Generic placeholder image

Current Cancer Drug Targets

Editor-in-Chief

ISSN (Print): 1568-0096
ISSN (Online): 1873-5576

Review Article

Recent Progress in Histone Deacetylase (HDAC) 1 Inhibitors as Anticancer Agent

Author(s): Preeti Patel*, Simranpreet K. Wahan, S. Vishakha, Balak Das Kurmi, Ghanshyam Das Gupta, Harish Rajak and Vivek Asati

Volume 23, Issue 1, 2023

Published on: 20 August, 2022

Page: [47 - 70] Pages: 24

DOI: 10.2174/1568009622666220624090542

Price: $65

Abstract

Histone deacetylases (HDACs) are essential for maintaining homeostasis by catalyzing histone deacetylation. Aberrant expression of HDACs is associated with various human diseases. Although HDAC inhibitors are used as effective chemotherapeutic agents in clinical practice, their applications remain limited due to associated side effects induced by weak isoform selectivity. HDAC1 displays unique structure and cellular localization as well as diverse substrates and exhibits a wider range of biological functions than other isoforms. HDAC1 displays a unique structure primarily found in the nucleus and involved in epigenetic and transcriptional regulation. HDAC1 is ubiquitously expressed and associated with Sin3, NuRD, and CoRest transcription repressive complexes responsible for distinct cellular processes like cell proliferation and survival. HDAC1 inhibitors have been effectively used to treat various cancers such as gastric, breast, colorectal, prostate, colon, lung, ovarian, pancreatic, and inflammation without exerting significant toxic effects. In this review, we summarize four major structural classes of HDAC1 inhibitors (i.e., hydroxamic acid derivatives, benzamides, hydrazides, and thiols) with their structural activity relationship. This review is a comprehensive work on HDAC1 inhibitors to achieve deep insight of knowledge about the structural information of HDAC1 inhibitors. It may provide up-to-date direction for developing new selective HDAC1 inhibitors as anticancer agents.

Keywords: Histone deacetylases 1(HDAC1), anticancer, hydroxamic acid derivatives, benzamides, hydrazides, thiols.

Graphical Abstract
[1]
Torre, L.A.; Siegel, R.L.; Ward, E.M.; Jemal, A. Global cancer incidence and mortality rates and trends--an update. Cancer Epidemiol. Biomarkers Prev., 2016, 25(1), 16-27.
[http://dx.doi.org/10.1158/1055-9965.EPI-15-0578] [PMID: 26667886]
[2]
Cooper, J.A. Oncogenes and anti-oncogenes. Curr. Opin. Cell Biol., 1990, 2(2), 285-295.
[http://dx.doi.org/10.1016/0955-0674(90)90021-6] [PMID: 2114126]
[3]
Wang, H.; Wang, P.; Xu, M.; Song, X.; Wu, H.; Evert, M.; Calvisi, D.F.; Zeng, Y.; Chen, X. Distinct functions of transforming growth factor-β signaling in c-MYC driven hepatocellular carcinoma initiation and progression. Cell Death Dis., 2021, 12(2), 200.
[http://dx.doi.org/10.1038/s41419-021-03488-z] [PMID: 33608500]
[4]
Zugazagoitia, J.; Guedes, C.; Ponce, S.; Ferrer, I.; Molina-Pinelo, S.; Paz-Ares, L. Current challenges in cancer treatment. Clin. Ther., 2016, 38(7), 1551-1566.
[http://dx.doi.org/10.1016/j.clinthera.2016.03.026] [PMID: 27158009]
[5]
Shafabakhsh, R.; Arianfar, F.; Vosough, M.; Mirzaei, H.R.; Mahjoubin-Tehran, M.; Khanbabaei, H.; Kowsari, H.; Shojaie, L.; Azar, M.E.F.; Hamblin, M.R.; Mirzaei, H. Autophagy and gastrointestinal cancers: The behind the scenes role of long non-coding RNAs in initiation, progression, and treatment resistance. Cancer Gene Ther., 2021, 28(12), 1229-1255.
[http://dx.doi.org/10.1038/s41417-020-00272-7] [PMID: 33432087]
[6]
Kumari, S.; Advani, D.; Sharma, S.; Ambasta, R.K.; Kumar, P. Combinatorial therapy in tumor microenvironment: Where do we stand? Biochim. Biophys. Acta Rev. Cancer, 2021, 1876(2), 188585.
[http://dx.doi.org/10.1016/j.bbcan.2021.188585] [PMID: 34224836]
[7]
Siegel, R.L.; Miller, K.D.; Jemal, A. Cancer statistics, 2020. CA Cancer J. Clin., 2020, 70(1), 7-30.
[http://dx.doi.org/10.3322/caac.21590] [PMID: 31912902]
[8]
Xi, Y.; Xu, P. Global colorectal cancer burden in 2020 and projections to 2040. Transl. Oncol., 2021, 14(10), 101174.
[http://dx.doi.org/10.1016/j.tranon.2021.101174] [PMID: 34243011]
[9]
Zada, S.; Hwang, J.S.; Ahmed, M.; Lai, T.H.; Pham, T.M.; Elashkar, O.; Kim, D.R. Cross talk between autophagy and oncogenic signaling pathways and implications for cancer therapy. Biochim. Biophys. Acta Rev. Cancer, 2021, 1876(1), 188565.
[http://dx.doi.org/10.1016/j.bbcan.2021.188565] [PMID: 33992723]
[10]
Bai, J.; Shi, J.; Li, C.; Wang, S.; Zhang, T.; Hua, X.; Zhu, B.; Koka, H.; Wu, H.H.; Song, L.; Wang, D.; Wang, M.; Zhou, W.; Ballew, B.J.; Zhu, B.; Hicks, B.; Mirabello, L.; Parry, D.M.; Zhai, Y.; Li, M.; Du, J.; Wang, J.; Zhang, S.; Liu, Q.; Zhao, P.; Gui, S.; Goldstein, A.M.; Zhang, Y.; Yang, X.R. Whole genome sequencing of skull-base chordoma reveals genomic alterations associated with recurrence and chordoma-specific survival. Nat. Commun., 2021, 12(1), 757.
[http://dx.doi.org/10.1038/s41467-021-21026-5] [PMID: 33536423]
[11]
Devarakonda, S.; Morgensztern, D.; Govindan, R. Genomic alterations in lung adenocarcinoma. Lancet Oncol., 2015, 16(7), e342-e351.
[http://dx.doi.org/10.1016/S1470-2045(15)00077-7] [PMID: 26149886]
[12]
Chen, H.P.; Zhao, Y.T.; Zhao, T.C. Histone deacetylases and mechanisms of regulation of gene expression. Crit. Rev. Oncog., 2015, 20(1-2), 35-47.
[http://dx.doi.org/10.1615/CritRevOncog.2015012997] [PMID: 25746103]
[13]
Hull, E.E.; Montgomery, M.R.; Leyva, K.J. HDAC inhibitors as epigenetic regulators of the immune system: Impacts on cancer therapy and inflammatory diseases. BioMed Res. Int., 2016, 2016, 8797206.
[http://dx.doi.org/10.1155/2016/8797206] [PMID: 27556043]
[14]
Ramaiah, M.J.; Tangutur, A.D.; Manyam, R.R. Epigenetic modulation and understanding of HDAC inhibitors in cancer therapy. Life Sci., 2021, 277, 119504.
[http://dx.doi.org/10.1016/j.lfs.2021.119504] [PMID: 33872660]
[15]
de Ruijter, A.J.; van Gennip, A.H.; Caron, H.N.; Kemp, S.; van Kuilenburg, A.B. Histone deacetylases (HDACs): Characterization of the classical HDAC family. Biochem. J., 2003, 370(Pt 3), 737-749.
[http://dx.doi.org/10.1042/bj20021321] [PMID: 12429021]
[16]
Gray, S.G.; Ekström, T.J. The human histone deacetylase family. Exp. Cell Res., 2001, 262(2), 75-83.
[http://dx.doi.org/10.1006/excr.2000.5080] [PMID: 11139331]
[17]
Wilson, A.J.; Byun, D.S.; Popova, N.; Murray, L.B.; L’Italien, K.; Sowa, Y.; Arango, D.; Velcich, A.; Augenlicht, L.H.; Mariadason, J.M. Histone deacetylase 3 (HDAC3) and other class I HDACs regulate colon cell maturation and p21 expression and are deregulated in human colon cancer. J. Biol. Chem., 2006, 281(19), 13548-13558.
[http://dx.doi.org/10.1074/jbc.M510023200] [PMID: 16533812]
[18]
Schneider, G.; Krämer, O.H.; Schmid, R.M.; Saur, D. Acetylation as a transcriptional control mechanism-HDACs and HATs in pancreatic ductal adenocarcinoma. J. Gastrointest. Cancer, 2011, 42(2), 85-92.
[http://dx.doi.org/10.1007/s12029-011-9257-1] [PMID: 21271301]
[19]
Wang, P.; Wang, Z.; Liu, J. Role of HDACs in normal and malignant hematopoiesis. Mol. Cancer, 2020, 19(1), 5.
[http://dx.doi.org/10.1186/s12943-019-1127-7] [PMID: 31910827]
[20]
Khan, O.; La Thangue, N.B. HDAC inhibitors in cancer biology: Emerging mechanisms and clinical applications. Immunol. Cell Biol., 2012, 90(1), 85-94.
[http://dx.doi.org/10.1038/icb.2011.100] [PMID: 22124371]
[21]
Hayakawa, T.; Nakayama, J. Physiological roles of class I HDAC complex and histone demethylase. J. Biomed. Biotechnol., 2011, 2011, 129383.
[http://dx.doi.org/10.1155/2011/129383] [PMID: 21049000]
[22]
Glozak, M.A.; Sengupta, N.; Zhang, X.; Seto, E. Acetylation and deacetylation of non-histone proteins. Gene, 2005, 363, 15-23.
[http://dx.doi.org/10.1016/j.gene.2005.09.010] [PMID: 16289629]
[23]
Das Gupta, K.; Shakespear, M.R.; Iyer, A.; Fairlie, D.P.; Sweet, M.J. Histone deacetylases in monocyte/macrophage development, activation and metabolism: Refining HDAC targets for inflammatory and infectious diseases. Clin. Transl. Immunology, 2016, 5(1), e62.
[http://dx.doi.org/10.1038/cti.2015.46] [PMID: 26900475]
[24]
Schroder, K.; Sweet, M.J.; Hume, D.A. Signal integration between IFNgamma and TLR signalling pathways in macrophages. Immunobiology, 2006, 211(6-8), 511-524.
[http://dx.doi.org/10.1016/j.imbio.2006.05.007] [PMID: 16920490]
[25]
Shakespear, M.R.; Halili, M.A.; Irvine, K.M.; Fairlie, D.P.; Sweet, M.J. Histone deacetylases as regulators of inflammation and immunity. Trends Immunol., 2011, 32(7), 335-343.
[http://dx.doi.org/10.1016/j.it.2011.04.001] [PMID: 21570914]
[26]
Meek, D.W. Regulation of the p53 response and its relationship to cancer. Biochem. J., 2015, 469(3), 325-346.
[http://dx.doi.org/10.1042/BJ20150517] [PMID: 26205489]
[27]
Juan, L.J.; Shia, W.J.; Chen, M.H.; Yang, W.M.; Seto, E.; Lin, Y.S.; Wu, C.W. Histone deacetylases specifically down-regulate p53-dependent gene activation. J. Biol. Chem., 2000, 275(27), 20436-20443.
[http://dx.doi.org/10.1074/jbc.M000202200] [PMID: 10777477]
[28]
Hassa, P.O.; Haenni, S.S.; Buerki, C.; Meier, N.I.; Lane, W.S.; Owen, H.; Gersbach, M.; Imhof, R.; Hottiger, M.O. Acetylation of poly(ADP-ribose) polymerase-1 by p300/CREB-binding protein regulates coactivation of NF-kappaB-dependent transcription. J. Biol. Chem., 2005, 280(49), 40450-40464.
[http://dx.doi.org/10.1074/jbc.M507553200] [PMID: 16204234]
[29]
Millard, C.J.; Watson, P.J.; Celardo, I.; Gordiyenko, Y.; Cowley, S.M.; Robinson, C.V.; Fairall, L.; Schwabe, J.W.; Class, I.; Class, I. HDACs share a common mechanism of regulation by inositol phosphates. Mol. Cell, 2013, 51(1), 57-67.
[http://dx.doi.org/10.1016/j.molcel.2013.05.020] [PMID: 23791785]
[30]
Patel, P.; Patel, V.K.; Singh, A.; Jawaid, T.; Kamal, M.; Rajak, H. Identification of hydroxamic acid based selective HDAC1 inhibitors: Computer aided drug design studies. Curr. Computeraided Drug Des., 2019, 15(2), 145-166.
[http://dx.doi.org/10.2174/1573409914666180502113135] [PMID: 29732991]
[31]
Sixto-López, Y.; Bello, M.; Correa-Basurto, J. Insights into structural features of HDAC1 and its selectivity inhibition elucidated by molecular dynamic simulation and molecular docking. J. Biomol. Struct. Dyn., 2019, 37(3), 584-610.
[http://dx.doi.org/10.1080/07391102.2018.1441072] [PMID: 29447615]
[32]
Mal, A.; Sturniolo, M.; Schiltz, R.L.; Ghosh, M.K.; Harter, M.L. A role for histone deacetylase HDAC1 in modulating the transcriptional activity of MyoD: Inhibition of the myogenic program. EMBO J., 2001, 20(7), 1739-1753.
[http://dx.doi.org/10.1093/emboj/20.7.1739] [PMID: 11285237]
[33]
Grant, C.; Rahman, F.; Piekarz, R.; Peer, C.; Frye, R.; Robey, R.W.; Gardner, E.R.; Figg, W.D.; Bates, S.E. Romidepsin: A new therapy for cutaneous T-cell lymphoma and a potential therapy for solid tumors. Expert Rev. Anticancer Ther., 2010, 10(7), 997-1008.
[http://dx.doi.org/10.1586/era.10.88] [PMID: 20645688]
[34]
Eckschlager, T.; Plch, J.; Stiborova, M.; Hrabeta, J. Histone deacetylase inhibitors as anticancer drugs. Int. J. Mol. Sci., 2017, 18(7), 1414.
[http://dx.doi.org/10.3390/ijms18071414] [PMID: 28671573]
[35]
Rajak, H.; Singh, A.; Raghuwanshi, K.; Kumar, R.; Dewangan, P.K.; Veerasamy, R.; Sharma, P.C.; Dixit, A.; Mishra, P. A structural insight into hydroxamic acid based histone deacetylase inhibitors for the presence of anticancer activity. Curr. Med. Chem., 2014, 21(23), 2642-2664.
[http://dx.doi.org/10.2174/09298673113209990191] [PMID: 23895688]
[36]
Bouchain, G.; Leit, S.; Frechette, S.; Khalil, E.A.; Lavoie, R.; Moradei, O.; Woo, S.H.; Fournel, M.; Yan, P.T.; Kalita, A.; Trachy-Bourget, M.C.; Beaulieu, C.; Li, Z.; Robert, M.F.; MacLeod, A.R.; Besterman, J.M.; Delorme, D. Development of potential antitumor agents. Synthesis and biological evaluation of a new set of sulfonamide derivatives as histone deacetylase inhibitors. J. Med. Chem., 2003, 46(5), 820-830.
[http://dx.doi.org/10.1021/jm020377a] [PMID: 12593661]
[37]
Mai, A.; Massa, S.; Rotili, D.; Simeoni, S.; Ragno, R.; Botta, G.; Nebbioso, A.; Miceli, M.; Altucci, L.; Brosch, G. Synthesis and biological properties of novel, uracil-containing histone deacetylase inhibitors. J. Med. Chem., 2006, 49(20), 6046-6056.
[http://dx.doi.org/10.1021/jm0605536] [PMID: 17004718]
[38]
Mahboobi, S.; Sellmer, A.; Höcher, H.; Garhammer, C.; Pongratz, H.; Maier, T.; Ciossek, T.; Beckers, T. 2-aroylindoles and 2-aroylbenzofurans with N-hydroxyacrylamide substructures as a novel series of rationally designed histone deacetylase inhibitors. J. Med. Chem., 2007, 50(18), 4405-4418.
[http://dx.doi.org/10.1021/jm0703136] [PMID: 17691763]
[39]
Cho, Y.S.; Whitehead, L.; Li, J.; Chen, C.H.; Jiang, L.; Vögtle, M.; Francotte, E.; Richert, P.; Wagner, T.; Traebert, M.; Lu, Q.; Cao, X.; Dumotier, B.; Fejzo, J.; Rajan, S.; Wang, P.; Yan-Neale, Y.; Shao, W.; Atadja, P.; Shultz, M. Conformational refinement of hydroxamate-based histone deacetylase inhibitors and exploration of 3-piperidin-3-ylindole analogues of dacinostat (LAQ824). J. Med. Chem., 2010, 53(7), 2952-2963.
[http://dx.doi.org/10.1021/jm100007m] [PMID: 20205394]
[40]
Rajak, H.; Agarawal, A.; Parmar, P.; Thakur, B.S.; Veerasamy, R.; Sharma, P.C.; Kharya, M.D. 2,5-Disubstituted-1,3,4-oxadiazoles/thiadiazole as surface recognition moiety: Design and synthesis of novel hydroxamic acid based histone deacetylase inhibitors. Bioorg. Med. Chem. Lett., 2011, 21(19), 5735-5738.
[http://dx.doi.org/10.1016/j.bmcl.2011.08.022] [PMID: 21875796]
[41]
Cheng, J.; Qin, J.; Guo, S.; Qiu, H.; Zhong, Y. Design, synthesis and evaluation of novel HDAC inhibitors as potential antitumor agents. Bioorg. Med. Chem. Lett., 2014, 24(19), 4768-4772.
[http://dx.doi.org/10.1016/j.bmcl.2014.06.080] [PMID: 25182565]
[42]
Witter, D.J.; Belvedere, S.; Chen, L.; Secrist, J.P.; Mosley, R.T.; Miller, T.A. Benzo[b]thiophene-based histone deacetylase inhibitors. Bioorg. Med. Chem. Lett., 2007, 17(16), 4562-4567.
[http://dx.doi.org/10.1016/j.bmcl.2007.05.091] [PMID: 17576064]
[43]
Wang, H.; Yu, N.; Chen, D.; Lee, K.C.; Lye, P.L.; Chang, J.W.; Deng, W.; Ng, M.C.; Lu, T.; Khoo, M.L.; Poulsen, A.; Sangthongpitag, K.; Wu, X.; Hu, C.; Goh, K.C.; Wang, X.; Fang, L.; Goh, K.L.; Khng, H.H.; Goh, S.K.; Yeo, P.; Liu, X.; Bonday, Z.; Wood, J.M.; Dymock, B.W.; Kantharaj, E.; Sun, E.T. Discovery of (2E)-3-2-butyl-1-[2-(diethylamino)ethyl]-1H-benzimidazol-5-yl-N-hydroxyacrylamide (SB939), an orally active histone deacetylase inhibitor with a superior preclinical profile. J. Med. Chem., 2011, 54(13), 4694-4720.
[http://dx.doi.org/10.1021/jm2003552] [PMID: 21634430]
[44]
Wang, H.; Yu, N.; Song, H.; Chen, D.; Zou, Y.; Deng, W.; Lye, P.L.; Chang, J.; Ng, M.; Sun, E.T.; Sangthongpitag, K.; Wang, X.; Wu, X.; Khng, H.H.; Fang, L.; Goh, S.K.; Ong, W.C.; Bonday, Z.; Stünkel, W.; Poulsen, A.; Entzeroth, M. N-Hydroxy-1,2-disubstituted-1H-benzimidazol-5-yl acrylamides as novel histone deacetylase inhibitors: Design, synthesis, SAR studies, and in vivo antitumor activity. Bioorg. Med. Chem. Lett., 2009, 19(5), 1403-1408.
[http://dx.doi.org/10.1016/j.bmcl.2009.01.041] [PMID: 19181524]
[45]
Shultz, M.; Fan, J.; Chen, C.; Cho, Y.S.; Davis, N.; Bickford, S.; Buteau, K.; Cao, X.; Holmqvist, M.; Hsu, M.; Jiang, L.; Liu, G.; Lu, Q.; Patel, C.; Suresh, J.R.; Selvaraj, M.; Urban, L.; Wang, P.; Yan-Neale, Y.; Whitehead, L.; Zhang, H.; Zhou, L.; Atadja, P. The design, synthesis and structure-activity relationships of novel isoindoline-based histone deacetylase inhibitors. Bioorg. Med. Chem. Lett., 2011, 21(16), 4909-4912.
[http://dx.doi.org/10.1016/j.bmcl.2011.06.015] [PMID: 21742496]
[46]
Woo, S.H.; Frechette, S.; Abou Khalil, E.; Bouchain, G.; Vaisburg, A.; Bernstein, N.; Moradei, O.; Leit, S.; Allan, M.; Fournel, M.; Trachy-Bourget, M.C.; Li, Z.; Besterman, J.M.; Delorme, D. Structurally simple trichostatin A-like straight chain hydroxamates as potent histone deacetylase inhibitors. J. Med. Chem., 2002, 45(13), 2877-2885.
[http://dx.doi.org/10.1021/jm020154k] [PMID: 12061890]
[47]
Yang, F.; Peng, S.; Li, Y.; Su, L.; Peng, Y.; Wu, J.; Chen, H.; Liu, M.; Yi, Z.; Chen, Y. A hybrid of thiazolidinone with the hydroxamate scaffold for developing novel histone deacetylase inhibitors with antitumor activities. Org. Biomol. Chem., 2016, 14(5), 1727-1735.
[http://dx.doi.org/10.1039/C5OB02250A] [PMID: 26732459]
[48]
Yang, F.; Shan, P.; Zhao, N.; Ge, D.; Zhu, K.; Jiang, C.S.; Li, P.; Zhang, H. Development of hydroxamate-based histone deacetylase inhibitors containing 1,2,4-oxadiazole moiety core with antitumor activities. Bioorg. Med. Chem. Lett., 2019, 29(1), 15-21.
[http://dx.doi.org/10.1016/j.bmcl.2018.11.027] [PMID: 30455152]
[49]
Yang, F.; Zhao, N.; Song, J.; Zhu, K.; Jiang, C.S.; Shan, P.; Zhang, H. Design, synthesis and biological evaluation of novel coumarin-based hydroxamate derivatives as histone deacetylase (hdac) inhibitors with antitumor activities. Molecules, 2019, 24(14), 2569.
[http://dx.doi.org/10.3390/molecules24142569] [PMID: 31311163]
[50]
Mai, A.; Massa, S.; Ragno, R.; Esposito, M.; Sbardella, G.; Nocca, G.; Scatena, R.; Jesacher, F.; Loidl, P.; Brosch, G. Binding mode analysis of 3-(4-benzoyl-1-methyl-1H-2-pyrrolyl)-N-hydroxy-2-propenamide: A new synthetic histone deacetylase inhibitor inducing histone hyperacetylation, growth inhibition, and terminal cell differentiation. J. Med. Chem., 2002, 45(9), 1778-1784.
[http://dx.doi.org/10.1021/jm011088+] [PMID: 11960489]
[51]
Ragno, R.; Mai, A.; Massa, S.; Cerbara, I.; Valente, S.; Bottoni, P.; Scatena, R.; Jesacher, F.; Loidl, P.; Brosch, G. 3-(4-Aroyl-1-methyl-1H-pyrrol-2-yl)-N-hydroxy-2-propenamides as a new class of synthetic histone deacetylase inhibitors. 3. Discovery of novel lead compounds through structure-based drug design and docking studies. J. Med. Chem., 2004, 47(6), 1351-1359.
[http://dx.doi.org/10.1021/jm031036f] [PMID: 14998325]
[52]
Shen, J.; Woodward, R.; Kedenburg, J.P.; Liu, X.; Chen, M.; Fang, L.; Sun, D.; Wang, P.G. Histone deacetylase inhibitors through click chemistry. J. Med. Chem., 2008, 51(23), 7417-7427.
[http://dx.doi.org/10.1021/jm8005355] [PMID: 19007204]
[53]
Sun, Q.; Yao, Y.; Liu, C.; Li, H.; Yao, H.; Xue, X.; Liu, J.; Tu, Z.; Jiang, S. Design, synthesis, and biological evaluation of novel histone deacetylase 1 inhibitors through click chemistry. Bioorg. Med. Chem. Lett., 2013, 23(11), 3295-3299.
[http://dx.doi.org/10.1016/j.bmcl.2013.03.102] [PMID: 23601706]
[54]
Wang, H.; Lim, Z.Y.; Zhou, Y.; Ng, M.; Lu, T.; Lee, K.; Sangthongpitag, K.; Goh, K.C.; Wang, X.; Wu, X.; Khng, H.H.; Goh, S.K.; Ong, W.C.; Bonday, Z.; Sun, E.T. Acylurea connected straight chain hydroxamates as novel histone deacetylase inhibitors: Synthesis, SAR, and in vivo antitumor activity. Bioorg. Med. Chem. Lett., 2010, 20(11), 3314-3321.
[http://dx.doi.org/10.1016/j.bmcl.2010.04.041] [PMID: 20451378]
[55]
Liu, T.; Kapustin, G.; Etzkorn, F.A. Design and synthesis of a potent histone deacetylase inhibitor. J. Med. Chem., 2007, 50(9), 2003-2006.
[http://dx.doi.org/10.1021/jm061082q] [PMID: 17419603]
[56]
Oyelere, A.K.; Chen, P.C.; Guerrant, W.; Mwakwari, S.C.; Hood, R.; Zhang, Y.; Fan, Y. Non-peptide macrocyclic histone deacetylase inhibitors. J. Med. Chem., 2009, 52(2), 456-468.
[http://dx.doi.org/10.1021/jm801128g] [PMID: 19093884]
[57]
Sixto-López, Y.; Gómez-Vidal, J.A.; de Pedro, N.; Bello, M.; Rosales-Hernández, M.C.; Correa-Basurto, J. Hydroxamic acid derivatives as HDAC1, HDAC6 and HDAC8 inhibitors with antiproliferative activity in cancer cell lines. Sci. Rep., 2020, 10(1), 10462.
[http://dx.doi.org/10.1038/s41598-020-67112-4] [PMID: 32591593]
[58]
Jose, B.; Okamura, S.; Kato, T.; Nishino, N.; Sumida, Y.; Yoshida, M. Toward an HDAC6 inhibitor: Synthesis and conformational analysis of cyclic hexapeptide hydroxamic acid designed from alpha-tubulin sequence. Bioorg. Med. Chem., 2004, 12(6), 1351-1356.
[http://dx.doi.org/10.1016/j.bmc.2004.01.014] [PMID: 15018907]
[59]
Zhang, X.; Zhang, J.; Tong, L.; Luo, Y.; Su, M.; Zang, Y.; Li, J.; Lu, W.; Chen, Y. The discovery of colchicine-SAHA hybrids as a new class of antitumor agents. Bioorg. Med. Chem., 2013, 21(11), 3240-3244.
[http://dx.doi.org/10.1016/j.bmc.2013.03.049] [PMID: 23602523]
[60]
He, R.; Chen, Y.; Chen, Y.; Ougolkov, A.V.; Zhang, J.S.; Savoy, D.N.; Billadeau, D.D.; Kozikowski, A.P. Synthesis and biological evaluation of triazol-4-ylphenyl-bearing histone deacetylase inhibitors as anticancer agents. J. Med. Chem., 2010, 53(3), 1347-1356.
[http://dx.doi.org/10.1021/jm901667k] [PMID: 20055418]
[61]
Zhang, X.; Bao, B.; Yu, X.; Tong, L.; Luo, Y.; Huang, Q.; Su, M.; Sheng, L.; Li, J.; Zhu, H.; Yang, B.; Zhang, X.; Chen, Y.; Lu, W. The discovery and optimization of novel dual inhibitors of topoisomerase II and histone deacetylase. Bioorg. Med. Chem., 2013, 21(22), 6981-6995.
[http://dx.doi.org/10.1016/j.bmc.2013.09.023] [PMID: 24095018]
[62]
Spencer, J.; Amin, J.; Wang, M.; Packham, G.; Alwi, S.S.; Tizzard, G.J.; Coles, S.J.; Paranal, R.M.; Bradner, J.E.; Heightman, T.D. Synthesis and biological evaluation of JAHAs: Ferrocene-based histone deacetylase inhibitors. ACS Med. Chem. Lett., 2011, 2(5), 358-362.
[http://dx.doi.org/10.1021/ml100295v] [PMID: 21572592]
[63]
Raudszus, R.; Nowotny, R.; Gertzen, C.G.W.; Schöler, A.; Krizsan, A.; Gockel, I.; Kalwa, H.; Gohlke, H.; Thieme, R.; Hansen, F.K. Fluorescent analogs of peptoid-based HDAC inhibitors: Synthesis, biological activity and cellular uptake kinetics. Bioorg. Med. Chem., 2019, 27(19), 115039.
[http://dx.doi.org/10.1016/j.bmc.2019.07.055] [PMID: 31420257]
[64]
Amin, J.; Puglisi, A.; Clarke, J.; Milton, J.; Wang, M.; Paranal, R.M.; Bradner, J.E.; Spencer, J. A cyclodextrin-capped histone deacetylase inhibitor. Bioorg. Med. Chem. Lett., 2013, 23(11), 3346-3348.
[http://dx.doi.org/10.1016/j.bmcl.2013.03.084] [PMID: 23591111]
[65]
Chen, F.; Chai, H.; Su, M.B.; Zhang, Y.M.; Li, J.; Xie, X.; Nan, F.J. Potent and orally efficacious bisthiazole-based histone deacetylase inhibitors. ACS Med. Chem. Lett., 2014, 5(6), 628-633.
[http://dx.doi.org/10.1021/ml400470s] [PMID: 24944733]
[66]
Yang, W.; Li, L.; Ji, X.; Wu, X.; Su, M.; Sheng, L.; Zang, Y.; Li, J.; Liu, H. Design, synthesis and biological evaluation of 4-anilinothieno[2,3-d]pyrimidine-based hydroxamic acid derivatives as novel histone deacetylase inhibitors. Bioorg. Med. Chem., 2014, 22(21), 6146-6155.
[http://dx.doi.org/10.1016/j.bmc.2014.08.030] [PMID: 25261927]
[67]
Wang, J.; Su, M.; Li, T.; Gao, A.; Yang, W.; Sheng, L.; Zang, Y.; Li, J.; Liu, H. Design, synthesis and biological evaluation of thienopyrimidine hydroxamic acid based derivatives as structurally novel histone deacetylase (HDAC) inhibitors. Eur. J. Med. Chem., 2017, 128, 293-299.
[http://dx.doi.org/10.1016/j.ejmech.2017.01.035] [PMID: 28213282]
[68]
Zang, J.; Shi, B.; Liang, X.; Gao, Q.; Xu, W.; Zhang, Y. Development of N-hydroxycinnamamide-based HDAC inhibitors with improved HDAC inhibitory activity and in vitro antitumor activity. Bioorg. Med. Chem., 2017, 25(9), 2666-2675.
[http://dx.doi.org/10.1016/j.bmc.2016.12.001] [PMID: 28336407]
[69]
Al-Sanea, M.M.; Gotina, L.; Mohamed, M.F.; Grace Thomas Parambi, D.; Gomaa, H.A.M.; Mathew, B.; Youssif, B.G.M.; Alharbi, K.S.; Elsayed, Z.M.; Abdelgawad, M.A.; Eldehna, W.M. Design, synthesis and biological evaluation of new HDAC1 and HDAC2 inhibitors endowed with ligustrazine as a novel cap moiety. Drug Des. Devel. Ther., 2020, 14, 497-508.
[http://dx.doi.org/10.2147/DDDT.S237957] [PMID: 32103894]
[70]
Liu, J.; Zhou, J.; He, F.; Gao, L.; Wen, Y.; Gao, L.; Wang, P.; Kang, D.; Hu, L. Design, synthesis and biological evaluation of novel indazole-based derivatives as potent HDAC inhibitors via fragment-based virtual screening. Eur. J. Med. Chem., 2020, 192, 112189.
[http://dx.doi.org/10.1016/j.ejmech.2020.112189] [PMID: 32151834]
[71]
Mwakwari, S.C.; Guerrant, W.; Patil, V.; Khan, S.I.; Tekwani, B.L.; Gurard-Levin, Z.A.; Mrksich, M.; Oyelere, A.K. Non-peptide macrocyclic histone deacetylase inhibitors derived from tricyclic ketolide skeleton. J. Med. Chem., 2010, 53(16), 6100-6111.
[http://dx.doi.org/10.1021/jm100507q] [PMID: 20669972]
[72]
Guandalini, L.; Balliu, M.; Cellai, C.; Martino, M.V.; Nebbioso, A.; Mercurio, C.; Carafa, V.; Bartolucci, G.; Dei, S.; Manetti, D.; Teodori, E.; Scapecchi, S.; Altucci, L.; Paoletti, F.; Romanelli, M.N. Design, synthesis and preliminary evaluation of a series of histone deacetylase inhibitors carrying a benzodiazepine ring. Eur. J. Med. Chem., 2013, 66, 56-68.
[http://dx.doi.org/10.1016/j.ejmech.2013.05.017] [PMID: 23792316]
[73]
Reßing, N.; Marquardt, V.; Gertzen, C.G.W.; Schöler, A.; Schramm, A.; Kurz, T.; Gohlke, H.; Aigner, A.; Remke, M.; Hansen, F.K. Design, synthesis and biological evaluation of β-peptoid-capped HDAC inhibitors with anti-neuroblastoma and anti-glioblastoma activity. MedChemComm, 2018, 10(7), 1109-1115.
[http://dx.doi.org/10.1039/C8MD00454D] [PMID: 31391882]
[74]
Chen, J.; Sang, Z.; Jiang, Y.; Yang, C.; He, L. Design, synthesis, and biological evaluation of quinazoline derivatives as dual HDAC1 and HDAC6 inhibitors for the treatment of cancer. Chem. Biol. Drug Des., 2019, 93(3), 232-241.
[http://dx.doi.org/10.1111/cbdd.13405] [PMID: 30251407]
[75]
Zhang, Y.; Feng, J.; Jia, Y.; Wang, X.; Zhang, L.; Liu, C.; Fang, H.; Xu, W. Development of tetrahydroisoquinoline-based hydroxamic acid derivatives: Potent histone deacetylase inhibitors with marked in vitro and in vivo antitumor activities. J. Med. Chem., 2011, 54(8), 2823-2838.
[http://dx.doi.org/10.1021/jm101605z] [PMID: 21476600]
[76]
Chen, J.B.; Chern, T.R.; Wei, T.T.; Chen, C.C.; Lin, J.H.; Fang, J.M. Design and synthesis of dual-action inhibitors targeting histone deacetylases and 3-hydroxy-3-methylglutaryl coenzyme A reductase for cancer treatment. J. Med. Chem., 2013, 56(9), 3645-3655.
[http://dx.doi.org/10.1021/jm400179b] [PMID: 23570542]
[77]
Su, H.; Nebbioso, A.; Carafa, V.; Chen, Y.; Yang, B.; Altucci, L.; You, Q. Design, synthesis and biological evaluation of novel compounds with conjugated structure as anti-tumor agents. Bioorg. Med. Chem., 2008, 16(17), 7992-8002.
[http://dx.doi.org/10.1016/j.bmc.2008.07.066] [PMID: 18701301]
[78]
Lee, S.; Shinji, C.; Ogura, K.; Shimizu, M.; Maeda, S.; Sato, M.; Yoshida, M.; Hashimoto, Y.; Miyachi, H. Design, synthesis, and evaluation of isoindolinone-hydroxamic acid derivatives as histone deacetylase (HDAC) inhibitors. Bioorg. Med. Chem. Lett., 2007, 17(17), 4895-4900.
[http://dx.doi.org/10.1016/j.bmcl.2007.06.038] [PMID: 17588744]
[79]
Shinji, C.; Maeda, S.; Imai, K.; Yoshida, M.; Hashimoto, Y.; Miyachi, H. Design, synthesis, and evaluation of cyclic amide/imide-bearing hydroxamic acid derivatives as class-selective histone deacetylase (HDAC) inhibitors. Bioorg. Med. Chem., 2006, 14(22), 7625-7651.
[http://dx.doi.org/10.1016/j.bmc.2006.07.008] [PMID: 16877001]
[80]
Islam, M.N.; Islam, M.S.; Hoque, M.A.; Kato, T.; Nishino, N.; Ito, A.; Yoshida, M. Bicyclic tetrapeptides as potent HDAC inhibitors: Effect of aliphatic loop position and hydrophobicity on inhibitory activity. Bioorg. Med. Chem., 2014, 22(15), 3862-3870.
[http://dx.doi.org/10.1016/j.bmc.2014.06.031] [PMID: 25022972]
[81]
Choi, E.; Lee, C.; Park, J.E.; Seo, J.J.; Cho, M.; Kang, J.S.; Kim, H.M.; Park, S.K.; Lee, K.; Han, G. Structure and property based design, synthesis and biological evaluation of γ-lactam based HDAC inhibitors. Bioorg. Med. Chem. Lett., 2011, 21(4), 1218-1221.
[http://dx.doi.org/10.1016/j.bmcl.2010.12.079] [PMID: 21256006]
[82]
Fass, D.M.; Shah, R.; Ghosh, B.; Hennig, K.; Norton, S.; Zhao, W.N.; Reis, S.A.; Klein, P.S.; Mazitschek, R.; Maglathlin, R.L.; Lewis, T.A.; Haggarty, S.J. Effect of inhibiting histone deacetylase with short-chain carboxylic acids and their hydroxamic acid analogs on vertebrate development and neuronal chromatin. ACS Med. Chem. Lett., 2010, 2(1), 39-42.
[http://dx.doi.org/10.1021/ml1001954] [PMID: 21874153]
[83]
Huang, W.J.; Chen, C.C.; Chao, S.W.; Yu, C.C.; Yang, C.Y.; Guh, J.H.; Lin, Y.C.; Kuo, C.I.; Yang, P.; Chang, C.I. Synthesis and evaluation of aliphatic-chain hydroxamates capped with osthole derivatives as histone deacetylase inhibitors. Eur. J. Med. Chem., 2011, 46(9), 4042-4049.
[http://dx.doi.org/10.1016/j.ejmech.2011.06.002] [PMID: 21712146]
[84]
Henkes, L.M.; Haus, P.; Jäger, F.; Ludwig, J.; Meyer-Almes, F.J. Synthesis and biochemical analysis of 2,2,3,3,4,4,5,5,6,6,7,7-dodecafluoro-N-hydroxy-octanediamides as inhibitors of human histone deacetylases. Bioorg. Med. Chem., 2012, 20(2), 985-995.
[http://dx.doi.org/10.1016/j.bmc.2011.11.041] [PMID: 22182579]
[85]
Zhang, Y.; Yang, P.; Chou, C.J.; Liu, C.; Wang, X.; Xu, W. Development of N-hydroxycinnamamide-based histone deacetylase inhibitors with indole-containing cap group. ACS Med. Chem. Lett., 2013, 4(2), 235-238.
[http://dx.doi.org/10.1021/ml300366t] [PMID: 23493449]
[86]
Tashima, T.; Murata, H.; Kodama, H. Design and synthesis of novel and highly-active pan-histone deacetylase (pan-HDAC) inhibitors. Bioorg. Med. Chem., 2014, 22(14), 3720-3731.
[http://dx.doi.org/10.1016/j.bmc.2014.05.001] [PMID: 24864038]
[87]
Zhang, Q.; Lv, J.; He, F.; Yu, C.; Qu, Y.; Zhang, X.; Xu, A.; Wu, J. Design, synthesis and activity evaluation of indole-based double - branched HDAC1 inhibitors. Bioorg. Med. Chem., 2019, 27(8), 1595-1604.
[http://dx.doi.org/10.1016/j.bmc.2019.03.008] [PMID: 30879863]
[88]
Krieger, V.; Hamacher, A.; Gertzen, C.G.W.; Senger, J.; Zwinderman, M.R.H.; Marek, M.; Romier, C.; Dekker, F.J.; Kurz, T.; Jung, M.; Gohlke, H.; Kassack, M.U.; Hansen, F.K. Design, multicomponent synthesis, and anticancer activity of a focused histone deacetylase (HDAC) inhibitor library with peptoid-based cap groups. J. Med. Chem., 2017, 60(13), 5493-5506.
[http://dx.doi.org/10.1021/acs.jmedchem.7b00197] [PMID: 28574690]
[89]
Paquin, I.; Raeppel, S.; Leit, S.; Gaudette, F.; Zhou, N.; Moradei, O.; Saavedra, O.; Bernstein, N.; Raeppel, F.; Bouchain, G.; Fréchette, S.; Woo, S.H.; Vaisburg, A.; Fournel, M.; Kalita, A.; Robert, M.F.; Lu, A.; Trachy-Bourget, M.C.; Yan, P.T.; Liu, J.; Rahil, J.; MacLeod, A.R.; Besterman, J.M.; Li, Z.; Delorme, D. Design and synthesis of 4-[(s-triazin-2-ylamino)methyl]-N-(2-aminophenyl)-benzamides and their analogues as a novel class of histone deacetylase inhibitors. Bioorg. Med. Chem. Lett., 2008, 18(3), 1067-1071.
[http://dx.doi.org/10.1016/j.bmcl.2007.12.009] [PMID: 18160287]
[90]
Vaisburg, A.; Paquin, I.; Bernstein, N.; Frechette, S.; Gaudette, F.; Leit, S.; Moradei, O.; Raeppel, S.; Zhou, N.; Bouchain, G.; Woo, S.H.; Jin, Z.; Gillespie, J.; Wang, J.; Fournel, M.; Yan, P.T.; Trachy-Bourget, M.C.; Robert, M.F.; Lu, A.; Yuk, J.; Rahil, J.; Macleod, A.R.; Besterman, J.M.; Li, Z.; Delorme, D. N-(2-Amino-phenyl)-4-(heteroarylmethyl)-benzamides as new histone deacetylase inhibitors. Bioorg. Med. Chem. Lett., 2007, 17(24), 6729-6733.
[http://dx.doi.org/10.1016/j.bmcl.2007.10.050] [PMID: 17977726]
[91]
Li, Y.; Wang, Y.; Xie, N.; Xu, M.; Qian, P.; Zhao, Y.; Li, S. Design, synthesis and antiproliferative activities of novel benzamides derivatives as HDAC inhibitors. Eur. J. Med. Chem., 2015, 100, 270-276.
[http://dx.doi.org/10.1016/j.ejmech.2015.05.045] [PMID: 26140961]
[92]
Abdizadeh, T.; Kalani, M.R.; Abnous, K.; Tayarani-Najaran, Z.; Khashyarmanesh, B.Z.; Abdizadeh, R.; Ghodsi, R.; Hadizadeh, F. Design, synthesis and biological evaluation of novel coumarin-based benzamides as potent histone deacetylase inhibitors and anticancer agents. Eur. J. Med. Chem., 2017, 132, 42-62.
[http://dx.doi.org/10.1016/j.ejmech.2017.03.024] [PMID: 28340413]
[93]
Moradei, O.; Leit, S.; Zhou, N.; Fréchette, S.; Paquin, I.; Raeppel, S.; Gaudette, F.; Bouchain, G.; Woo, S.H.; Vaisburg, A.; Fournel, M.; Kalita, A.; Lu, A.; Trachy-Bourget, M.C.; Yan, P.T.; Liu, J.; Li, Z.; Rahil, J.; MacLeod, A.R.; Besterman, J.M.; Delorme, D. Substituted N-(2-aminophenyl)-benzamides, (E)-N-(2-aminophenyl)-acrylamides and their analogues: Novel classes of histone deacetylase inhibitors. Bioorg. Med. Chem. Lett., 2006, 16(15), 4048-4052.
[http://dx.doi.org/10.1016/j.bmcl.2006.05.005] [PMID: 16713259]
[94]
Rajak, H.; Kumar, P.; Parmar, P.; Thakur, B.S.; Veerasamy, R.; Sharma, P.C.; Sharma, A.K.; Gupta, A.K.; Dangi, J.S. Appraisal of GABA and PABA as linker: Design and synthesis of novel benzamide based histone deacetylase inhibitors. Eur. J. Med. Chem., 2012, 53, 390-397.
[http://dx.doi.org/10.1016/j.ejmech.2012.03.058] [PMID: 22541394]
[95]
Lai, M.J.; Ojha, R.; Lin, M.H.; Liu, Y.M.; Lee, H.Y.; Lin, T.E.; Hsu, K.C.; Chang, C.Y.; Chen, M.C.; Nepali, K.; Chang, J.Y.; Liou, J.P. 1-Arylsulfonyl indoline-benzamides as a new antitubulin agents, with inhibition of histone deacetylase. Eur. J. Med. Chem., 2019, 162, 612-630.
[http://dx.doi.org/10.1016/j.ejmech.2018.10.066] [PMID: 30476825]
[96]
Chen, X.; Zhao, S.; Li, H.; Wang, X.; Geng, A.; Cui, H.; Lu, T.; Chen, Y.; Zhu, Y. Design, synthesis and biological evaluation of novel isoindolinone derivatives as potent histone deacetylase inhibitors. Eur. J. Med. Chem., 2019, 168, 110-122.
[http://dx.doi.org/10.1016/j.ejmech.2019.02.032] [PMID: 30802729]
[97]
Jiang, Y.; Xu, J.; Yue, K.; Huang, C.; Qin, M.; Chi, D.; Yu, Q.; Zhu, Y.; Hou, X.; Xu, T.; Li, M.; Chou, C.J.; Li, X. Potent hydrazide-based HDAC inhibitors with a superior pharmacokinetic profile for efficient treatment of acute myeloid leukemia in vivo. J. Med. Chem., 2022, 65(1), 285-302.
[http://dx.doi.org/10.1021/acs.jmedchem.1c01472] [PMID: 34942071]
[98]
Chen, Y.; Zhang, L.; Zhang, L.; Jiang, Q.; Zhang, L. Discovery of indole-3-butyric acid derivatives as potent histone deacetylase inhibitors. J. Enzyme Inhib. Med. Chem., 2021, 36(1), 425-436.
[http://dx.doi.org/10.1080/14756366.2020.1870457] [PMID: 33445997]
[99]
Wang, Y.; Stowe, R.L.; Pinello, C.E.; Tian, G.; Madoux, F.; Li, D.; Zhao, L.Y.; Li, J.L.; Wang, Y.; Wang, Y.; Ma, H.; Hodder, P.; Roush, W.R.; Liao, D. Identification of histone deacetylase inhibitors with benzoylhydrazide scaffold that selectively inhibit class I histone deacetylases. Chem. Biol., 2015, 22(2), 273-284.
[http://dx.doi.org/10.1016/j.chembiol.2014.12.015] [PMID: 25699604]
[100]
McClure, J.J.; Zhang, C.; Inks, E.S.; Peterson, Y.K.; Li, J.; Chou, C.J. Development of allosteric hydrazide-containing class i histone deacetylase inhibitors for use in acute myeloid leukemia. J. Med. Chem., 2016, 59(21), 9942-9959.
[http://dx.doi.org/10.1021/acs.jmedchem.6b01385] [PMID: 27754681]
[101]
Li, X.; Peterson, Y.K.; Inks, E.S.; Himes, R.A.; Li, J.; Zhang, Y.; Kong, X.; Chou, C.J. Class I HDAC inhibitors display different antitumor mechanism in leukemia and prostatic cancer cells depending on their p53 status. J. Med. Chem., 2018, 61(6), 2589-2603.
[http://dx.doi.org/10.1021/acs.jmedchem.8b00136] [PMID: 29499113]
[102]
Bowers, A.; West, N.; Taunton, J.; Schreiber, S.L.; Bradner, J.E.; Williams, R.M. Total synthesis and biological mode of action of largazole: A potent class I histone deacetylase inhibitor. J. Am. Chem. Soc., 2008, 130(33), 11219-11222.
[http://dx.doi.org/10.1021/ja8033763] [PMID: 18642817]
[103]
Giannini, G.; Vesci, L.; Battistuzzi, G.; Vignola, D.; Milazzo, F.M.; Guglielmi, M.B.; Barbarino, M.; Santaniello, M.; Fantò, N.; Mor, M.; Rivara, S.; Pala, D.; Taddei, M.; Pisano, C.; Cabri, W. ST7612AA1, a thioacetate-ω(γ-lactam carboxamide) derivative selected from a novel generation of oral HDAC inhibitors. J. Med. Chem., 2014, 57(20), 8358-8377.
[http://dx.doi.org/10.1021/jm5008209] [PMID: 25233084]
[104]
Kim, B.; Ratnayake, R.; Lee, H.; Shi, G.; Zeller, S.L.; Li, C.; Luesch, H.; Hong, J. Synthesis and biological evaluation of largazole zinc-binding group analogs. Bioorg. Med. Chem., 2017, 25(12), 3077-3086.
[http://dx.doi.org/10.1016/j.bmc.2017.03.071] [PMID: 28416100]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy