Generic placeholder image

Current Neuropharmacology

Editor-in-Chief

ISSN (Print): 1570-159X
ISSN (Online): 1875-6190

Systematic Review Article

Structural and Functional MRI Brain Changes in Patients with Schizophrenia Following Electroconvulsive Therapy: A Systematic Review

Author(s): Yuchao Jiang, Mingjun Duan*, Hui He, Dezhong Yao and Cheng Luo*

Volume 20, Issue 6, 2022

Published on: 01 April, 2022

Page: [1241 - 1252] Pages: 12

DOI: 10.2174/1570159X19666210809101248

Price: $65

Abstract

Background: Schizophrenia (SZ) is a severe psychiatric disorder typically characterized by multidimensional psychotic syndromes. Electroconvulsive therapy (ECT) is a treatment option for medication-resistant patients with SZ or treating acute symptoms. Although the efficacy of ECT has been demonstrated in clinical use, its therapeutic mechanisms in the brain remain elusive.

Objective: This study aimed to summarize brain changes on structural magnetic resonance imaging (sMRI) and functional MRI (fMRI) after ECT.

Methods: According to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines, a systematic review was carried out. The PubMed and Medline databases were systematically searched using the following medical subject headings (MeSH): (electroconvulsive therapy OR ECT) AND (schizophrenia) AND (MRI OR fMRI OR DTI OR DWI).

Results: This review yielded 12 MRI studies, including 4 with sMRI, 5 with fMRI and 3 with multimodal MRI. Increases in volumes of the hippocampus and its adjacent regions (parahippocampal gyrus and amygdala), as well as the insula and frontotemporal regions, were noted after ECT. fMRI studies found ECT-induced changes in different brain regions/networks, including the hippocampus, amygdala, default model network, salience network and other regions/networks that are thought to highly correlate with the pathophysiologic characteristics of SZ. The results of the correlation between brain changes and symptom remissions are inconsistent.

Conclusion: Our review provides evidence supporting ECT-induced brain changes on sMRI and fMRI in SZ and explores the relationship between these changes and symptom remission.

Keywords: Electroconvulsive therapy, schizophrenia, functional MRI, neuroimaging, hippocampus, connectivity.

« Previous
Graphical Abstract
[1]
van der Meer, L.; Costafreda, S.; Aleman, A.; David, A.S. Self-reflection and the brain: a theoretical review and meta-analysis of neuroimaging studies with implications for schizophrenia. Neurosci. Biobehav. Rev., 2010, 34(6), 935-946.
[http://dx.doi.org/10.1016/j.neubiorev.2009.12.004] [PMID: 20015455]
[2]
Pompili, M.; Lester, D.; Dominici, G.; Longo, L.; Marconi, G.; Forte, A.; Serafini, G.; Amore, M.; Girardi, P. Indications for electroconvulsive treatment in schizophrenia: a systematic review. Schizophr. Res., 2013, 146(1-3), 1-9.
[http://dx.doi.org/10.1016/j.schres.2013.02.005] [PMID: 23499244]
[3]
Lally, J.; Tully, J.; Robertson, D.; Stubbs, B.; Gaughran, F.; MacCabe, J.H. Augmentation of clozapine with electroconvulsive therapy in treatment resistant schizophrenia: A systematic review and meta-analysis. Schizophr. Res., 2016, 171(1-3), 215-224.
[http://dx.doi.org/10.1016/j.schres.2016.01.024] [PMID: 26827129]
[4]
Tharyan, P.; Adams, C.E. Electroconvulsive therapy for schizophrenia. Cochrane Database Syst. Rev., 2005, 2CD000076
[PMID: 15846598]
[5]
Petrides, G.; Malur, C.; Braga, R.J.; Bailine, S.H.; Schooler, N.R.; Malhotra, A.K.; Kane, J.M.; Sanghani, S.; Goldberg, T.E.; John, M.; Mendelowitz, A. Electroconvulsive therapy augmentation in clozapine-resistant schizophrenia: a prospective, randomized study. Am. J. Psychiatry, 2015, 172(1), 52-58.
[http://dx.doi.org/10.1176/appi.ajp.2014.13060787] [PMID: 25157964]
[6]
Ali, S.A.; Mathur, N.; Malhotra, A.K.; Braga, R.J. Electroconvulsive Therapy and Schizophrenia: A Systematic Review. Mol. Neuropsychiatry, 2019, 5(2), 75-83.
[http://dx.doi.org/10.1159/000497376] [PMID: 31192220]
[7]
Madsen, T.M.; Treschow, A.; Bengzon, J.; Bolwig, T.G.; Lindvall, O.; Tingström, A. Increased neurogenesis in a model of electroconvulsive therapy. Biol. Psychiatry, 2000, 47(12), 1043-1049.
[http://dx.doi.org/10.1016/S0006-3223(00)00228-6] [PMID: 10862803]
[8]
Perera, T.D.; Coplan, J.D.; Lisanby, S.H.; Lipira, C.M.; Arif, M.; Carpio, C.; Spitzer, G.; Santarelli, L.; Scharf, B.; Hen, R.; Rosoklija, G.; Sackeim, H.A.; Dwork, A.J. Antidepressant-induced neurogenesis in the hippocampus of adult nonhuman primates. J. Neurosci., 2007, 27(18), 4894-4901.
[http://dx.doi.org/10.1523/JNEUROSCI.0237-07.2007] [PMID: 17475797]
[9]
Chen, F.; Madsen, T.M.; Wegener, G.; Nyengaard, J.R. Repeated electroconvulsive seizures increase the total number of synapses in adult male rat hippocampus. Eur. Neuropsychopharmacol., 2009, 19(5), 329-338.
[http://dx.doi.org/10.1016/j.euroneuro.2008.12.007] [PMID: 19176277]
[10]
Hellsten, J.; West, M.J.; Arvidsson, A.; Ekstrand, J.; Jansson, L.; Wennström, M.; Tingström, A. Electroconvulsive seizures induce angiogenesis in adult rat hippocampus. Biol. Psychiatry, 2005, 58(11), 871-878.
[http://dx.doi.org/10.1016/j.biopsych.2005.05.023] [PMID: 16043138]
[11]
Wennström, M.; Hellsten, J.; Ekdahl, C.T.; Tingström, A. Electroconvulsive seizures induce proliferation of NG2-expressing glial cells in adult rat hippocampus. Biol. Psychiatry, 2003, 54(10), 1015-1024.
[http://dx.doi.org/10.1016/S0006-3223(03)00693-0] [PMID: 14625143]
[12]
Vaidya, V.A.; Siuciak, J.A.; Du, F.; Duman, R.S. Hippocampal mossy fiber sprouting induced by chronic electroconvulsive seizures. Neuroscience, 1999, 89(1), 157-166.
[http://dx.doi.org/10.1016/S0306-4522(98)00289-9] [PMID: 10051225]
[13]
Zhao, C.; Warner-Schmidt, J.; Duman, R.S.; Gage, F.H. Electroconvulsive seizure promotes spine maturation in newborn dentate granule cells in adult rat. Dev. Neurobiol., 2012, 72(6), 937-942.
[http://dx.doi.org/10.1002/dneu.20986] [PMID: 21976455]
[14]
Wilkinson, S.T.; Sanacora, G.; Bloch, M.H. Hippocampal volume changes following electroconvulsive therapy: a systematic review and meta-analysis. Biol. Psychiatry Cogn. Neurosci. Neuroimaging, 2017, 2(4), 327-335.
[http://dx.doi.org/10.1016/j.bpsc.2017.01.011] [PMID: 28989984]
[15]
Rocha, R.B.; Dondossola, E.R.; Grande, A.J.; Colonetti, T.; Ceretta, L.B.; Passos, I.C.; Quevedo, J.; da Rosa, M.I. Increased BDNF levels after electroconvulsive therapy in patients with major depressive disorder: A meta-analysis study. J. Psychiatr. Res., 2016, 83, 47-53.
[http://dx.doi.org/10.1016/j.jpsychires.2016.08.004] [PMID: 27552533]
[16]
Grover, S.; Hazari, N.; Kate, N. Combined use of clozapine and ECT: a review. Acta Neuropsychiatr., 2015, 27(3), 131-142.
[http://dx.doi.org/10.1017/neu.2015.8] [PMID: 25697225]
[17]
Takamiya, A.; Chung, J.K.; Liang, K.C.; Graff-Guerrero, A.; Mimura, M.; Kishimoto, T. Effect of electroconvulsive therapy on hippocampal and amygdala volumes: systematic review and meta-analysis. Br. J. Psychiatry, 2018, 212(1), 19-26.
[http://dx.doi.org/10.1192/bjp.2017.11] [PMID: 29433612]
[18]
Gbyl, K.; Videbech, P. Electroconvulsive therapy increases brain volume in major depression: a systematic review and meta-analysis. Acta Psychiatr. Scand., 2018, 138(3), 180-195.
[http://dx.doi.org/10.1111/acps.12884] [PMID: 29707778]
[19]
Fornito, A.; Zalesky, A.; Pantelis, C.; Bullmore, E.T. Schizophrenia, neuroimaging and connectomics. Neuroimage, 2012, 62(4), 2296-2314.
[http://dx.doi.org/10.1016/j.neuroimage.2011.12.090] [PMID: 22387165]
[20]
Dong, D.; Wang, Y.; Chang, X.; Jiang, Y.; Klugah-Brown, B.; Luo, C.; Yao, D. Shared abnormality of white matter integrity in schizophrenia and bipolar disorder: A comparative voxel-based meta-analysis. Schizophr. Res., 2017, 185, 41-50.
[http://dx.doi.org/10.1016/j.schres.2017.01.005] [PMID: 28082140]
[21]
Dong, D.; Luo, C.; Guell, X.; Wang, Y.; He, H.; Duan, M.; Eickhoff, S.B.; Yao, D. Compression of Cerebellar Functional Gradients in Schizophrenia. Schizophr. Bull., 2020, sbaa016.
[http://dx.doi.org/10.1093/schbul/sbaa016] [PMID: 32144421]
[22]
Fitzsimmons, J.; Kubicki, M.; Shenton, M.E. Review of functional and anatomical brain connectivity findings in schizophrenia. Curr. Opin. Psychiatry, 2013, 26(2), 172-187.
[http://dx.doi.org/10.1097/YCO.0b013e32835d9e6a] [PMID: 23324948]
[23]
Molent, C.; Olivo, D.; Wolf, R.C.; Balestrieri, M.; Sambataro, F. Functional neuroimaging in treatment resistant schizophrenia: A systematic review. Neurosci. Biobehav. Rev., 2019, 104, 178-190.
[http://dx.doi.org/10.1016/j.neubiorev.2019.07.001] [PMID: 31276716]
[24]
Jiang, Y.; Luo, C.; Li, X.; Li, Y.; Yang, H.; Li, J.; Chang, X.; Li, H.; Yang, H.; Wang, J.; Duan, M.; Yao, D. White-matter functional networks changes in patients with schizophrenia. Neuroimage, 2019, 190, 172-181.
[http://dx.doi.org/10.1016/j.neuroimage.2018.04.018] [PMID: 29660513]
[25]
Jiang, Y.; Luo, C.; Li, X.; Duan, M.; He, H.; Chen, X.; Yang, H.; Gong, J.; Chang, X.; Woelfer, M.; Biswal, B.B.; Yao, D. Progressive reduction in gray matter in patients with schizophrenia assessed with MR imaging by using causal network analysis. Radiology, 2018, 287(2), 633-642.
[http://dx.doi.org/10.1148/radiol.2017171832] [PMID: 29357273]
[26]
Haijma, S.V.; Van Haren, N.; Cahn, W.; Koolschijn, P.C.; Hulshoff Pol, H.E.; Kahn, R.S. Brain volumes in schizophrenia: a meta-analysis in over 18 000 subjects. Schizophr. Bull., 2013, 39(5), 1129-1138.
[http://dx.doi.org/10.1093/schbul/sbs118] [PMID: 23042112]
[27]
Dong, D.; Wang, Y.; Chang, X.; Luo, C.; Yao, D. Dysfunction of large-scale brain networks in schizophrenia: A meta-analysis of resting-state functional connectivity. Schizophr. Bull., 2018, 44(1), 168-181.
[http://dx.doi.org/10.1093/schbul/sbx034] [PMID: 28338943]
[28]
He, H.; Luo, C.; Luo, Y.; Duan, M.; Yi, Q.; Biswal, B.B.; Yao, D. Reduction in gray matter of cerebellum in schizophrenia and its influence on static and dynamic connectivity. Hum. Brain Mapp., 2019, 40(2), 517-528.
[http://dx.doi.org/10.1002/hbm.24391] [PMID: 30240503]
[29]
Woodward, N.D.; Karbasforoushan, H.; Heckers, S. Thalamocortical dysconnectivity in schizophrenia. Am. J. Psychiatry, 2012, 169(10), 1092-1099.
[http://dx.doi.org/10.1176/appi.ajp.2012.12010056] [PMID: 23032387]
[30]
Huang, H.; Botao, Z.; Jiang, Y.; Tang, Y.; Zhang, T.; Tang, X.; Xu, L.; Wang, J.; Li, J.; Qian, Z.; Liu, X.; Wang, H.; Luo, C.; Li, C.; Xu, J.; Goff, D.; Wang, J. Aberrant resting-state functional connectivity of salience network in first-episode schizophrenia. Brain Imaging Behav., 2020, 14(5), 1350-1360.
[http://dx.doi.org/10.1007/s11682-019-00040-8] [PMID: 30689171]
[31]
Menon, V. Large-scale brain networks and psychopathology: a unifying triple network model. Trends Cogn. Sci., 2011, 15(10), 483-506.
[http://dx.doi.org/10.1016/j.tics.2011.08.003] [PMID: 21908230]
[32]
Pettersson-Yeo, W.; Allen, P.; Benetti, S.; McGuire, P.; Mechelli, A. Dysconnectivity in schizophrenia: where are we now? Neurosci. Biobehav. Rev., 2011, 35(5), 1110-1124.
[http://dx.doi.org/10.1016/j.neubiorev.2010.11.004] [PMID: 21115039]
[33]
Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; Chou, R.; Glanville, J.; Grimshaw, J.M.; Hróbjartsson, A.; Lalu, M.M.; Li, T.; Loder, E.W.; Mayo-Wilson, E.; McDonald, S.; McGuinness, L.A.; Stewart, L.A.; Thomas, J.; Tricco, A.C.; Welch, V.A.; Whiting, P.; Moher, D. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ, 2021, 372(71), n71.
[http://dx.doi.org/10.1136/bmj.n71] [PMID: 33782057]
[34]
Wolf, R.C.; Nolte, H.M.; Hirjak, D.; Hofer, S.; Seidl, U.; Depping, M.S.; Stieltjes, B.; Maier-Hein, K.; Sambataro, F.; Thomann, P.A. Structural network changes in patients with major depression and schizophrenia treated with electroconvulsive therapy. Eur. Neuropsychopharmacol., 2016, 26(9), 1465-1474.
[http://dx.doi.org/10.1016/j.euroneuro.2016.06.008] [PMID: 27424799]
[35]
Wang, J.; Tang, Y.; Curtin, A.; Xia, M.; Tang, X.; Zhao, Y.; Li, Y.; Qian, Z.; Sheng, J.; Zhang, T.; Jia, Y.; Li, C.; Wang, J. ECT-induced brain plasticity correlates with positive symptom improvement in schizophrenia by voxel-based morphometry analysis of grey matter. Brain Stimul., 2019, 12(2), 319-328.
[http://dx.doi.org/10.1016/j.brs.2018.11.006] [PMID: 30473477]
[36]
Gong, J.; Cui, L.B.; Xi, Y.B.; Zhao, Y.S.; Yang, X.J.; Xu, Z.L.; Sun, J.B.; Liu, P.; Jia, J.; Li, P.; Yin, H.; Qin, W. Predicting response to electroconvulsive therapy combined with antipsychotics in schizophrenia using multi-parametric magnetic resonance imaging. Schizophr. Res., 2020, 216, 262-271.
[http://dx.doi.org/10.1016/j.schres.2019.11.046] [PMID: 31826827]
[37]
Xi, Y.B.; Cui, L.B.; Gong, J.; Fu, Y.F.; Wu, X.S.; Guo, F.; Yang, X.; Li, C.; Wang, X.R.; Li, P.; Qin, W.; Yin, H. Neuroanatomical features that predict response to electroconvulsive therapy combined with antipsychotics in schizophrenia: a magnetic resonance imaging study using radiomics strategy. Front. Psychiatry, 2020, 11, 456.
[http://dx.doi.org/10.3389/fpsyt.2020.00456] [PMID: 32528327]
[38]
Huang, H.; Jiang, Y.; Xia, M.; Tang, Y.; Zhang, T.; Cui, H.; Wang, J.; Li, Y.; Xu, L.; Curtin, A.; Sheng, J.; Jia, Y.; Yao, D.; Li, C.; Luo, C.; Wang, J. Increased resting-state global functional connectivity density of default mode network in schizophrenia subjects treated with electroconvulsive therapy. Schizophr. Res., 2018, 197, 192-199.
[http://dx.doi.org/10.1016/j.schres.2017.10.044] [PMID: 29117910]
[39]
Li, P.; Jing, R.X.; Zhao, R.J.; Ding, Z.B.; Shi, L.; Sun, H.Q.; Lin, X.; Fan, T.T.; Dong, W.T.; Fan, Y.; Lu, L. Electroconvulsive therapy-induced brain functional connectivity predicts therapeutic efficacy in patients with schizophrenia: a multivariate pattern recognition study. NPJ Schizophr., 2017, 3, 21.
[http://dx.doi.org/10.1038/s41537-017-0023-7] [PMID: 28560267]
[40]
Sambataro, F.; Thomann, P.A.; Nolte, H.M.; Hasenkamp, J.H.; Hirjak, D.; Kubera, K.M.; Hofer, S.; Seidl, U.; Depping, M.S.; Stieltjes, B.; Maier-Hein, K.; Wolf, R.C. Transdiagnostic modulation of brain networks by electroconvulsive therapy in schizophrenia and major depression. Eur. Neuropsychopharmacol., 2019, 29(8), 925-935.
[http://dx.doi.org/10.1016/j.euroneuro.2019.06.002] [PMID: 31279591]
[41]
Wang, J.; Jiang, Y.; Tang, Y.; Xia, M.; Curtin, A.; Li, J.; Sheng, J.; Zhang, T.; Li, C.; Hui, L.; Zhu, H.; Biswal, B.B.; Jia, Q.; Luo, C.; Wang, J. Altered functional connectivity of the thalamus induced by modified electroconvulsive therapy for schizophrenia. Schizophr. Res., 2020, 218, 209-218.
[http://dx.doi.org/10.1016/j.schres.2019.12.044] [PMID: 31956007]
[42]
Yang, X.; Xu, Z.; Xi, Y.; Sun, J.; Liu, P.; Liu, P.; Li, P.; Jia, J.; Yin, H.; Qin, W. Predicting responses to electroconvulsive therapy in schizophrenia patients undergoing antipsychotic treatment: Baseline functional connectivity among regions with strong electric field distributions. Psychiatry Res. Neuroimaging, 2020, 299111059
[http://dx.doi.org/10.1016/j.pscychresns.2020.111059] [PMID: 32135406]
[43]
Thomann, P.A.; Wolf, R.C.; Nolte, H.M.; Hirjak, D.; Hofer, S.; Seidl, U.; Depping, M.S.; Stieltjes, B.; Maier-Hein, K.; Sambataro, F.; Wüstenberg, T. Neuromodulation in response to electroconvulsive therapy in schizophrenia and major depression. Brain Stimul., 2017, 10(3), 637-644.
[http://dx.doi.org/10.1016/j.brs.2017.01.578] [PMID: 28162976]
[44]
Jiang, Y.; Xia, M.; Li, X.; Tang, Y.; Li, C.; Huang, H.; Dong, D.; Jiang, S.; Wang, J.; Xu, J.; Luo, C.; Yao, D. Insular changes induced by electroconvulsive therapy response to symptom improvements in schizophrenia. Prog. Neuropsychopharmacol. Biol. Psychiatry, 2019, 89, 254-262.
[http://dx.doi.org/10.1016/j.pnpbp.2018.09.009] [PMID: 30248379]
[45]
Jiang, Y.; Xu, L.; Li, X.; Tang, Y.; Wang, P.; Li, C.; Yao, D.; Wang, J.; Luo, C. Common increased hippocampal volume but specific changes in functional connectivity in schizophrenia patients in remission and non-remission following electroconvulsive therapy: A preliminary study. Neuroimage Clin., 2019, 24102081
[http://dx.doi.org/10.1016/j.nicl.2019.102081] [PMID: 31734526]
[46]
Yrondi, A.; Péran, P.; Sauvaget, A.; Schmitt, L.; Arbus, C. Structural-functional brain changes in depressed patients during and after electroconvulsive therapy. Acta Neuropsychiatr., 2018, 30(1), 17-28.
[http://dx.doi.org/10.1017/neu.2016.62] [PMID: 27876102]
[47]
Garrity, A.G.; Pearlson, G.D.; McKiernan, K.; Lloyd, D.; Kiehl, K.A.; Calhoun, V.D. Aberrant “default mode” functional connectivity in schizophrenia. Am. J. Psychiatry, 2007, 164(3), 450-457.
[http://dx.doi.org/10.1176/ajp.2007.164.3.450] [PMID: 17329470]
[48]
Wang, Y.M.; Zou, L.Q.; Xie, W.L.; Yang, Z.Y.; Zhu, X.Z.; Cheung, E.F.C.; Sørensen, T.A.; Møller, A.; Chan, R.C.K. Altered functional connectivity of the default mode network in patients with schizo-obsessive comorbidity: a comparison between schizophrenia and obsessive-compulsive disorder. Schizophr. Bull., 2019, 45(1), 199-210.
[http://dx.doi.org/10.1093/schbul/sbx194] [PMID: 29365198]
[49]
Hare, S.M.; Ford, J.M.; Mathalon, D.H.; Damaraju, E.; Bustillo, J.; Belger, A.; Lee, H.J.; Mueller, B.A.; Lim, K.O.; Brown, G.G.; Preda, A.; van Erp, T.G.M.; Potkin, S.G.; Calhoun, V.D.; Turner, J.A. Salience-default mode functional network connectivity linked to positive and negative symptoms of schizophrenia. Schizophr. Bull., 2019, 45(4), 892-901.
[http://dx.doi.org/10.1093/schbul/sby112] [PMID: 30169884]
[50]
Hu, M.L.; Zong, X.F.; Mann, J.J.; Zheng, J.J.; Liao, Y.H.; Li, Z.C.; He, Y.; Chen, X.G.; Tang, J.S. A review of the functional and anatomical default mode network in schizophrenia. Neurosci. Bull., 2017, 33(1), 73-84.
[http://dx.doi.org/10.1007/s12264-016-0090-1] [PMID: 27995564]
[51]
Tomasi, D.; Volkow, N.D. Functional connectivity density mapping. Proc. Natl. Acad. Sci. USA, 2010, 107(21), 9885-9890.
[http://dx.doi.org/10.1073/pnas.1001414107] [PMID: 20457896]
[52]
Tomasi, D.; Volkow, N.D. Functional connectivity hubs in the human brain. Neuroimage, 2011, 57(3), 908-917.
[http://dx.doi.org/10.1016/j.neuroimage.2011.05.024] [PMID: 21609769]
[53]
Seeley, W.W.; Menon, V.; Schatzberg, A.F.; Keller, J.; Glover, G.H.; Kenna, H.; Reiss, A.L.; Greicius, M.D. Dissociable intrinsic connectivity networks for salience processing and executive control. J. Neurosci., 2007, 27(9), 2349-2356.
[http://dx.doi.org/10.1523/JNEUROSCI.5587-06.2007] [PMID: 17329432]
[54]
He, H.; Yang, M.; Duan, M.; Chen, X.; Lai, Y.; Xia, Y.; Shao, J.; Biswal, B.B.; Luo, C.; Yao, D. Music intervention leads to increased insular connectivity and improved clinical symptoms in schizophrenia. Front. Neurosci., 2018, 11, 744.
[http://dx.doi.org/10.3389/fnins.2017.00744] [PMID: 29410607]
[55]
Chen, X.; Duan, M.; He, H.; Yang, M.; Klugah-Brown, B.; Xu, H.; Lai, Y.; Luo, C.; Yao, D. Functional abnormalities of the right posterior insula are related to the altered self-experience in schizophrenia. Psychiatry Res. Neuroimaging, 2016, 256, 26-32.
[http://dx.doi.org/10.1016/j.pscychresns.2016.09.006] [PMID: 27662482]
[56]
Smieskova, R.; Fusar-Poli, P.; Allen, P.; Bendfeldt, K.; Stieglitz, R.D.; Drewe, J.; Radue, E.W.; McGuire, P.K.; Riecher-Rössler, A.; Borgwardt, S.J. The effects of antipsychotics on the brain: what have we learnt from structural imaging of schizophrenia?--a systematic review. Curr. Pharm. Des., 2009, 15(22), 2535-2549.
[http://dx.doi.org/10.2174/138161209788957456] [PMID: 19689326]
[57]
Krystal, J.H.; Tolin, D.F.; Sanacora, G.; Castner, S.A.; Williams, G.V.; Aikins, D.E.; Hoffman, R.E.; D’Souza, D.C. Neuroplasticity as a target for the pharmacotherapy of anxiety disorders, mood disorders, and schizophrenia. Drug Discov. Today, 2009, 14(13-14), 690-697.
[http://dx.doi.org/10.1016/j.drudis.2009.05.002] [PMID: 19460458]
[58]
Kunigiri, G.; Jayakumar, P.N.; Janakiramaiah, N.; Gangadhar, B.N. MRI T(2) relaxometry of brain regions and cognitive dysfunction following electroconvulsive therapy. Indian J. Psychiatry, 2007, 49(3), 195-199.
[http://dx.doi.org/10.4103/0019-5545.37321] [PMID: 20661386]
[59]
Nordanskog, P.; Dahlstrand, U.; Larsson, M.R.; Larsson, E.M.; Knutsson, L.; Johanson, A. Increase in hippocampal volume after electroconvulsive therapy in patients with depression: a volumetric magnetic resonance imaging study. J. ECT, 2010, 26(1), 62-67.
[http://dx.doi.org/10.1097/YCT.0b013e3181a95da8] [PMID: 20190603]
[60]
Jorgensen, A.; Magnusson, P.; Hanson, L.G.; Kirkegaard, T.; Benveniste, H.; Lee, H.; Svarer, C.; Mikkelsen, J.D.; Fink-Jensen, A.; Knudsen, G.M.; Paulson, O.B.; Bolwig, T.G.; Jorgensen, M.B. Regional brain volumes, diffusivity, and metabolite changes after electroconvulsive therapy for severe depression. Acta Psychiatr. Scand., 2016, 133(2), 154-164.
[http://dx.doi.org/10.1111/acps.12462] [PMID: 26138003]
[61]
Raichle, M.E.; Snyder, A.Z. A default mode of brain function: a brief history of an evolving idea. Neuroimage, 2007, 37(4), 1083-1090.
[http://dx.doi.org/10.1016/j.neuroimage.2007.02.041] [PMID: 17719799]
[62]
Narr, K.L.; Leaver, A.M. Connectome and schizophrenia. Curr. Opin. Psychiatry, 2015, 28(3), 229-235.
[http://dx.doi.org/10.1097/YCO.0000000000000157] [PMID: 25768086]
[63]
Fornito, A.; Bullmore, E.T.; Zalesky, A. Opportunities and Challenges for Psychiatry in the Connectomic Era. Biol. Psychiatry Cogn. Neurosci. Neuroimaging, 2017, 2(1), 9-19.
[http://dx.doi.org/10.1016/j.bpsc.2016.08.003] [PMID: 29560890]
[64]
Tamminga, C.A.; Stan, A.D.; Wagner, A.D. The hippocampal formation in schizophrenia. Am. J. Psychiatry, 2010, 167(10), 1178-1193.
[http://dx.doi.org/10.1176/appi.ajp.2010.09081187] [PMID: 20810471]
[65]
Leaver, A.M.; Espinoza, R.; Pirnia, T.; Joshi, S.H.; Woods, R.P.; Narr, K.L. Modulation of intrinsic brain activity by electroconvulsive therapy in major depression. Biol. Psychiatry Cogn. Neurosci. Neuroimaging, 2016, 1(1), 77-86.
[http://dx.doi.org/10.1016/j.bpsc.2015.09.001] [PMID: 26878070]
[66]
Chen, X.; Liu, C.; He, H.; Chang, X.; Jiang, Y.; Li, Y.; Duan, M.; Li, J.; Luo, C.; Yao, D. Transdiagnostic differences in the resting-state functional connectivity of the prefrontal cortex in depression and schizophrenia. J. Affect. Disord., 2017, 217, 118-124.
[http://dx.doi.org/10.1016/j.jad.2017.04.001] [PMID: 28407554]
[67]
Jiang, Y.; Duan, M.; Chen, X.; Chang, X.; He, H.; Li, Y.; Luo, C.; Yao, D. Common and distinct dysfunctional patterns contribute to triple network model in schizophrenia and depression: A preliminary study. Prog Neuropsychopharmacol Biol Psychiatry, 2017, 79(Pt B), 302-310.
[http://dx.doi.org/10.1016/j.pnpbp.2017.07.007]
[68]
Oltedal, L.; Bartsch, H.; Sørhaug, O.J.; Kessler, U.; Abbott, C.; Dols, A.; Stek, M.L.; Ersland, L.; Emsell, L.; van Eijndhoven, P.; Argyelan, M.; Tendolkar, I.; Nordanskog, P.; Hamilton, P.; Jorgensen, M.B.; Sommer, I.E.; Heringa, S.M.; Draganski, B.; Redlich, R.; Dannlowski, U.; Kugel, H.; Bouckaert, F.; Sienaert, P.; Anand, A.; Espinoza, R.; Narr, K.L.; Holland, D.; Dale, A.M.; Oedegaard, K.J. The Global ECT-MRI Research Collaboration (GEMRIC): Establishing a multi-site investigation of the neural mechanisms underlying response to electroconvulsive therapy. Neuroimage Clin., 2017, 14, 422-432.
[http://dx.doi.org/10.1016/j.nicl.2017.02.009] [PMID: 28275543]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy