Generic placeholder image

Current Neuropharmacology

Editor-in-Chief

ISSN (Print): 1570-159X
ISSN (Online): 1875-6190

Review Article

The Role of Voltage-Gated Calcium Channels in Basal Ganglia Neurodegenerative Disorders

Author(s): Bernardo H.M. Correa, Carlos Roberto Moreira, Michael E. Hildebrand and Luciene Bruno Vieira*

Volume 21, Issue 2, 2023

Published on: 23 September, 2022

Page: [183 - 201] Pages: 19

DOI: 10.2174/1570159X20666220327211156

Price: $65

Abstract

Calcium (Ca2+) plays a central role in regulating many cellular processes and influences cell survival. Several mechanisms can disrupt Ca2+ homeostasis to trigger cell death, including oxidative stress, mitochondrial damage, excitotoxicity, neuroinflammation, autophagy, and apoptosis. Voltage-gated Ca2+ channels (VGCCs) act as the main source of Ca2+ entry into electrically excitable cells, such as neurons, and they are also expressed in glial cells such as astrocytes and oligodendrocytes. The dysregulation of VGCC activity has been reported in both Parkinson's disease (PD) and Huntington's (HD). PD and HD are progressive neurodegenerative disorders (NDs) of the basal ganglia characterized by motor impairment as well as cognitive and psychiatric dysfunctions. This review will examine the putative role of neuronal VGCCs in the pathogenesis and treatment of central movement disorders, focusing on PD and HD. The link between basal ganglia disorders and VGCC physiology will provide a framework for understanding the neurodegenerative processes that occur in PD and HD, as well as a possible path towards identifying new therapeutic targets for the treatment of these debilitating disorders.

Keywords: Calcium channels, neurodegenerative disorders, parkinson’s disease, huntington’s disease, basal ganglia and cell death.

Graphical Abstract
[1]
Frankenhaeuser, B.; Hodgkin, A.L. The action of calcium on the electrical properties of squid axons. J. Physiol., 1957, 137(2), 218-244.
[http://dx.doi.org/10.1113/jphysiol.1957.sp005808] [PMID: 13449874]
[2]
Dunlap, K.; Luebke, J.I.; Turner, T.J. Exocytotic Ca2+ channels in mammalian central neurons. Trends Neurosci., 1995, 18(2), 89-98.
[http://dx.doi.org/10.1016/0166-2236(95)80030-6] [PMID: 7537420]
[3]
Wheeler, D.B.; Randall, A.; Tsien, R.W. Roles of N-type and Q-type Ca2+ channels in supporting hippocampal synaptic transmission. Science, 1994, 264(5155), 107-111.
[http://dx.doi.org/10.1126/science.7832825] [PMID: 7832825]
[4]
Malenka, R.C.; Kauer, J.A.; Zucker, R.S.; Nicoll, R.A. Postsynaptic calcium is sufficient for potentiation of hippocampal synaptic transmission. Science, 1988, 242(4875), 81-84.
[http://dx.doi.org/10.1126/science.2845577] [PMID: 2845577]
[5]
Nicotera, P.; Orrenius, S. The role of calcium in apoptosis. Cell Calcium, 1998, 23(2-3), 173-180.
[http://dx.doi.org/10.1016/S0143-4160(98)90116-6] [PMID: 9601613]
[6]
Naraghi, M.; Neher, E. Linearized buffered Ca2+ diffusion in microdomains and its implications for calculation of [Ca2+] at the mouth of a calcium channel. J. Neurosci., 1997, 17(18), 6961-6973.
[http://dx.doi.org/10.1523/JNEUROSCI.17-18-06961.1997] [PMID: 9278532]
[7]
Berridge, M.J. Neuronal calcium signaling. Neuron, 1998, 21(1), 13-26.
[http://dx.doi.org/10.1016/S0896-6273(00)80510-3] [PMID: 9697848]
[8]
llya Bezprozvanny, J. Watras, and B. E. Ehrlich, “Bell-shaped calcium-response curves of lns(l,4,5)P3- and calcium-gated channels from endoplasmic reticulum of cerebellum. Nature, 1991, 351(6329), 751-754.
[http://dx.doi.org/10.1038/351751a0] [PMID: 1648178]
[9]
Bezprozvanny, I.B. Calcium signaling and neurodegeneration. Acta Nat. (Engl. Ed.), 2010, 2(1), 72-82.
[http://dx.doi.org/10.32607/20758251-2010-2-1-72-80] [PMID: 22649630]
[10]
Zamponi, G.W. Targeting voltage-gated calcium channels in neurological and psychiatric diseases. Nat. Rev. Drug Discov., 2016, 15(1), 19-34.
[http://dx.doi.org/10.1038/nrd.2015.5] [PMID: 26542451]
[11]
Ilijic, E.; Guzman, J.N.; Surmeier, D.J. The L-type channel antagonist isradipine is neuroprotective in a mouse model of Parkinson’s disease. Neurobiol. Dis., 2011, 43(2), 364-371.
[http://dx.doi.org/10.1016/j.nbd.2011.04.007] [PMID: 21515375]
[12]
Melachroinou, K.; Xilouri, M.; Emmanouilidou, E.; Masgrau, R.; Papazafiri, P.; Stefanis, L.; Vekrellis, K. Deregulation of calcium homeostasis mediates secreted α-synuclein-induced neurotoxicity. Neurobiol. Aging, 2013, 34(12), 2853-2865.
[http://dx.doi.org/10.1016/j.neurobiolaging.2013.06.006] [PMID: 23891486]
[13]
Silva, F.R.; Miranda, A.S.; Santos, R.P.M.; Olmo, I.G.; Zamponi, G.W.; Dobransky, T.; Cruz, J.S.; Vieira, L.B.; Ribeiro, F.M. N-type Ca2+ channels are affected by full-length mutant huntingtin expression in a mouse model of Huntington’s disease. Neurobiol. Aging, 2017, 55, 1-10.
[http://dx.doi.org/10.1016/j.neurobiolaging.2017.03.015] [PMID: 28391067]
[14]
Miranda, A.S.; Cardozo, P.L.; Silva, F.R.; de Souza, J.M.; Olmo, I.G.; Cruz, J.S.; Gomez, M.V.; Ribeiro, F.M.; Vieira, L.B. Alterations of Calcium Channels in a Mouse Model of Huntington’s Disease and Neuroprotection by Blockage of CaV1 Channels. ASN Neuro, 2019, 11, 1759091419856811.
[http://dx.doi.org/10.1177/1759091419856811] [PMID: 31216184]
[15]
Benkert, J.; Hess, S.; Roy, S.; Beccano-Kelly, D.; Wiederspohn, N.; Duda, J.; Simons, C.; Patil, K.; Gaifullina, A.; Mannal, N.; Dragicevic, E.; Spaich, D.; Müller, S.; Nemeth, J.; Hollmann, H.; Deuter, N.; Mousba, Y.; Kubisch, C.; Poetschke, C.; Striessnig, J.; Pongs, O.; Schneider, T.; Wade-Martins, R.; Patel, S.; Parlato, R.; Frank, T.; Kloppenburg, P.; Liss, B. Cav2.3 channels contribute to dopaminergic neuron loss in a model of Parkinson’s disease. Nat. Commun., 2019, 10(1), 5094.
[http://dx.doi.org/10.1038/s41467-019-12834-x] [PMID: 31704946]
[16]
Verma, A.; Ravindranath, V. CaV1.3 L-type calcium channels increase the vulnerability of substantia nigra dopaminergic neurons in MPTP mouse model of Parkinson’s disease. Front. Aging Neurosci., 2020, 11, 382.
[http://dx.doi.org/10.3389/fnagi.2019.00382] [PMID: 32009942]
[17]
Catterall, W.A. Structure and regulation of voltage-gated Ca2+ channels. Annu. Rev. Cell Dev. Biol., 2000, 16, 521-555.
[http://dx.doi.org/10.1146/annurev.cellbio.16.1.521] [PMID: 11031246]
[18]
Catterall, W.A.; Perez-Reyes, E.; Snutch, T.P.; Striessnig, J. International Union of Pharmacology. XLVIII. Nomenclature and structure-function relationships of voltage-gated calcium channels. Pharmacol. Rev., 2005, 57(4), 411-425.
[http://dx.doi.org/10.1124/pr.57.4.5] [PMID: 16382099]
[19]
Nowycky, M.C.; Fox, A.P.; Tsien, R.W. Three types of neuronal calcium channel with different calcium agonist sensitivity. Nature, 1985, 316(6027), 440-443.
[http://dx.doi.org/10.1038/316440a0] [PMID: 2410796]
[20]
Dolphin, A.C. Calcium channel auxiliary α2δ and β subunits: trafficking and one step beyond. Nat. Rev. Neurosci., 2012, 13(8), 542-555.
[http://dx.doi.org/10.1038/nrn3311] [PMID: 22805911]
[21]
Tanabe, T.; Beam, K.G.; Adams, B.A.; Niidome, T.; Numa, S. Regions of the skeletal muscle dihydropyridine receptor critical for excitation-contraction coupling. Nature, 1990, 346(6284), 567-569.
[http://dx.doi.org/10.1038/346567a0] [PMID: 2165570]
[22]
Melzer, W.; Herrmann-Frank, A.; Lüttgau, H.Ch. The role of Ca2+ ions in excitation-contraction coupling of skeletal muscle fibres. Biochim. Biophys. Acta, 1995, 1241(1), 59-116.
[http://dx.doi.org/10.1016/0304-4157(94)00014-5] [PMID: 7742348]
[23]
Baumann, L.; Gerstner, A.; Zong, X.; Biel, M.; Wahl-Schott, C. Functional characterization of the L-type Ca2+ channel Cav1.4α1 from mouse retina. Invest. Ophthalmol. Vis. Sci., 2004, 45(2), 708-713.
[http://dx.doi.org/10.1167/iovs.03-0937] [PMID: 14744918]
[24]
Hell, J.W.; Westenbroek, R.E.; Warner, C.; Ahlijanian, M.K.; Prystay, W.; Gilbert, M.M.; Snutch, T.P.; Catterall, W.A. Identification and differential subcellular localization of the neuronal class C and class D L-type calcium channel alpha 1 subunits. J. Cell Biol., 1993, 123(4), 949-962.
[http://dx.doi.org/10.1083/jcb.123.4.949] [PMID: 8227151]
[25]
Berger, S.M.; Bartsch, D. The role of L-type voltage-gated calcium channels Cav1.2 and Cav1.3 in normal and pathological brain function. Cell Tissue Res., 2014, 357(2), 463-476.
[http://dx.doi.org/10.1007/s00441-014-1936-3] [PMID: 24996399]
[26]
Tippens, A.L.; Pare, J.F.; Langwieser, N.; Moosmang, S.; Milner, T.A.; Smith, Y.; Lee, A. Ultrastructural evidence for pre- and postsynaptic localization of Cav1.2 L-type Ca2+ channels in the rat hippocampus. J. Comp. Neurol., 2008, 506(4), 569-583.
[http://dx.doi.org/10.1002/cne.21567] [PMID: 18067152]
[27]
Deisseroth, K.; Heist, E.K.; Tsien, R.W. Translocation of calmodulin to the nucleus supports CREB phosphorylation in hippocampal neurons. Nature, 1998, 392(6672), 198-202.
[http://dx.doi.org/10.1038/32448] [PMID: 9515967]
[28]
Turner, T.J.; Adams, M.E.; Dunlap, K. Calcium channels coupled to glutamate release identified by ω-Aga-IVA. Science, 1992, 258(5080), 310-313.
[http://dx.doi.org/10.1126/science.1357749] [PMID: 1357749]
[29]
Soong, T.W.; Stea, A.; Hodson, C.D.; Dubel, S.J.; Vincent, S.R.; Snutch, T.P. Structure and functional expression of a member of the low voltage-activated calcium channel family. Science, 1993, 260(5111), 1133-1136.
[http://dx.doi.org/10.1126/science.8388125] [PMID: 8388125]
[30]
Feldman, D.H.; Olivera, B.M.; Yoshikami, D. Omega Conus geographus toxin: a peptide that blocks calcium channels. FEBS Lett., 1987, 214(2), 295-300.
[http://dx.doi.org/10.1016/0014-5793(87)80073-X] [PMID: 2436945]
[31]
Newcomb, R.; Szoke, B.; Palma, A.; Wang, G.; Chen, Xh.; Hopkins, W.; Cong, R.; Miller, J.; Urge, L.; Tarczy-Hornoch, K.; Loo, J.A.; Dooley, D.J.; Nadasdi, L.; Tsien, R.W.; Lemos, J.; Miljanich, G. Selective peptide antagonist of the class E calcium channel from the venom of the tarantula Hysterocrates gigas. Biochemistry, 1998, 37(44), 15353-15362.
[http://dx.doi.org/10.1021/bi981255g] [PMID: 9799496]
[32]
Dietrich, D.; Kirschstein, T.; Kukley, M.; Pereverzev, A.; von der Brelie, C.; Schneider, T.; Beck, H. Functional specialization of presynaptic Cav2.3 Ca2+ channels. Neuron, 2003, 39(3), 483-496.
[http://dx.doi.org/10.1016/S0896-6273(03)00430-6] [PMID: 12895422]
[33]
Zaman, T.; Lee, K.; Park, C.; Paydar, A.; Choi, J.H.; Cheong, E.; Lee, C.J.; Shin, H.S. Cav2.3 channels are critical for oscillatory burst discharges in the reticular thalamus and absence epilepsy. Neuron, 2011, 70(1), 95-108.
[http://dx.doi.org/10.1016/j.neuron.2011.02.042] [PMID: 21482359]
[34]
Perez-Reyes, E. Molecular physiology of low-voltage-activated t-type calcium channels. Physiol. Rev., 2003, 83(1), 117-161.
[http://dx.doi.org/10.1152/physrev.00018.2002] [PMID: 12506128]
[35]
Dreyfus, F.M.; Tscherter, A.; Errington, A.C.; Renger, J.J.; Shin, H.S.; Uebele, V.N.; Crunelli, V.; Lambert, R.C.; Leresche, N. Selective T-type calcium channel block in thalamic neurons reveals channel redundancy and physiological impact of I(T)window. J. Neurosci., 2010, 30(1), 99-109.
[http://dx.doi.org/10.1523/JNEUROSCI.4305-09.2010] [PMID: 20053892]
[36]
Carabelli, V.; Marcantoni, A.; Comunanza, V.; Carbone, E. Fast exocytosis mediated by T- and L-type channels in chromaffin cells: distinct voltage-dependence but similar Ca2+ -dependence. Eur. Biophys. J., 2007, 36(7), 753-762.
[http://dx.doi.org/10.1007/s00249-007-0138-2] [PMID: 17340096]
[37]
Egger, V.; Svoboda, K.; Mainen, Z.F. Mechanisms of lateral inhibition in the olfactory bulb: efficiency and modulation of spike-evoked calcium influx into granule cells. J. Neurosci., 2003, 23(20), 7551-7558.
[http://dx.doi.org/10.1523/JNEUROSCI.23-20-07551.2003] [PMID: 12930793]
[38]
Pan, Z-H.; Hu, H-J.; Perring, P.; Andrade, R. T-type Ca(2+) channels mediate neurotransmitter release in retinal bipolar cells. Neuron, 2001, 32(1), 89-98.
[http://dx.doi.org/10.1016/S0896-6273(01)00454-8] [PMID: 11604141]
[39]
Jacus, M.O.; Uebele, V.N.; Renger, J.J.; Todorovic, S.M. Presynaptic Cav3.2 channels regulate excitatory neurotransmission in nociceptive dorsal horn neurons. J. Neurosci., 2012, 32(27), 9374-9382.
[http://dx.doi.org/10.1523/JNEUROSCI.0068-12.2012] [PMID: 22764245]
[40]
Harding, E.K.; Dedek, A.; Bonin, R.P.; Salter, M.W.; Snutch, T.P.; Hildebrand, M.E. The T-type calcium channel antagonist, Z944, reduces spinal excitability and pain hypersensitivity. Br. J. Pharmacol., 2021, 178(17), 3517-3532.
[http://dx.doi.org/10.1111/bph.15498] [PMID: 33871884]
[41]
Tang, A-H.; Karson, M.A.; Nagode, D.A.; McIntosh, J.M.; Uebele, V.N.; Renger, J.J.; Klugmann, M.; Milner, T.A.; Alger, B.E. Nerve terminal nicotinic acetylcholine receptors initiate quantal GABA release from perisomatic interneurons by activating axonal T-type (Cav3) Ca2⁺ channels and Ca2⁺ release from stores. J. Neurosci., 2011, 31(38), 13546-13561.
[http://dx.doi.org/10.1523/JNEUROSCI.2781-11.2011] [PMID: 21940446]
[42]
Hildebrand, M.E.; Isope, P.; Miyazaki, T.; Nakaya, T.; Garcia, E.; Feltz, A.; Schneider, T.; Hescheler, J.; Kano, M.; Sakimura, K.; Watanabe, M.; Dieudonné, S.; Snutch, T.P. Functional coupling between mGluR1 and Cav3.1 T-type calcium channels contributes to parallel fiber-induced fast calcium signaling within Purkinje cell dendritic spines. J. Neurosci., 2009, 29(31), 9668-9682.
[http://dx.doi.org/10.1523/JNEUROSCI.0362-09.2009] [PMID: 19657020]
[43]
Dong, X.X.; Wang, Y.; Qin, Z.H. Molecular mechanisms of excitotoxicity and their relevance to pathogenesis of neurodegenerative diseases. Acta Pharmacol. Sin., 2009, 30(4), 379-387.
[http://dx.doi.org/10.1038/aps.2009.24] [PMID: 19343058]
[44]
Iovino, L.; Tremblay, M.E.; Civiero, L. Glutamate-induced excitotoxicity in Parkinson’s disease: The role of glial cells. J. Pharmacol. Sci., 2020, 144(3), 151-164.
[http://dx.doi.org/10.1016/j.jphs.2020.07.011] [PMID: 32807662]
[45]
Dolphin, A.C. Functions of Presynaptic Voltage-gated Calcium Channels. Function, 2021, 2(1), zqaa027.
[http://dx.doi.org/10.1093/function/zqaa027]
[46]
Wang, Y.; Qin, Z.H. Molecular and cellular mechanisms of excitotoxic neuronal death. Apoptosis, 2010, 15(11), 1382-1402.
[http://dx.doi.org/10.1007/s10495-010-0481-0] [PMID: 20213199]
[47]
Weiergräber, M.; Henry, M.; Radhakrishnan, K.; Hescheler, J.; Schneider, T. Hippocampal seizure resistance and reduced neuronal excitotoxicity in mice lacking the Cav2.3 E/R-type voltage-gated calcium channel. J. Neurophysiol., 2007, 97(5), 3660-3669.
[http://dx.doi.org/10.1152/jn.01193.2006] [PMID: 17376845]
[48]
Li, L.; Bischofberger, J.; Jonas, P. Differential gating and recruitment of P/Q-, N-, and R-type Ca2+ channels in hippocampal mossy fiber boutons. J. Neurosci., 2007, 27(49), 13420-13429.
[http://dx.doi.org/10.1523/JNEUROSCI.1709-07.2007] [PMID: 18057200]
[49]
Sies, H.; Berndt, C.; Jones, D.P. Oxidative stress. Annu. Rev. Biochem., 2017, 86(1), 715-748.
[http://dx.doi.org/10.1146/annurev-biochem-061516-045037] [PMID: 28441057]
[50]
Hudasek, K.; Brown, S.T.; Fearon, I.M. H2O2 regulates recombinant Ca2+ channel α1C subunits but does not mediate their sensitivity to acute hypoxia. Biochem. Biophys. Res. Commun., 2004, 318(1), 135-141.
[http://dx.doi.org/10.1016/j.bbrc.2004.04.011] [PMID: 15110764]
[51]
Bogeski, I.; Kummerow, C.; Al-Ansary, D.; Schwarz, E.C.; Koehler, R.; Kozai, D.; Takahashi, N.; Peinelt, C.; Griesemer, D.; Bozem, M.; Mori, Y.; Hoth, M.; Niemeyer, B.A. Differential redox regulation of ORAI ion channels: a mechanism to tune cellular calcium signaling. Sci. Signal., 2010, 3(115), ra24-ra24.
[http://dx.doi.org/10.1126/scisignal.2000672] [PMID: 20354224]
[52]
Lacampagne, A.; Duittoz, A.; Bolaños, P.; Peineau, N.; Argibay, J.A. Effect of sulfhydryl oxidation on ionic and gating currents associated with L-type calcium channels in isolated guinea-pig ventricular myocytes. Cardiovasc. Res., 1995, 30(5), 799-806.
[http://dx.doi.org/10.1016/S0008-6363(95)00128-X] [PMID: 8595629]
[53]
Tabet, F.; Savoia, C.; Schiffrin, E.L.; Touyz, R.M. Differential calcium regulation by hydrogen peroxide and superoxide in vascular smooth muscle cells from spontaneously hypertensive rats. J. Cardiovasc. Pharmacol., 2004, 44(2), 200-208.
[http://dx.doi.org/10.1097/00005344-200408000-00009] [PMID: 15243301]
[54]
Guzman, J.N.; Sanchez-Padilla, J.; Wokosin, D.; Kondapalli, J.; Ilijic, E.; Schumacker, P.T.; Surmeier, D.J. Oxidant stress evoked by pacemaking in dopaminergic neurons is attenuated by DJ-1. Nature, 2010, 468(7324), 696-700.
[http://dx.doi.org/10.1038/nature09536] [PMID: 21068725]
[55]
Guzman, J.N.; Ilijic, E.; Yang, B.; Sanchez-Padilla, J.; Wokosin, D.; Galtieri, D.; Kondapalli, J.; Schumacker, P.T.; Surmeier, D.J. Systemic isradipine treatment diminishes calcium-dependent mitochondrial oxidant stress. J. Clin. Invest., 2018, 128(6), 2266-2280.
[http://dx.doi.org/10.1172/JCI95898] [PMID: 29708514]
[56]
Peng, T-I.; Jou, M-J. Oxidative stress caused by mitochondrial calcium overload. Ann. N. Y. Acad. Sci., 2010, 1201(1), 183-188.
[http://dx.doi.org/10.1111/j.1749-6632.2010.05634.x] [PMID: 20649555]
[57]
Lin, M.T.; Beal, M.F. Mitochondrial dysfunction and oxidative stress in neurodegenerative diseases. Nature, 2006, 443(7113), 787-795.
[http://dx.doi.org/10.1038/nature05292] [PMID: 17051205]
[58]
Tabata, Y.; Imaizumi, Y.; Sugawara, M.; Andoh-Noda, T.; Banno, S.; Chai, M.; Sone, T.; Yamazaki, K.; Ito, M.; Tsukahara, K.; Saya, H.; Hattori, N.; Kohyama, J.; Okano, H. T-type calcium channels determine the vulnerability of dopaminergic neurons to mitochondrial stress in familial Parkinson disease. Stem Cell Reports, 2018, 11(5), 1171-1184.
[http://dx.doi.org/10.1016/j.stemcr.2018.09.006] [PMID: 30344006]
[59]
Cano-Abad, M.F.; Villarroya, M.; García, A.G.; Gabilan, N.H.; López, M.G. Calcium entry through L-type calcium channels causes mitochondrial disruption and chromaffin cell death. J. Biol. Chem., 2001, 276(43), 39695-39704.
[http://dx.doi.org/10.1074/jbc.M102334200] [PMID: 11500491]
[60]
Suescun, J.; Chandra, S.; Schiess, M.C. The role of neuroinflammation in neurodegenerative disorders. In: Translational Inflammation; Elsevier, 2019; pp. 241-267.
[http://dx.doi.org/10.1016/B978-0-12-813832-8.00013-3]
[61]
Liu, C-Y.; Wang, X.; Liu, C.; Zhang, H-L. Pharmacological Targeting of Microglial Activation: New Therapeutic Approach. Front. Cell. Neurosci., 2019, 13, 514.
[http://dx.doi.org/10.3389/fncel.2019.00514] [PMID: 31803024]
[62]
Hopp, S.C.; D’Angelo, H.M.; Royer, S.E.; Kaercher, R.M.; Crockett, A.M.; Adzovic, L.; Wenk, G.L. Calcium dysregulation via L-type voltage-dependent calcium channels and ryanodine receptors underlies memory deficits and synaptic dysfunction during chronic neuroinflammation. J. Neuroinflammation, 2015, 12(1), 56.
[http://dx.doi.org/10.1186/s12974-015-0262-3] [PMID: 25888781]
[63]
Li, Y.X.; Sibon, O.C.M.; Dijkers, P.F. Inhibition of NF-κB in astrocytes is sufficient to delay neurodegeneration induced by proteotoxicity in neurons. J. Neuroinflammation, 2018, 15(1), 261.
[http://dx.doi.org/10.1186/s12974-018-1278-2] [PMID: 30205834]
[64]
Yang, X.; Zeng, Q. Barış M.; Tezel, G. Transgenic inhibition of astroglial NF-κB restrains the neuroinflammatory and neurodegenerative outcomes of experimental mouse glaucoma. J. Neuroinflammation, 2020, 17(1), 252.
[http://dx.doi.org/10.1186/s12974-020-01930-1] [PMID: 32859212]
[65]
Westenbroek, R.E.; Bausch, S.B.; Lin, R.C.S.; Franck, J.E.; Noebels, J.L.; Catterall, W.A. Upregulation of L-type Ca2+ channels in reactive astrocytes after brain injury, hypomyelination, and ischemia. J. Neurosci., 1998, 18(7), 2321-2334.
[http://dx.doi.org/10.1523/JNEUROSCI.18-07-02321.1998] [PMID: 9502793]
[66]
Navakkode, S.; Liu, C.; Soong, T.W. Altered function of neuronal L-type calcium channels in ageing and neuroinflammation: Implications in age-related synaptic dysfunction and cognitive decline. Ageing Res. Rev., 2018, 42, 86-99.
[http://dx.doi.org/10.1016/j.arr.2018.01.001] [PMID: 29339150]
[67]
Zheng, Q.; Huang, T.; Zhang, L.; Zhou, Y.; Luo, H.; Xu, H.; Wang, X. Dysregulation of ubiquitin-proteasome system in neurodegenerative diseases. Front. Aging Neurosci., 2016, 8, 303.
[http://dx.doi.org/10.3389/fnagi.2016.00303] [PMID: 28018215]
[68]
DiFiglia, M.; Sapp, E.; Chase, K.O.; Davies, S.W.; Bates, G.P.; Vonsattel, J.P.; Aronin, N. Aggregation of huntingtin in neuronal intranuclear inclusions and dystrophic neurites in brain. Science, 1997, 277(5334), 1990-1993.
[http://dx.doi.org/10.1126/science.277.5334.1990] [PMID: 9302293]
[69]
Shimura, H.; Schlossmacher, M.G.; Hattori, N.; Frosch, M.P.; Trockenbacher, A.; Schneider, R.; Mizuno, Y.; Kosik, K.S.; Selkoe, D.J. Ubiquitination of a new form of α-synuclein by parkin from human brain: implications for Parkinson’s disease. Science, 2001, 293(5528), 263-269.
[http://dx.doi.org/10.1126/science.1060627] [PMID: 11431533]
[70]
Rosen, K.M.; Moussa, C.E.; Lee, H.K.; Kumar, P.; Kitada, T.; Qin, G.; Fu, Q.; Querfurth, H.W. Parkin reverses intracellular β-amyloid accumulation and its negative effects on proteasome function. J. Neurosci. Res., 2010, 88(1), 167-178.
[http://dx.doi.org/10.1002/jnr.22178] [PMID: 19610108]
[71]
Saha, S.; Ash, P.E.A.; Gowda, V.; Liu, L.; Shirihai, O.; Wolozin, B. Mutations in LRRK2 potentiate age-related impairment of autophagic flux. Mol. Neurodegener., 2015, 10(1), 26.
[http://dx.doi.org/10.1186/s13024-015-0022-y] [PMID: 26159606]
[72]
Chen, H.; Polo, S.; Di Fiore, P.P.; De Camilli, P.V. Rapid Ca2+-dependent decrease of protein ubiquitination at synapses. Proc. Natl. Acad. Sci. USA, 2003, 100(25), 14908-14913.
[http://dx.doi.org/10.1073/pnas.2136625100] [PMID: 14657369]
[73]
Kors, S.; Geijtenbeek, K.; Reits, E.; Schipper-Krom, S. Regulation of proteasome activity by (post-)transcriptional mechanisms. Front. Mol. Biosci., 2019, 6, 48.
[http://dx.doi.org/10.3389/fmolb.2019.00048] [PMID: 31380390]
[74]
Djakovic, S.N.; Schwarz, L.A.; Barylko, B.; DeMartino, G.N.; Patrick, G.N. Regulation of the proteasome by neuronal activity and calcium/calmodulin-dependent protein kinase II. J. Biol. Chem., 2009, 284(39), 26655-26665.
[http://dx.doi.org/10.1074/jbc.M109.021956] [PMID: 19638347]
[75]
Williams, A.; Sarkar, S.; Cuddon, P.; Ttofi, E.K.; Saiki, S.; Siddiqi, F.H.; Jahreiss, L.; Fleming, A.; Pask, D.; Goldsmith, P.; O’Kane, C.J.; Floto, R.A.; Rubinsztein, D.C. Novel targets for Huntington’s disease in an mTOR-independent autophagy pathway. Nat. Chem. Biol., 2008, 4(5), 295-305.
[http://dx.doi.org/10.1038/nchembio.79] [PMID: 18391949]
[76]
Klionsky, D.J.; Emr, S.D. Autophagy as a regulated pathway of cellular degradation. Science, 2000, 290(5497), 1717-1721.
[http://dx.doi.org/10.1126/science.290.5497.1717] [PMID: 11099404]
[77]
Full article: Defects in calcium homeostasis and mitochondria can be reversed in Pompe disease. Available from: https://www.tandfonline.com/doi/full/10.1080/15548627.2015.1009779 (Accessed Feb. 09, 2022).
[78]
Pushparaj, C.; Das, A.; Purroy, R.; Nàger, M.; Herreros, J.; Pamplona, R.; Cantí, C. Voltage-gated calcium channel blockers deregulate macroautophagy in cardiomyocytes. Int. J. Biochem. Cell Biol., 2015, 68, 166-175.
[http://dx.doi.org/10.1016/j.biocel.2015.09.010] [PMID: 26429067]
[79]
Poewe, W.; Seppi, K.; Tanner, C.M.; Halliday, G.M.; Brundin, P.; Volkmann, J.; Schrag, A.E.; Lang, A.E. Parkinson disease. Nat. Rev. Dis. Primers, 2017, 3(1), 17013.
[http://dx.doi.org/10.1038/nrdp.2017.13] [PMID: 28332488]
[80]
Lang, A.E.; Lozano, A.M. Parkinson’s disease. First of two parts. N. Engl. J. Med., 1998, 339(15), 1044-1053.
[http://dx.doi.org/10.1056/NEJM199810083391506] [PMID: 9761807]
[81]
Dawson, T.M.; Dawson, V.L. Rare genetic mutations shed light on the pathogenesis of Parkinson disease. J. Clin. Invest., 2003, 111(2), 145-151.
[http://dx.doi.org/10.1172/JCI200317575] [PMID: 12531866]
[82]
Benitez, B.A.; Davis, A.A.; Jin, S.C.; Ibanez, L.; Ortega-Cubero, S.; Pastor, P.; Choi, J.; Cooper, B.; Perlmutter, J.S.; Cruchaga, C. Resequencing analysis of five Mendelian genes and the top genes from genome-wide association studies in Parkinson’s Disease. Mol. Neurodegener., 2016, 11(1), 29.
[http://dx.doi.org/10.1186/s13024-016-0097-0] [PMID: 27094865]
[83]
Rodriguez-Oroz, M.C.; Jahanshahi, M.; Krack, P.; Litvan, I.; Macias, R.; Bezard, E.; Obeso, J.A. Initial clinical manifestations of Parkinson’s disease: features and pathophysiological mechanisms. Lancet Neurol., 2009, 8(12), 1128-1139.
[http://dx.doi.org/10.1016/S1474-4422(09)70293-5] [PMID: 19909911]
[84]
Davis, L.E.; Pirio Richardson, S. Disorders of the Extrapyramidal System. In: Fundamentals of Neurologic Disease; Springer New York: New York, NY, 2015; pp. 147-158.
[http://dx.doi.org/10.1007/978-1-4939-2359-5_12]
[85]
Spillantini, M.G.; Schmidt, M.L.; Lee, V.M.; Trojanowski, J.Q.; Jakes, R.; Goedert, M. Alpha-synuclein in Lewy bodies. Nature, 1997, 388(6645), 839-840.
[http://dx.doi.org/10.1038/42166] [PMID: 9278044]
[86]
Singleton, A.B. Farrer, M.; Johnson, J.; Singleton, A.; Hague, S.; Kachergus, J.; Hulihan, M.; Peuralinna, T.; Dutra, A.; Nussbaum, R.; Lincoln, S.; Crawley, A.; Hanson, M.; Maraganore, D.; Adler, C.; Cookson, M.R.; Muenter, M.; Baptista, M.; Miller, D.; Blancato, J.; Hardy, J.; Gwinn-Hardy, K. α-Synuclein locus triplication causes Parkinson’s disease. Science, 2003, 302(5646), 841-841.
[http://dx.doi.org/10.1126/science.1090278] [PMID: 14593171]
[87]
Bernal-Conde, L.D.; Ramos-Acevedo, R.; Reyes-Hernández, M.A.; Balbuena-Olvera, A.J.; Morales-Moreno, I.D.; Argüero-Sánchez, R.; Schüle, B.; Guerra-Crespo, M. Alpha-synuclein physiology and pathology: A perspective on cellular structures and organelles. Front. Neurosci., 2020, 13, 1399.
[http://dx.doi.org/10.3389/fnins.2019.01399] [PMID: 32038126]
[88]
El-Agnaf, O.M.A.; Salem, S.A.; Paleologou, K.E.; Cooper, L.J.; Fullwood, N.J.; Gibson, M.J.; Curran, M.D.; Court, J.A.; Mann, D.M.; Ikeda, S.; Cookson, M.R.; Hardy, J.; Allsop, D. Alpha-synuclein implicated in Parkinson’s disease is present in extracellular biological fluids, including human plasma. FASEB J., 2003, 17(13), 1945-1947.
[http://dx.doi.org/10.1096/fj.03-0098fje] [PMID: 14519670]
[89]
Luk, K.C.; Song, C.; O’Brien, P.; Stieber, A.; Branch, J.R.; Brunden, K.R.; Trojanowski, J.Q.; Lee, V.M. Exogenous alpha-synuclein fibrils seed the formation of Lewy body-like intracellular inclusions in cultured cells. Proc. Natl. Acad. Sci. USA, 2009, 106(47), 20051-20056.
[http://dx.doi.org/10.1073/pnas.0908005106] [PMID: 19892735]
[90]
Ludtmann, M.; Angelova, P.; Ninkina, N.; Gandhi, S.; Buchman, V.; Abramov, A. A Physiological Role for Alpha-Synuclein in the Regulation of ATP Synthesis. Biophys. J., 2016, 110(3), 471a.
[http://dx.doi.org/10.1016/j.bpj.2015.11.2520]
[91]
Shen, J. Du, T.; Wang, X.; Duan, C.; Gao, G.; Zhang, J.; Lu, L.; Yang, H. α-Synuclein amino terminus regulates mitochondrial membrane permeability. Brain Res., 2014, 1591, 14-26.
[http://dx.doi.org/10.1016/j.brainres.2014.09.046] [PMID: 25446002]
[92]
Zeng, X-S.; Geng, W-S.; Jia, J-J.; Chen, L.; Zhang, P-P. Cellular and molecular basis of neurodegeneration in Parkinson disease. Front. Aging Neurosci., 2018, 10, 109.
[http://dx.doi.org/10.3389/fnagi.2018.00109] [PMID: 29719505]
[93]
Yamada, T.; McGeer, P.L.; Baimbridge, K.G.; McGeer, E.G. Relative sparing in Parkinson’s disease of substantia nigra dopamine neurons containing calbindin-D28K. Brain Res., 1990, 526(2), 303-307.
[http://dx.doi.org/10.1016/0006-8993(90)91236-A] [PMID: 2257487]
[94]
Damier, P.; Hirsch, E.C.; Agid, Y.; Graybiel, A.M. The substantia nigra of the human brain. I. Nigrosomes and the nigral matrix, a compartmental organization based on calbindin D(28K) immunohistochemistry. Brain, 1999, 122(Pt 8), 1421-1436.
[http://dx.doi.org/10.1093/brain/122.8.1421] [PMID: 10430829]
[95]
Puopolo, M.; Raviola, E.; Bean, B.P. Roles of subthreshold calcium current and sodium current in spontaneous firing of mouse midbrain dopamine neurons. J. Neurosci., 2007, 27(3), 645-656.
[http://dx.doi.org/10.1523/JNEUROSCI.4341-06.2007] [PMID: 17234596]
[96]
Fearnley, J.M.; Lees, A.J. Ageing and Parkinson’s disease: substantia nigra regional selectivity. Brain, 1991, 114(Pt 5), 2283-2301.
[http://dx.doi.org/10.1093/brain/114.5.2283] [PMID: 1933245]
[97]
Surmeier, D.J.; Halliday, G.M.; Simuni, T. Calcium, mitochondrial dysfunction and slowing the progression of Parkinson’s disease. Exp. Neurol., 2017, 298(Pt B), 202-209.
[http://dx.doi.org/10.1016/j.expneurol.2017.08.001] [PMID: 28780195]
[98]
Wilson, C.J.; Callaway, J.C. Coupled oscillator model of the dopaminergic neuron of the substantia nigra. J. Neurophysiol., 2000, 83(5), 3084-3100.
[http://dx.doi.org/10.1152/jn.2000.83.5.3084] [PMID: 10805703]
[99]
Chan, C.S.; Guzman, J.N.; Ilijic, E.; Mercer, J.N.; Rick, C.; Tkatch, T.; Meredith, G.E.; Surmeier, D.J. ‘Rejuvenation’ protects neurons in mouse models of Parkinson’s disease. Nature, 2007, 447(7148), 1081-1086.
[http://dx.doi.org/10.1038/nature05865] [PMID: 17558391]
[100]
Lipscombe, D.; Helton, T.D.; Xu, W. L-type calcium channels: the low down. J. Neurophysiol., 2004, 92(5), 2633-2641.
[http://dx.doi.org/10.1152/jn.00486.2004] [PMID: 15486420]
[101]
Bock, G.; Gebhart, M.; Scharinger, A.; Jangsangthong, W.; Busquet, P.; Poggiani, C.; Sartori, S.; Mangoni, M.E.; Sinnegger-Brauns, M.J.; Herzig, S.; Striessnig, J.; Koschak, A. Functional properties of a newly identified C-terminal splice variant of Cav1.3 L-type Ca2+ channels. J. Biol. Chem., 2011, 286(49), 42736-42748.
[http://dx.doi.org/10.1074/jbc.M111.269951] [PMID: 21998310]
[102]
Hage, T.A.; Khaliq, Z.M. Tonic firing rate controls dendritic Ca2+ signaling and synaptic gain in substantia nigra dopamine neurons. J. Neurosci., 2015, 35(14), 5823-5836.
[http://dx.doi.org/10.1523/JNEUROSCI.3904-14.2015] [PMID: 25855191]
[103]
Gaspar, P.; Ben Jelloun, N.; Febvret, A. Sparing of the dopaminergic neurons containing calbindin-D28k and of the dopaminergic mesocortical projections in weaver mutant mice. Neuroscience, 1994, 61(2), 293-305.
[http://dx.doi.org/10.1016/0306-4522(94)90232-1] [PMID: 7969910]
[104]
Striessnig, J.; Koschak, A.; Sinnegger-Brauns, M.J.; Hetzenauer, A.; Nguyen, N.K.; Busquet, P.; Pelster, G.; Singewald, N. Role of voltage-gated L-type Ca2+ channel isoforms for brain function. Biochem. Soc. Trans., 2006, 34(Pt 5), 903-909.
[http://dx.doi.org/10.1042/BST0340903] [PMID: 17052224]
[105]
Liss, B.; Striessnig, J. The potential of L-type calcium channels as a drug target for neuroprotective therapy in Parkinson’s disease. Annu. Rev. Pharmacol. Toxicol., 2019, 59(1), 263-289.
[http://dx.doi.org/10.1146/annurev-pharmtox-010818-021214] [PMID: 30625283]
[106]
Ritz, B.; Rhodes, S.L.; Qian, L.; Schernhammer, E.; Olsen, J.H.; Friis, S. L-type calcium channel blockers and Parkinson disease in Denmark. Ann. Neurol., 2010, 67(5), 600-606.
[http://dx.doi.org/10.1002/ana.21937] [PMID: 20437557]
[107]
Becker, C.; Jick, S.S.; Meier, C.R. Use of antihypertensives and the risk of Parkinson disease. Neurology, 2008, 70(16 Pt 2), 1438-1444.
[http://dx.doi.org/10.1212/01.wnl.0000303818.38960.44] [PMID: 18256367]
[108]
Aumann, T.; Horne, M. Activity-dependent regulation of the dopamine phenotype in substantia nigra neurons. J. Neurochem., 2012, 121(4), 497-515.
[http://dx.doi.org/10.1111/j.1471-4159.2012.07703.x] [PMID: 22356203]
[109]
Kupsch, A.; Sautter, J.; Schwarz, J.; Riederer, P.; Gerlach, M.; Oertel, W.H. 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced neurotoxicity in non-human primates is antagonized by pretreatment with nimodipine at the nigral, but not at the striatal level. Brain Res., 1996, 741(1-2), 185-196.
[http://dx.doi.org/10.1016/S0006-8993(96)00917-1] [PMID: 9001722]
[110]
Goldberg, J.A.; Guzman, J.N.; Estep, C.M.; Ilijic, E.; Kondapalli, J.; Sanchez-Padilla, J.; Surmeier, D.J. Calcium entry induces mitochondrial oxidant stress in vagal neurons at risk in Parkinson’s disease. Nat. Neurosci., 2012, 15(10), 1414-1421.
[http://dx.doi.org/10.1038/nn.3209] [PMID: 22941107]
[111]
Surmeier, D.J.; Guzman, J.N.; Sanchez, J.; Schumacker, P.T. Physiological phenotype and vulnerability in Parkinson’s disease. Cold Spring Harb. Perspect. Med., 2012, 2(7), a009290.
[http://dx.doi.org/10.1101/cshperspect.a009290] [PMID: 22762023]
[112]
Putzier, I.; Kullmann, P.H.M.; Horn, J.P.; Levitan, E.S. Cav1.3 channel voltage dependence, not Ca2+ selectivity, drives pacemaker activity and amplifies bursts in nigral dopamine neurons. J. Neurosci., 2009, 29(49), 15414-15419.
[http://dx.doi.org/10.1523/JNEUROSCI.4742-09.2009] [PMID: 20007466]
[113]
Nam, G. T-type calcium channel blockers: a patent review (2012-2018). Expert Opin. Ther. Pat., 2018, 28(12), 883-901.
[http://dx.doi.org/10.1080/13543776.2018.1541982] [PMID: 30372652]
[114]
Wang, Q-M.; Xu, Y-Y.; Liu, S.; Ma, Z-G. Isradipine attenuates MPTP-induced dopamine neuron degeneration by inhibiting up-regulation of L-type calcium channels and iron accumulation in the substantia nigra of mice. Oncotarget, 2017, 8(29), 47284-47295.
[http://dx.doi.org/10.18632/oncotarget.17618] [PMID: 28521299]
[115]
Gudala, K.; Kanukula, R.; Bansal, D. Reduced Risk of Parkinson’s Disease in Users of Calcium Channel Blockers: A Meta-Analysis. Int. J. Chronic Dis., 2015, 2015, 697404.
[http://dx.doi.org/10.1155/2015/697404] [PMID: 26464872]
[116]
Unified Huntington’s disease rating scale: Reliability and consistency. Mov. Disord., 1996, 11(2), 136-142.
[http://dx.doi.org/10.1002/mds.870110204] [PMID: 8684382]
[117]
Albin, R.L.; Reiner, A.; Anderson, K.D.; Dure, L.S., IV; Handelin, B.; Balfour, R.; Whetsell, W.O., Jr; Penney, J.B.; Young, A.B. Preferential loss of striato-external pallidal projection neurons in presymptomatic Huntington’s disease. Ann. Neurol., 1992, 31(4), 425-430.
[http://dx.doi.org/10.1002/ana.410310412] [PMID: 1375014]
[118]
A novel gene containing a trinucleotide repeat that is expanded and unstable on Huntington’s disease chromosomes. Cell, 1993, 72(6), 971-983.
[http://dx.doi.org/10.1016/0092-8674(93)90585-E] [PMID: 8458085]
[119]
Andrew, S.E.; Goldberg, Y.P.; Kremer, B.; Telenius, H.; Theilmann, J.; Adam, S.; Starr, E.; Squitieri, F.; Lin, B.; Kalchman, M.A. The relationship between trinucleotide (CAG) repeat length and clinical features of Huntington’s disease. Nat. Genet., 1993, 4(4), 398-403.
[http://dx.doi.org/10.1038/ng0893-398] [PMID: 8401589]
[120]
Schulte, J.; Littleton, J.T. The biological function of the Huntingtin protein and its relevance to Huntington’s Disease pathology. Curr. Trends Neurol., 2011, 5, 65-78.
[PMID: 22180703]
[121]
Trushina, E.; Dyer, R.B.; Badger, J.D., II; Ure, D.; Eide, L.; Tran, D.D.; Vrieze, B.T.; Legendre-Guillemin, V.; McPherson, P.S.; Mandavilli, B.S.; Van Houten, B.; Zeitlin, S.; McNiven, M.; Aebersold, R.; Hayden, M.; Parisi, J.E.; Seeberg, E.; Dragatsis, I.; Doyle, K.; Bender, A.; Chacko, C.; McMurray, C.T. Mutant huntingtin impairs axonal trafficking in mammalian neurons in vivo and in vitro. Mol. Cell. Biol., 2004, 24(18), 8195-8209.
[http://dx.doi.org/10.1128/MCB.24.18.8195-8209.2004] [PMID: 15340079]
[122]
Leavitt, B.R.; Guttman, J.A.; Hodgson, J.G.; Kimel, G.H.; Singaraja, R.; Vogl, A.W.; Hayden, M.R. Wild-type huntingtin reduces the cellular toxicity of mutant huntingtin in vivo. Am. J. Hum. Genet., 2001, 68(2), 313-324.
[http://dx.doi.org/10.1086/318207] [PMID: 11133364]
[123]
Van Raamsdonk, J.M.; Murphy, Z.; Slow, E.J.; Leavitt, B.R.; Hayden, M.R. Selective degeneration and nuclear localization of mutant huntingtin in the YAC128 mouse model of Huntington disease. Hum. Mol. Genet., 2005, 14(24), 3823-3835.
[http://dx.doi.org/10.1093/hmg/ddi407] [PMID: 16278236]
[124]
Sampedro, F.; Martínez-Horta, S.; Perez-Perez, J.; Horta-Barba, A.; Martin-Lahoz, J.; Alonso-Solís, A.; Corripio, I.; Gomez-Anson, B.; Kulisevsky, J. Widespread increased diffusivity reveals early cortical degeneration in Huntington disease. AJNR Am. J. Neuroradiol., 2019, 40(9), 1464-1468.
[http://dx.doi.org/10.3174/ajnr.A6168] [PMID: 31467235]
[125]
Wanker, E.E.; Ast, A.; Schindler, F.; Trepte, P.; Schnoegl, S. The pathobiology of perturbed mutant huntingtin protein-protein interactions in Huntington’s disease. J. Neurochem., 2019, 151(4), 507-519.
[http://dx.doi.org/10.1111/jnc.14853] [PMID: 31418858]
[126]
Czeredys, M. Dysregulation of neuronal calcium signaling via store-operated channels in Huntington’s disease. Front. Cell Dev. Biol., 2020, 8, 611735.
[http://dx.doi.org/10.3389/fcell.2020.611735] [PMID: 33425919]
[127]
Bezprozvanny, I.; Hayden, M.R. Deranged neuronal calcium signaling and Huntington disease. Biochem. Biophys. Res. Commun., 2004, 322(4), 1310-1317.
[http://dx.doi.org/10.1016/j.bbrc.2004.08.035] [PMID: 15336977]
[128]
Kaltenbach, L.S.; Romero, E.; Becklin, R.R.; Chettier, R.; Bell, R.; Phansalkar, A.; Strand, A.; Torcassi, C.; Savage, J.; Hurlburt, A.; Cha, G.H.; Ukani, L.; Chepanoske, C.L.; Zhen, Y.; Sahasrabudhe, S.; Olson, J.; Kurschner, C.; Ellerby, L.M.; Peltier, J.M.; Botas, J.; Hughes, R.E. Huntingtin interacting proteins are genetic modifiers of neurodegeneration. PLoS Genet., 2007, 3(5), e82.
[http://dx.doi.org/10.1371/journal.pgen.0030082] [PMID: 17500595]
[129]
Swayne, L.A.; Chen, L.; Hameed, S.; Barr, W.; Charlesworth, E.; Colicos, M.A.; Zamponi, G.W.; Braun, J.E. Crosstalk between huntingtin and syntaxin 1A regulates N-type calcium channels. Mol. Cell. Neurosci., 2005, 30(3), 339-351.
[http://dx.doi.org/10.1016/j.mcn.2005.07.016] [PMID: 16162412]
[130]
Park, C.Y.; Shcheglovitov, A.; Dolmetsch, R. The CRAC channel activator STIM1 binds and inhibits L-type voltage-gated calcium channels. Science, 2010, 330(6000), 101-105.
[http://dx.doi.org/10.1126/science.1191027] [PMID: 20929812]
[131]
Dittmer, P.J.; Wild, A.R.; Dell’Acqua, M.L.; Sather, W.A. STIM1 Ca2+ sensor control of L-type Ca2+-channel-dependent dendritic spine structural plasticity and nuclear signaling. Cell Rep., 2017, 19(2), 321-334.
[http://dx.doi.org/10.1016/j.celrep.2017.03.056] [PMID: 28402855]
[132]
Vigont, V.A.; Zimina, O.A.; Glushankova, L.N.; Kolobkova, J.A.; Ryazantseva, M.A.; Mozhayeva, G.N.; Kaznacheyeva, E.V. STIM1 protein activates store-operated calcium channels in cellular Model of Huntington’s disease. Acta Nat. (Engl. Ed.), 2014, 6(4), 40-47.
[http://dx.doi.org/10.32607/20758251-2014-6-4-40-47] [PMID: 25558393]
[133]
Vigont, V.; Kolobkova, Y.; Skopin, A.; Zimina, O.; Zenin, V.; Glushankova, L.; Kaznacheyeva, E. Both orai1 and TRPC1 are involved in excessive store-operated calcium entry in striatal neurons expressing mutant huntingtin exon 1. Front. Physiol., 2015, 6, 337.
[http://dx.doi.org/10.3389/fphys.2015.00337] [PMID: 26635623]
[134]
Vigont, V.A.; Grekhnev, D.A.; Lebedeva, O.S.; Gusev, K.O.; Volovikov, E.A.; Skopin, A.Y.; Bogomazova, A.N.; Shuvalova, L.D.; Zubkova, O.A.; Khomyakova, E.A.; Glushankova, L.N.; Klyushnikov, S.A.; Illarioshkin, S.N.; Lagarkova, M.A.; Kaznacheyeva, E.V. STIM2 mediates excessive store-operated calcium entry in patient-specific iPSC-derived neurons modeling a juvenile form of Huntington’s disease. Front. Cell Dev. Biol., 2021, 9, 625231.
[http://dx.doi.org/10.3389/fcell.2021.625231] [PMID: 33604336]
[135]
Pan, J-Y.; Yuan, S.; Yu, T.; Su, C.L.; Liu, X.L.; He, J.; Li, H. Regulation of L-type Ca2+ channel activity and insulin secretion by huntingtin-associated protein 1. J. Biol. Chem., 2016, 291(51), 26352-26363.
[http://dx.doi.org/10.1074/jbc.M116.727990] [PMID: 27624941]
[136]
Weeks, R.A.; Piccini, P.; Harding, A.E.; Brooks, D.J. Striatal D1 and D2 dopamine receptor loss in asymptomatic mutation carriers of Huntington’s disease. Ann. Neurol., 1996, 40(1), 49-54.
[http://dx.doi.org/10.1002/ana.410400110] [PMID: 8687191]
[137]
van Oostrom, J.C.H.; Dekker, M.; Willemsen, A.T.M.; de Jong, B.M.; Roos, R.A.C.; Leenders, K.L. Changes in striatal dopamine D2 receptor binding in pre-clinical Huntington’s disease. Eur. J. Neurol., 2009, 16(2), 226-231.
[http://dx.doi.org/10.1111/j.1468-1331.2008.02390.x] [PMID: 19138335]
[138]
Cepeda, C.; Murphy, K.P.S.; Parent, M.; Levine, M.S. The role of dopamine in huntington’s disease. In: Progress in Brain Research;; Elsevier, 2014; 211, pp. 235-254.
[http://dx.doi.org/10.1016/B978-0-444-63425-2.00010-6]
[139]
Hernández-López, S.; Tkatch, T.; Perez-Garci, E.; Galarraga, E.; Bargas, J.; Hamm, H.; Surmeier, D.J. D2 dopamine receptors in striatal medium spiny neurons reduce L-type Ca2+ currents and excitability via a novel PLC[β]1-IP3-calcineurin-signaling cascade. J. Neurosci., 2000, 20(24), 8987-8995.
[http://dx.doi.org/10.1523/JNEUROSCI.20-24-08987.2000] [PMID: 11124974]
[140]
Rittenhouse, A.R.; Zigmond, R.E. Role of N- and L-type calcium channels in depolarization-induced activation of tyrosine hydroxylase and release of norepinephrine by sympathetic cell bodies and nerve terminals. J. Neurobiol., 1999, 40(2), 137-148.
[http://dx.doi.org/10.1002/(SICI)1097-4695(199908)40:2<137:AID-NEU1>3.0.CO;2-A] [PMID: 10413445]
[141]
Michel, P.P.; Hefti, F. Toxicity of 6-hydroxydopamine and dopamine for dopaminergic neurons in culture. J. Neurosci. Res., 1990, 26(4), 428-435.
[http://dx.doi.org/10.1002/jnr.490260405] [PMID: 1977925]
[142]
Mosharov, E.V.; Larsen, K.E.; Kanter, E.; Phillips, K.A.; Wilson, K.; Schmitz, Y.; Krantz, D.E.; Kobayashi, K.; Edwards, R.H.; Sulzer, D. Interplay between cytosolic dopamine, calcium, and alpha-synuclein causes selective death of substantia nigra neurons. Neuron, 2009, 62(2), 218-229.
[http://dx.doi.org/10.1016/j.neuron.2009.01.033] [PMID: 19409267]
[143]
Lautenschläger, J.; Stephens, A.D.; Fusco, G.; Ströhl, F.; Curry, N.; Zacharopoulou, M.; Michel, C.H.; Laine, R.; Nespovitaya, N.; Fantham, M.; Pinotsi, D.; Zago, W.; Fraser, P.; Tandon, A.; St George-Hyslop, P.; Rees, E.; Phillips, J.J.; De Simone, A.; Kaminski, C.F.; Schierle, G.S.K. C-terminal calcium binding of α-synuclein modulates synaptic vesicle interaction. Nat. Commun., 2018, 9(1), 712.
[http://dx.doi.org/10.1038/s41467-018-03111-4] [PMID: 29459792]
[144]
Ronzitti, G.; Bucci, G.; Emanuele, M.; Leo, D.; Sotnikova, T.D.; Mus, L.V.; Soubrane, C.H.; Dallas, M.L.; Thalhammer, A.; Cingolani, L.A.; Mochida, S.; Gainetdinov, R.R.; Stephens, G.J.; Chieregatti, E. Exogenous α-synuclein decreases raft partitioning of Cav2.2 channels inducing dopamine release. J. Neurosci., 2014, 34(32), 10603-10615.
[http://dx.doi.org/10.1523/JNEUROSCI.0608-14.2014] [PMID: 25100594]
[145]
Lieberman, O.J.; Choi, S.J.; Kanter, E.; Saverchenko, A.; Frier, M.D.; Fiore, G.M.; Wu, M.; Kondapalli, J.; Zampese, E.; Surmeier, D.J.; Sulzer, D.; Mosharov, E.V. α-synuclein-dependent calcium entry underlies differential sensitivity of cultured SN and VTA dopaminergic neurons to a Parkinsonian neurotoxin. eNeuro, 2017, 4(6), ENEURO.0167-17.2017.
[http://dx.doi.org/10.1523/ENEURO.0167-17.2017] [PMID: 29177188]
[146]
Ortner, N.J.; Bock, G.; Dougalis, A.; Kharitonova, M.; Duda, J.; Hess, S.; Tuluc, P.; Pomberger, T.; Stefanova, N.; Pitterl, F.; Ciossek, T.; Oberacher, H.; Draheim, H.J.; Kloppenburg, P.; Liss, B.; Striessnig, J. Lower affinity of isradipine for L-type Ca2+ channels during substantia nigra dopamine neuron-like activity: Implications for neuroprotection in Parkinson’s disease. J. Neurosci., 2017, 37(28), 6761-6777.
[http://dx.doi.org/10.1523/JNEUROSCI.2946-16.2017] [PMID: 28592699]
[147]
Siddiqi, F.H.; Menzies, F.M.; Lopez, A.; Stamatakou, E.; Karabiyik, C.; Ureshino, R.; Ricketts, T.; Jimenez-Sanchez, M.; Esteban, M.A.; Lai, L.; Tortorella, M.D.; Luo, Z.; Liu, H.; Metzakopian, E.; Fernandes, H.J.R.; Bassett, A.; Karran, E.; Miller, B.L.; Fleming, A.; Rubinsztein, D.C. Felodipine induces autophagy in mouse brains with pharmacokinetics amenable to repurposing. Nat. Commun., 2019, 10(1), 1817.
[http://dx.doi.org/10.1038/s41467-019-09494-2] [PMID: 31000720]
[148]
Galvan, A.; Devergnas, A.; Pittard, D.; Masilamoni, G.; Vuong, J.; Daniels, J.S.; Morrison, R.D.; Lindsley, C.W.; Wichmann, T. Lack of antiparkinsonian effects of systemic injections of the specific T-type calcium channel blocker ML218 in MPTP-treated monkeys. ACS Chem. Neurosci., 2016, 7(11), 1543-1551.
[http://dx.doi.org/10.1021/acschemneuro.6b00186] [PMID: 27596273]
[149]
Simuni, T.; Borushko, E.; Avram, M.J.; Miskevics, S.; Martel, A.; Zadikoff, C.; Videnovic, A.; Weaver, F.M.; Williams, K.; Surmeier, D.J. Tolerability of isradipine in early Parkinson’s disease: a pilot dose escalation study. Mov. Disord., 2010, 25(16), 2863-2866.
[http://dx.doi.org/10.1002/mds.23308] [PMID: 20818667]
[150]
Parkinson Study Group. Phase II safety, tolerability, and dose selection study of isradipine as a potential disease-modifying intervention in early Parkinson’s disease (STEADY-PD). Mov. Disord., 2013, 28(13), 1823-1831.
[http://dx.doi.org/10.1002/mds.25639] [PMID: 24123224]
[151]
Holloway, R. Phase 3 double-blind placebo-controlled parallel group study of isradipine as a disease modifying agent in subjects with early Parkinson disease, 2020. Available from: https://clinicaltrials.gov/ct2/show/study/NCT02168842 Accessed: Oct. 12, 2021.
[152]
Biglan, K.M.; Oakes, D.; Lang, A.E.; Hauser, R.A.; Hodgeman, K.; Greco, B.; Lowell, J.; Rockhill, R.; Shoulson, I.; Venuto, C.; Young, D.; Simuni, T. A novel design of a Phase III trial of isradipine in early Parkinson disease (STEADY-PD III). Ann. Clin. Transl. Neurol., 2017, 4(6), 360-368.
[http://dx.doi.org/10.1002/acn3.412] [PMID: 28589163]
[153]
Parkinson Study Group STEADY-PD III Investigators. Isradipine versus placebo in early Parkinson disease: A randomized trial. Ann. Intern. Med., 2020, 172(9), 591-598.
[http://dx.doi.org/10.7326/M19-2534] [PMID: 32227247]
[154]
Venuto, C.S.; Yang, L.; Javidnia, M.; Oakes, D.; James Surmeier, D.; Simuni, T. Isradipine plasma pharmacokinetics and exposure-response in early Parkinson’s disease. Ann. Clin. Transl. Neurol., 2021, 8(3), 603-612.
[http://dx.doi.org/10.1002/acn3.51300] [PMID: 33460320]
[155]
Surmeier, D.J. Re-analysis of the STEADY-PD II trial-evidence for slowing the progression of Parkinson’s disease. Mov. Disord. Off. J. Mov. Disord. Soc., 2021 (Nov);
[http://dx.doi.org/10.1002/mds.28850] [PMID: 34766657]
[156]
Hartung, T. Look back in anger - what clinical studies tell us about preclinical work. Altern. Anim. Exp., 2013, 30(3), 275-291.
[http://dx.doi.org/10.14573/altex.2013.3.275] [PMID: 23861075]
[157]
Maiti, B.; Perlmutter, J.S. A clinical trial of isradipine: What went wrong? Ann. Intern. Med., 2020, 172(9), 625-626.
[http://dx.doi.org/10.7326/M20-1023] [PMID: 32227234]
[158]
Kaufman, A.M.; Milnerwood, A.J.; Sepers, M.D.; Coquinco, A.; She, K.; Wang, L.; Lee, H.; Craig, A.M.; Cynader, M.; Raymond, L.A. Opposing roles of synaptic and extrasynaptic NMDA receptor signaling in cocultured striatal and cortical neurons. J. Neurosci., 2012, 32(12), 3992-4003.
[http://dx.doi.org/10.1523/JNEUROSCI.4129-11.2012] [PMID: 22442066]
[159]
Gao, Y.; Chu, S.F.; Li, J.P.; Zhang, Z.; Yan, J.Q.; Wen, Z.L.; Xia, C.Y.; Mou, Z.; Wang, Z.Z.; He, W.B.; Guo, X.F.; Wei, G.N.; Chen, N.H. Protopanaxtriol protects against 3-nitropropionic acid-induced oxidative stress in a rat model of Huntington’s disease. Acta Pharmacol. Sin., 2015, 36(3), 311-322.
[http://dx.doi.org/10.1038/aps.2014.107] [PMID: 25640478]
[160]
Oikonomou, K.D.; Donzis, E.J.; Bui, M.T.N.; Cepeda, C.; Levine, M.S. Calcium dysregulation and compensation in cortical pyramidal neurons of the R6/2 mouse model of Huntington’s disease. J. Neurophysiol., 2021, 126(4), 1159-1171.
[http://dx.doi.org/10.1152/jn.00181.2021] [PMID: 34469694]
[161]
Beal, M.F.; Kowall, N.W.; Swartz, K.J.; Ferrante, R.J.; Martin, J.B. Systemic approaches to modifying quinolinic acid striatal lesions in rats. J. Neurosci., 1988, 8(10), 3901-3908.
[http://dx.doi.org/10.1523/JNEUROSCI.08-10-03901.1988] [PMID: 2461437]
[162]
Shansky, R.M.; Murphy, A.Z. Considering sex as a biological variable will require a global shift in science culture. Nat. Neurosci., 2021, 24(4), 457-464.
[http://dx.doi.org/10.1038/s41593-021-00806-8] [PMID: 33649507]
[163]
Seydel, C. The missing sex. Nat. Biotechnol., 2021, 39(3), 260-265.
[http://dx.doi.org/10.1038/s41587-021-00844-4] [PMID: 33623158]
[164]
Pasternak, B.; Svanström, H.; Nielsen, N.M.; Fugger, L.; Melbye, M.; Hviid, A. Use of calcium channel blockers and Parkinson’s disease. Am. J. Epidemiol., 2012, 175(7), 627-635.
[http://dx.doi.org/10.1093/aje/kwr362] [PMID: 22387374]
[165]
Marras, C.; Gruneir, A.; Rochon, P.; Wang, X.; Anderson, G.; Brotchie, J.; Bell, C.M.; Fox, S.; Austin, P.C. Dihydropyridine calcium channel blockers and the progression of parkinsonism. Ann. Neurol., 2012, 71(3), 362-369.
[http://dx.doi.org/10.1002/ana.22616] [PMID: 22451203]
[166]
Schuster, S.; Doudnikoff, E.; Rylander, D.; Berthet, A.; Aubert, I.; Ittrich, C.; Bloch, B.; Cenci, M.A.; Surmeier, D.J.; Hengerer, B.; Bezard, E. Antagonizing L-type Ca2+ channel reduces development of abnormal involuntary movement in the rat model of L-3,4-dihydroxyphenylalanine-induced dyskinesia. Biol. Psychiatry, 2009, 65(6), 518-526.
[http://dx.doi.org/10.1016/j.biopsych.2008.09.008] [PMID: 18947822]
[167]
Holford, N.H.G.; Nutt, J.G. Interpreting the results of Parkinson’s disease clinical trials: time for a change. Mov. Disord., 2011, 26(4), 569-577.
[http://dx.doi.org/10.1002/mds.23555] [PMID: 21370266]
[168]
Garcia-Borreguero, D.; Kohnen, R.; Silber, M.H.; Winkelman, J.W.; Earley, C.J.; Högl, B.; Manconi, M.; Montplaisir, J.; Inoue, Y.; Allen, R.P. The long-term treatment of restless legs syndrome/Willis-Ekbom disease: evidence-based guidelines and clinical consensus best practice guidance: a report from the International Restless Legs Syndrome Study Group. Sleep Med., 2013, 14(7), 675-684.
[http://dx.doi.org/10.1016/j.sleep.2013.05.016] [PMID: 23859128]
[169]
Behrens, M.I.; Koh, J.Y.; Muller, M.C.; Choi, D.W. NADPH diaphorase-containing striatal or cortical neurons are resistant to apoptosis. Neurobiol. Dis., 1996, 3(1), 72-75.
[http://dx.doi.org/10.1006/nbdi.1996.0007] [PMID: 9173914]
[170]
Schrank, S.; Barrington, N.; Stutzmann, G.E. Calcium-handling defects and neurodegenerative disease. Cold Spring Harb. Perspect. Biol., 2020, 12(7), a035212.
[http://dx.doi.org/10.1101/cshperspect.a035212] [PMID: 31427373]
[171]
Catterall, W.A. Calcium Channels. In: Encyclopedia of Neuroscience; Elsevier, 2009; pp. 543-550.
[http://dx.doi.org/10.1016/B978-008045046-9.01629-6]
[172]
Hurley, M.J.; Dexter, D.T. Voltage-gated calcium channels and Parkinson’s disease. Pharmacol. Ther., 2012, 133(3), 324-333.
[http://dx.doi.org/10.1016/j.pharmthera.2011.11.006] [PMID: 22133841]
[173]
Bergquist, F.; Jonason, J.; Pileblad, E.; Nissbrandt, H. Effects of local administration of L-, N-, and P/Q-type calcium channel blockers on spontaneous dopamine release in the striatum and the substantia nigra: a microdialysis study in rat. J. Neurochem., 1998, 70(4), 1532-1540.
[http://dx.doi.org/10.1046/j.1471-4159.1998.70041532.x] [PMID: 9523570]
[174]
Bergquist, F.; Nissbrandt, H. Influence of R-type (Cav2.3) and t-type (Cav3.1-3.3) antagonists on nigral somatodendritic dopamine release measured by microdialysis. Neuroscience, 2003, 120(3), 757-764.
[http://dx.doi.org/10.1016/S0306-4522(03)00385-3] [PMID: 12895515]
[175]
Tai, C-H.; Yang, Y-C.; Pan, M-K.; Huang, C-S.; Kuo, C-C. Modulation of subthalamic T-type Ca(2+) channels remedies locomotor deficits in a rat model of Parkinson disease. J. Clin. Invest., 2011, 121(8), 3289-3305.
[http://dx.doi.org/10.1172/JCI46482] [PMID: 21737877]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy