.; Muccilli, V.; Reibaldi, M.; Longo, A.; Uva, M.G.; Calabrese, V. Cellular stress response, redox status, and vitagenes in glaucoma: A systemic oxidant disorder linked to Alzheimer’s disease. Front. Pharmacol., 2014, 5, 129.
[http://dx.doi.org/10.3389/fphar.2014.00129] [PMID: 24936186]
[64]
Yang, J.; Fu, X.; Liao, X.; Li, Y. Nrf2 activators as dietary phytochemicals against oxidative stress, inflammation, and mitochondrial dysfunction in autism spectrum disorders: A systematic review. Front. Psychiatry, 2020, 11, 561998.
[http://dx.doi.org/10.3389/fpsyt.2020.561998] [PMID: 33329102]
[65]
Wardyn, J.D.; Ponsford, A.H.; Sanderson, C.M. Dissecting molecular cross-talk between Nrf2 and NF-κB response pathways. Biochem. Soc. Trans., 2015, 43(4), 621-626.
[http://dx.doi.org/10.1042/BST20150014] [PMID: 26551702]
[66]
Calabrese, V.; Giordano, J.; Ruggieri, M.; Berritta, D.; Trovato, A.; Ontario, M.L.; Bianchini, R.; Calabrese, E.J. Hormesis, cellular stress response, and redox homeostasis in autism spectrum disorders. J. Neurosci. Res., 2016, 94(12), 1488-1498.
[http://dx.doi.org/10.1002/jnr.23893] [PMID: 27642708]
[67]
Cheffer, A.; Flitsch, L.J.; Krutenko, T. Human stem cell-based models for studying autism spectrum disorder-related neuronal dysfunction. Mol. Autism, 2020, 11(1), 99.
[http://dx.doi.org/10.1186/s13229-020-00383-w] [http://dx.doi.org/10.1186/s13229-020-00383-w]
[68]
Siracusa, R.; Scuto, M.; Fusco, R.; Trovato, A.; Ontario, M.L.; Crea, R.; Paola, R.D.; Cuzzocrea, S.; Calabrese, V. Anti-inflammatory and anti-oxidant activity of Hidrox® in rotenone-induced Parkinson’s disease in mice. Antioxidants (Basel), 2020, 9(9), 824.
[http://dx.doi.org/10.3390/antiox9090824] [PMID: 32899274]
[69]
Elsayed, E.A.; El Enshasy, H.; Wadaan, M.A.M.; Aziz, R. Mushrooms: A potential natural source of anti-inflammatory compounds for medical applications. Mediators Inflamm., 2014, 2014, 1-15.
[http://dx.doi.org/10.1155/2014/805841] [PMID: 25505823]
[70]
Martinez-Medina, G.A.; Chávez-González, M.L.; Verma, D.K.; Arely Prado-Barragán, L.; Martínez-Hernández, J.L.; Flores-Gallegos, A.C.; Thakur, M.; Prakash Srivastav, P.; Aguilar, C.N. Bio-funcional components in mushrooms, a health opportunity: Ergothionine and huitlacohe as recent trends. J. Functional Foods, 2021, 77, 104326.
[http://dx.doi.org/10.1016/j.jff.2020.104326]
[71]
Yildiz, O. Can, Z.; Laghari, A.Q.; Şahin, H.; Malkoç, M. Wild edible mushrooms as a natural source of phenolics and antioxidants. J. Food Biochem., 2015, 39(2), 148-154.
[http://dx.doi.org/10.1111/jfbc.12107]
[72]
Paterson, R.R.; Lima, N. Biomedical effects of mushrooms with emphasis on pure compounds. Biomed. J., 2014, 37(6), 357-368.
[http://dx.doi.org/10.4103/2319-4170.143502] [PMID: 25355390]
[73]
Islam, T.; Ganesan, K.; Xu, B. New insight into mycochemical profiles and antioxidant potential of edible and medicinal mushrooms: A review. Int. J. Med. Mushrooms, 2019, 21(3), 237-251.
[http://dx.doi.org/10.1615/IntJMedMushrooms.2019030079] [PMID: 31002608]
[74]
Friedman, M. Mushroom polysaccharides: Chemistry and antiobesity, antidiabetes, anticancer, and antibiotic properties in cells, rodents, and humans. Foods, 2016, 5(4), 80.
[http://dx.doi.org/10.3390/foods5040080] [PMID: 28231175]
[75]
Jang, J.H.; Aruoma, O.I.; Jen, L.S.; Chung, H.Y.; Surh, Y.J. Ergothioneine rescues PC12 cells from β-amyloid-induced apoptotic death. Free Radic. Biol. Med., 2004, 36(3), 288-299.
[http://dx.doi.org/10.1016/j.freeradbiomed.2003.11.005] [PMID: 15036348]
[76]
Calabrese, V.; Pennisi, M.; Crupi, R.; Di Paola, R.; Alario, A.; Modafferi, S.; Di Rosa, G.; Fernandes, T.; Signorile, A.; Maiolino, L.; Cuzzocrea, S.; Calabrese, V. Neuroinflammation and mitochondrial dysfunction in the pathogenesis of Alzheimer’s disease: modulation by coriolus versicolor (Yun-Zhi) nutritional mushroom. J. Neurol. Neuromed, 2017, 2(1), 19-28.
[http://dx.doi.org/10.29245/2572.942X/2017/2.942X/2017/1.1088]
[77]
Friedman, M. Chemistry, nutrition, and health-promoting properties of Hericium erinaceus (Lion’s Mane) mushroom fruiting bodies and mycelia and their bioactive compounds. J. Agric. Food Chem., 2015, 63(32), 7108-7123.
[http://dx.doi.org/10.1021/acs.jafc.5b02914] [PMID: 26244378]
[78]
Li, I.C.; Lee, L.Y.; Tzeng, T.T.; Chen, W.P.; Chen, Y.P.; Shiao, Y.J.; Chen, C.C. Neuro health properties of Hericium erinaceus mycelia enriched with erinacines. Behav. Neurol., 2018, 2018, 1-10.
[http://dx.doi.org/10.1155/2018/5802634] [PMID: 29951133]
[79]
Tsai-Teng, T.; Chin-Chu, C.; Li-Ya, L.; Wan-Ping, C.; Chung-Kuang, L.; Chien-Chang, S.; Chi-Ying, H.F.; Chien-Chih, C.; Shiao, Y.J. Erinacine A-enriched Hericium erinaceus mycelium ameliorates Alzheimer’s disease-related pathologies in APPswe/PS1dE9 transgenic mice. J. Biomed. Sci., 2016, 23(1), 49.
[http://dx.doi.org/10.1186/s12929-016-0266-z] [PMID: 27350344]
[80]
Amara, I.; Scuto, M.; Zappalà, A.; Ontario, M.L.; Petralia, A.; Abid-Essefi, S.; Maiolino, L.; Signorile, A.; Trovato Salinaro, A.; Calabrese, V. Hericium Erinaceus prevents DEHP-induced mitochondrial dysfunction and apoptosis in PC12 cells. Int. J. Mol. Sci., 2020, 21(6), 2138.
[http://dx.doi.org/10.3390/ijms21062138] [PMID: 32244920]
[81]
Li, T.J.; Lee, T.Y.; Lo, Y.; Lee, L.Y.; Li, I.C.; Chen, C.C.; Chang, F.C. Hericium erinaceus mycelium ameliorate anxiety induced by continuous sleep disturbance in vivo. BMC Complementary Medicine and Therapies, 2021, 21(1), 295.
[http://dx.doi.org/10.1186/s12906-021-03463-3] [PMID: 34865649]
[82]
Chong, P.S.; Fung, M.L.; Wong, K.H.; Lim, L.W. Therapeutic potential of Hericium erinaceus for depressive disorder. Int. J. Mol. Sci., 2019, 21(1), 163.
[http://dx.doi.org/10.3390/ijms21010163] [PMID: 31881712]
[83]
Chiu, C.H.; Chyau, C.C.; Chen, C.C.; Lee, L.Y.; Chen, W.P.; Liu, J.L.; Lin, W.H.; Mong, M.C. Erinacine A-enriched Hericium erinaceus mycelium produces antidepressant-like effects through modulating BDNF/PI3K/Akt/GSK-3β signaling in mice. Int. J. Mol. Sci., 2018, 19(2), 341.
[http://dx.doi.org/10.3390/ijms19020341] [PMID: 29364170]
[84]
Ryu, S.; Kim, H.G.; Kim, J.Y.; Kim, S.Y.; Cho, K.O. Hericium erinaceus extract reduces anxiety and depressive behaviors by promoting hippocampal neurogenesis in the adult mouse brain. J. Med. Food, 2018, 21(2), 174-180.
[http://dx.doi.org/10.1089/jmf.2017.4006] [PMID: 29091526]
[85]
Fritz, H.; Kennedy, D.A.; Ishii, M.; Fergusson, D.; Fernandes, R.; Cooley, K.; Seely, D. Polysaccharide K and Coriolus versicolor extracts for lung cancer: A systematic review. Integr. Cancer Ther., 2015, 14(3), 201-211.
[http://dx.doi.org/10.1177/1534735415572883] [PMID: 25784670]
[86]
Matijašević D.; Pantić M.; Rašković B.; Pavlović V.; Duvnjak, D.; Sknepnek, A.; Nikšić M. The antibacterial activity of coriolus versicolor methanol extract and its effect on ultrastructural changes of Staphylococcus aureus and Salmonella enteritidis. Front. Microbiol., 2016, 7, 1226.
[http://dx.doi.org/10.3389/fmicb.2016.01226] [PMID: 27540376]
[87]
Trovato, A.; Siracusa, R.; Di Paola, R.; Scuto, M.; Fronte, V.; Koverech, G.; Luca, M.; Serra, A.; Toscano, M.A.; Petralia, A.; Cuzzocrea, S.; Calabrese, V. Redox modulation of cellular stress response and lipoxin A4 expression by Coriolus versicolor in rat brain: Relevance to Alzheimer’s disease pathogenesis. Neurotoxicology, 2016, 53, 350-358.
[http://dx.doi.org/10.1016/j.neuro.2015.09.012] [PMID: 26433056]
[88]
Fang, X.; Jiang, Y.; Ji, H.; Zhao, L.; Xiao, W.; Wang, Z.; Ding, G. The synergistic beneficial effects of ginkgo flavonoid and Coriolus versicolor polysaccharide for memory improvements in a mouse model of dementia. Evid. Based Complement. Alternat. Med., 2015, 2015, 1-9.
[http://dx.doi.org/10.1155/2015/128394] [PMID: 25821476]
[89]
Ishiyama, G.; Wester, J.; Lopez, I.A.; Beltran-Parrazal, L.; Ishiyama, A. Oxidative stress in the blood labyrinthine barrier in the macula utricle of meniere’s disease patients. Front. Physiol., 2018, 9, 1068.
[http://dx.doi.org/10.3389/fphys.2018.01068] [PMID: 30233382]
[90]
Ferreiro, E.; Pita, I.R.; Mota, S.I.; Valero, J.; Ferreira, N.R.; Fernandes, T.; Calabrese, V.; Fontes-Ribeiro, C.A.; Pereira, F.C.; Rego, A.C. Coriolus versicolor biomass increases dendritic arborization of newly-generated neurons in mouse hippocampal dentate gyrus. Oncotarget, 2018, 9(68), 32929-32942.
[http://dx.doi.org/10.18632/oncotarget.25978] [PMID: 30250640]
[91]
Caracci, M.O.; Avila, M.E.; Espinoza-Cavieres, F.A.; López, H.R.; Ugarte, G.D.; De Ferrari, G.V. Wnt/β-catenin-dependent transcription in autism spectrum disorders. Front. Mol. Neurosci., 2021, 14, 764756.
[http://dx.doi.org/10.3389/fnmol.2021.764756] [PMID: 34858139]
[92]
Huang, H.T.; Ho, C.H.; Sung, H.Y.; Lee, L.Y.; Chen, W.P.; Chen, Y.W.; Chen, C.C.; Yang, C.S.; Tzeng, S.F. Hericium erinaceus mycelium and its small bioactive compounds promote oligodendrocyte maturation with an increase in myelin basic protein. Sci. Rep., 2021, 11(1), 6551.
[http://dx.doi.org/10.1038/s41598-021-85972-2] [PMID: 33753806]
[93]
Galvez-Contreras, A.Y.; Zarate-Lopez, D.; Torres-Chavez, A.L.; Gonzalez-Perez, O. Role of oligodendrocytes and myelin in the pathophysiology of autism spectrum disorder. Brain Sci., 2020, 10(12), 951.
[http://dx.doi.org/10.3390/brainsci10120951] [PMID: 33302549]
[94]
Graciarena, M.; Seiffe, A.; Nait-Oumesmar, B.; Depino, A.M. Hypomyelination and oligodendroglial alterations in a mouse model of autism spectrum disorder. Front. Cell. Neurosci., 2019, 12, 517.
[http://dx.doi.org/10.3389/fncel.2018.00517] [PMID: 30687009]
[95]
Fijałkowska, A.; Jędrejko, K.; Sułkowska-Ziaja, K.; Ziaja, M.; Kała, K.; Muszyń;ska, B. Edible mushrooms as a potential component of dietary interventions for major depressive disorder. Foods, 2022, 11(10), 1489.
[http://dx.doi.org/10.3390/foods11101489] [PMID: 35627059]
[96]
Huang, G.; Chen, S.; Chen, X.; Zheng, J.; Xu, Z.; Doostparast Torshizi, A.; Gong, S.; Chen, Q.; Ma, X.; Yu, J.; Zhou, L.; Qiu, S.; Wang, K.; Shi, L. Uncovering the functional link between SHANK3 deletions and deficiency in neurodevelopment using iPSC-derived human neurons. Front. Neuroanat., 2019, 13, 23.
[http://dx.doi.org/10.3389/fnana.2019.00023] [PMID: 30918484]
[97]
Modafferi, S.; Zhong, X.; Kleensang, A.; Murata, Y.; Fagiani, F.; Pamies, D.; Hogberg, H.T.; Calabrese, V.; Lachman, H.; Hartung, T.; Smirnova, L. Gene-environment interactions in developmental neurotoxicity: A case study of synergy between chlorpyrifos and CHD8 knockout in human brain spheres. Environ. Health Perspect., 2021, 129(7), 077001.
[http://dx.doi.org/10.1289/EHP8580] [PMID: 34259569]
[98]
Prem, S.; Millonig, J.H.; DiCicco-Bloom, E. Dysregulation of neurite outgrowth and cell migration in autism and other neurodevelopmental disorders. Adv. Neurobiol., 2020, 25, 109-153.
[http://dx.doi.org/10.1007/978-3-030-45493-7_5] [PMID: 32578146]
[99]
Martínez-Cerdeño, V. Dendrite and spine modifications in autism and related neurodevelopmental disorders in patients and animal models. Dev. Neurobiol., 2017, 77(4), 393-404.
[http://dx.doi.org/10.1002/dneu.22417] [PMID: 27390186]
[100]
Lo, L.H.Y.; Lai, K.O. Dysregulation of protein synthesis and dendritic spine morphogenesis in ASD: Studies in human pluripotent stem cells. Mol. Autism, 2020, 11(1), 40.
[http://dx.doi.org/10.1186/s13229-020-00349-y] [PMID: 32460854]
[101]
Perluigi, M.; Di Domenico, F.; Giorgi, A.; Schininà, M.E.; Coccia, R.; Cini, C.; Bellia, F.; Cambria, M.T.; Cornelius, C.; Butterfield, D.A.; Calabrese, V. Redox proteomics in aging rat brain: Involvement of mitochondrial reduced glutathione status and mitochondrial protein oxidation in the aging process. J. Neurosci. Res., 2010, 88(16), 3498-3507.
[http://dx.doi.org/10.1002/jnr.22500] [PMID: 20936692]
[102]
Calabrese, V.; Mancuso, C.; Calvani, M.; Rizzarelli, E.; Butterfield, D.A.; Giuffrida Stella, A.M. Nitric oxide in the CNS: Neuroprotection versus Neurotoxicity. Nat. Neurosci., 2007, 8, 766-775.
[http://dx.doi.org/10.1038/nrn2214] [PMID: 17882254]
[103]
Drake, J.; Sultana, R.; Aksenova, M.; Calabrese, V.; Butterfield, D.A. Elevation of mitochondrial glutathione by glutamylcysteine ethyl ester protects mitochondria against peroxynitrite-induced oxidative stress. J. Neurosci. Res., 2003, 74(6), 917-927.
[http://dx.doi.org/10.1002/jnr.10810] [PMID: 14648597]
[104]
Culetto, E.; Sattelle, D.B. A role for Caenorhabditis elegans in understanding the function and interactions of human disease genes. Hum. Mol. Genet., 2000, 9(6), 869-877.
[http://dx.doi.org/10.1093/hmg/9.6.869] [PMID: 10767309]
[105]
Lai, C.H.; Chou, C.Y.; Ch’ang, L.Y.; Liu, C.S.; Lin, W. Identification of novel human genes evolutionarily conserved in Caenorhabditis elegans by comparative proteomics. Genome Res., 2000, 10(5), 703-713.
[http://dx.doi.org/10.1101/gr.10.5.703] [PMID: 10810093]
[106]
Nigon, V.M.; Félix, M.A. History of research on C. elegans and other free-living nematodes as model organisms. WormBook, 2017, 2017, 1-84.
[http://dx.doi.org/10.1895/wormbook.1.181.1] [PMID: 28326696]
[107]
Fire, A.; Xu, S.; Montgomery, M.K.; Kostas, S.A.; Driver, S.E.; Mello, C.C. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature, 1998, 391(6669), 806-811.
[http://dx.doi.org/10.1038/35888] [PMID: 9486653]
[108]
Dosanjh, L.E.; Brown, M.K.; Rao, G.; Link, C.D.; Luo, Y. Behavioral phenotyping of a transgenic Caenorhabditis elegans expressing neuronal amyloid-beta. J. Alzheimers Dis., 2010, 19(2), 681-690.
[http://dx.doi.org/10.3233/JAD-2010-1267] [PMID: 20110612]
[109]
Wang, C.; Saar, V.; Leung, K.L.; Chen, L.; Wong, G. Human amyloid β peptide and tau co-expression impairs behavior and causes specific gene expression changes in Caenorhabditis elegans. Neurobiol. Dis., 2018, 109(Pt A), 88-101.
[http://dx.doi.org/10.1016/j.nbd.2017.10.003] [PMID: 28982592]
[110]
Huang, X.; Wang, C.; Chen, L.; Zhang, T.; Leung, K.L.; Wong, G. Human amyloid beta and α-synuclein co-expression in neurons impair behavior and recapitulate features for Lewy body dementia in Caenorhabditis elegans. Biochim. Biophys. Acta Mol. Basis Dis., 2021, 1867(10), 166203.
[http://dx.doi.org/10.1016/j.bbadis.2021.166203] [PMID: 34146705]
[111]
Nass, R.; Hall, D.H.; Miller, D.M., III; Blakely, R.D. Neurotoxin-induced degeneration of dopamine neurons in Caenorhabditis elegans. Proc. Natl. Acad. Sci. USA, 2002, 99(5), 3264-3269.
[http://dx.doi.org/10.1073/pnas.042497999] [PMID: 11867711]
[112]
Lin, K.; Li, Y.; Toit, E.D.; Wendt, L.; Sun, J. Effects of polyphenol supplementations on improving depression, anxiety, and quality of life in patients with depression. Front. Psychiatry, 2021, 12, 765485.
[http://dx.doi.org/10.3389/fpsyt.2021.765485] [PMID: 34819888]
[113]
Chiaradia, I.; Lancaster, M.A. Brain organoids for the study of human neurobiology at the interface of in vitro and in vivo. Nat. Neurosci., 2020, 23(12), 1496-1508.
[http://dx.doi.org/10.1038/s41593-020-00730-3] [PMID: 33139941]
[114]
Qian, X.; Song, H.; Ming, G. Brain organoids: Advances, applications and challenges. Development, 2019, 146(8), dev166074.
[http://dx.doi.org/10.1242/dev.166074] [PMID: 30992274]
[115]
Shen, M.D.; Piven, J. Brain and behavior development in autism from birth through infancy. Dialogues Clin. Neurosci., 2017, 19(4), 325-333.
[http://dx.doi.org/10.31887/DCNS.2017.19.4/mshen] [PMID: 29398928]
[116]
Ecker, C.; Schmeisser, M.J.; Loth, E.; Murphy, D.G. The neuroanatomy of autism spectrum disorder: An overview of structural neuroimaging findings and their translatability to the clinical setting. Autism, 2017, 21(1), 18-28.
[http://dx.doi.org/10.1177/1362361315627136] [PMID: 26975670]
[117]
Lee, C.T.; Bendriem, R.M.; Wu, W.W.; Shen, R.F. 3D brain Organoids derived from pluripotent stem cells: promising experimental models for brain development and neurodegenerative disorders. J. Biomed. Sci., 2017, 24(1), 59.
[http://dx.doi.org/10.1186/s12929-017-0362-8] [PMID: 28822354]
[118]
Fernandes, S.; Klein, D.; Marchetto, M.C. Unraveling human brain development and evolution using organoid models. Front. Cell Dev. Biol., 2021, 9, 737429.
[http://dx.doi.org/10.3389/fcell.2021.737429] [PMID: 34692694]
[119]
Lim, C.S.; Yang, J.; Lee, Y.K.; Lee, K.; Lee, J.A.; Kaang, B.K. Understanding the molecular basis of autism in a dish using hiPSCs-derived neurons from ASD patients. Mol. Brain, 2015, 8(1), 57.
[http://dx.doi.org/10.1186/s13041-015-0146-6] [PMID: 26419846]
[120]
Bhattacharya, A.; Choi, W.W.Y.; Muffat, J.; Li, Y. Modeling developmental brain diseases using human pluripotent stem cells-derived brain organoids – progress and perspective. J. Mol. Biol., 2022, 434(3), 167386.
[http://dx.doi.org/10.1016/j.jmb.2021.167386] [PMID: 34883115]
[121]
Mariani, J.; Coppola, G.; Zhang, P.; Abyzov, A.; Provini, L.; Tomasini, L.; Amenduni, M.; Szekely, A.; Palejev, D.; Wilson, M.; Gerstein, M.; Grigorenko, E.L.; Chawarska, K.; Pelphrey, K.A.; Howe, J.R.; Vaccarino, F.M. FOXG1-dependent dysregulation of GABA/glutamate neuron differentiation in autism spectrum disorders. Cell, 2015, 162(2), 375-390.
[http://dx.doi.org/10.1016/j.cell.2015.06.034] [PMID: 26186191]
[122]
Avazzadeh, S.; McDonagh, K.; Reilly, J.; Wang, Y.; Boomkamp, S.D.; McInerney, V.; Krawczyk, J.; Fitzgerald, J.; Feerick, N.; O’Sullivan, M.; Jalali, A.; Forman, E.B.; Lynch, S.A.; Ennis, S.; Cosemans, N.; Peeters, H.; Dockery, P.; O’Brien, T.; Quinlan, L.R.; Gallagher, L.; Shen, S. Increased Ca2+ signaling in NRXN1α+/- neurons derived from ASD induced pluripotent stem cells. Mol. Autism, 2019, 10(1), 52.
[http://dx.doi.org/10.1186/s13229-019-0303-3] [PMID: 31893021]
[123]
Jourdon, A.; Wu, F.; Mariani, J. ASD modelling in organoids reveals imbalance of excitatory cortical neuron subtypes during early neurogenesis. bioRxiv, 2022, 26(9), 1505-1515.
[http://dx.doi.org/10.1101/2022.03.19.484988]
[124]
Calabrese, V.; Guagliano, E.; Sapienza, M.; Mancuso, C.; Butterfield, D.A.; Stella, A.M. Redox regulation of cellular stress response in neurodegenerative disorders. Ital. J. Biochem., 2006, 55(3-4), 263-282.
[PMID: 17274531]
[125]
Siracusa, R.; Scuto, M.; Fusco, R.; Trovato, A.; Ontario, M.L.; Crea, R.; Di Paola, R.; Cuzzocrea, S.; Calabrese, V. Anti-inflammatory and anti-oxidant activity of Hidrox® in rotenone-induced Parkinson’s disease in mice. Antioxidants, 2020, 9(9), 824.
[http://dx.doi.org/10.3390/antiox9090824] [PMID: 32899274]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy