Generic placeholder image

Mini-Reviews in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1389-5575
ISSN (Online): 1875-5607

Mini-Review Article

Uncovering the Potential of Lipid Drugs: A Focus on Transient Membrane Microdomain-targeted Lipid Therapeutics

Author(s): Anna Carolina Schneider Alves, Raquel Soares Cardoso, Xisto Antonio de Oliveira Neto and Daniel Fábio Kawano*

Volume 22, Issue 18, 2022

Published on: 22 April, 2022

Page: [2318 - 2331] Pages: 14

DOI: 10.2174/1389557522666220309162203

Price: $65

Abstract

Membrane lipids are generally viewed as inert physical barriers, but many vital cellular processes greatly rely on the interaction with these structures, as expressed by the membrane hypothesis that explain the genesis of schizophrenia, Alzheimer's and autoimmune diseases, chronic fatigue or cancer. The concept that the cell membrane displays transient membrane microdomains with distinct lipid composition providing the basis for the development of selective lipid-targeted therapies, the membrane-lipid therapies (MLTs). In this concern, medicinal chemists may design therapeutically valuable compounds 1) with a higher affinity for the lipids in these microdomains to restore the normal physiological conditions, 2) that can directly or 3) indirectly (via enzyme inhibition/activation) replace damaged lipids or restore the regular lipid levels in the whole membrane or microdomain, 4) that alter the expression of genes related to lipid genesis/metabolism or 5) that modulate the pathways related to the membrane binding affinity of lipid-anchored proteins.

In this context, this mini-review aims to explore the structural diversity and clinical applications of some of the main membrane and microdomain-targeted lipid drugs.

Keywords: Membrane microdomains, bioactive lipids, membrane-lipid therapies, phospholipids, sterols, cancer.

Graphical Abstract
[1]
Muro, E.; Atilla-Gokcumen, G.E.; Eggert, U.S. Lipids in cell biology: How can we understand them better? Mol. Biol. Cell, 2014, 25(12), 1819-1823.
[http://dx.doi.org/10.1091/mbc.e13-09-0516] [PMID: 24925915]
[2]
Burdge, G.C.; Calder, P.C. Introduction to fatty acids and lipids.Intravenous Lipid Emulsions; Calder, P.C.; Waitzberg, D.L; Koletzko, B., Ed.; Karger: Basel, 2015, Vol. 112, pp. 1-6.
[3]
Cammack, R.; Atwood, T.; Campbell, P.; Parish, H.; Anthony Smith, A.; Vella, F.; Stirling, J. Oxford Dictionary of Biochemistry and Mole-cular Biology, 2nd ed; Oxford University Press: Oxford, 2006.
[http://dx.doi.org/10.1093/acref/9780198529170.001.0001]
[4]
Fahy, E.; Subramaniam, S.; Brown, H.A.; Glass, C.K.; Merrill, A.H., Jr; Murphy, R.C.; Raetz, C.R.; Russell, D.W.; Seyama, Y.; Shaw, W.; Shimizu, T.; Spener, F.; van Meer, G.; Vannieuwenhze, M.S.; White, S.H.; Witztum, J.L.; Dennis, E.A. A comprehensive classification system for lipids. Eur. J. Lipid Sci. Technol., 2005, 107(5), 337-364.
[5]
Dyatlovitskaya, E.V.; Bezuglov, V.V. Lipids as bioeffectors. Biokhimiya, 1998, 63(1), 3-5.
[6]
van Meer, G.; Voelker, D.R.; Feigenson, G.W. Membrane lipids: Where they are and how they behave. Nat. Rev. Mol. Cell Biol., 2008, 9(2), 112-124.
[http://dx.doi.org/10.1038/nrm2330] [PMID: 18216768]
[7]
da Silveira Dos Santos, A.X.; Riezman, I.; Aguilera-Romero, M.A.; David, F.; Piccolis, M.; Loewith, R.; Schaad, O.; Riezman, H. Systema-tic lipidomic analysis of yeast protein kinase and phosphatase mutants reveals novel insights into regulation of lipid homeostasis. Mol. Biol. Cell, 2014, 25(20), 3234-3246.
[http://dx.doi.org/10.1091/mbc.e14-03-0851] [PMID: 25143408]
[8]
Harayama, T.; Riezman, H. Understanding the diversity of membrane lipid composition. Nat. Rev. Mol. Cell Biol., 2018, 19(5), 281-296.
[http://dx.doi.org/10.1038/nrm.2017.138] [PMID: 29410529]
[9]
Casares, D.; Escribá, P.V.; Rosselló, C.A. Membrane lipid composition: Effect on membrane and organelle structure, function and com-partmentalization and therapeutic avenues. Int. J. Mol. Sci., 2019, 20(9), 2167.
[http://dx.doi.org/10.3390/ijms20092167] [PMID: 31052427]
[10]
Fernandis, A.Z.; Wenk, M.R. Membrane lipids as signaling molecules. Curr. Opin. Lipidol., 2007, 18(2), 121-128.
[http://dx.doi.org/10.1097/MOL.0b013e328082e4d5] [PMID: 17353659]
[11]
Hubler, M.J.; Kennedy, A.J. Role of lipids in the metabolism and activation of immune cells. J. Nutr. Biochem., 2016, 34, 1-7.
[http://dx.doi.org/10.1016/j.jnutbio.2015.11.002] [PMID: 27424223]
[12]
Blanco, A.; Blanco, G. Lipids. In: Medical Biochemistry; Blanco, A.; Blanco, G., Eds.; Academic Press: Cambridge, MA, 2017; pp. 99-119.
[http://dx.doi.org/10.1016/B978-0-12-803550-4.00005-7]
[13]
Gilroy, D.W.; Bishop-Bailey, D. Lipid mediators in immune regulation and resolution. Br. J. Pharmacol., 2019, 176(8), 1009-1023.
[http://dx.doi.org/10.1111/bph.14587] [PMID: 30674066]
[14]
Janakiram, N.B.; Mohammed, A.; Rao, C.V. Role of lipoxins, resolvins, and other bioactive lipids in colon and pancreatic cancer. Cancer Metastasis Rev., 2011, 30(3-4), 507-523.
[http://dx.doi.org/10.1007/s10555-011-9311-2] [PMID: 22015691]
[15]
Lee, T-C. Biosynthesis and possible biological functions of plasmalogens. Biochim. Biophys. Acta, 1998, 1394(2-3), 129-145.
[http://dx.doi.org/10.1016/S0005-2760(98)00107-6] [PMID: 9795186]
[16]
Yao, Y.; Ding, L.; Huang, X. Diverse functions of lipids and lipid metabolism in development. Small Methods, 2020, 4(7), 1900564.
[http://dx.doi.org/10.1002/smtd.201900564]
[17]
DrugBank Drug database. Lipids. Available from: https://go.drugbank. com/categories/DBCAT000178 (Accessed April 2, 2021).
[18]
Wiese, M. Computer simulation of phospholipids and drug-phospholipid. In: Drug-membrane interactions: Analysis, drug distribution, modeling; Seydel; J.K., ; Wiese, M., Eds.; Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, 2002; pp. 291-333.
[http://dx.doi.org/10.1002/3527600639.ch6]
[19]
Escribá, P.V. Membrane-lipid therapy: A new approach in molecular medicine. Trends Mol. Med., 2006, 12(1), 34-43.
[http://dx.doi.org/10.1016/j.molmed.2005.11.004] [PMID: 16325472]
[20]
Watson, H. Biological membranes. Essays Biochem., 2015, 59, 43-69.
[http://dx.doi.org/10.1042/bse0590043] [PMID: 26504250]
[21]
Lee, A.G. Membrane lipids: It’s only a phase. Curr. Biol., 2000, 10(10), R377-R380.
[http://dx.doi.org/10.1016/S0960-9822(00)00477-2] [PMID: 10837213]
[22]
Hannun, Y.A.; Bell, R.M. Functions of sphingolipids and sphingolipid breakdown products in cellular regulation. Science, 1989, 243(4890), 500-507.
[http://dx.doi.org/10.1126/science.2643164] [PMID: 2643164]
[23]
Kolesnick, R.N. Sphingomyelin and derivatives as cellular signals. Prog. Lipid Res., 1991, 30(1), 1-38.
[http://dx.doi.org/10.1016/0163-7827(91)90005-P] [PMID: 1771169]
[24]
Curatolo, W.; Neuringer, L.J. The effects of cerebrosides on model membrane shape. J. Biol. Chem., 1986, 261(36), 17177-17182.
[http://dx.doi.org/10.1016/S0021-9258(19)76016-5] [PMID: 3782160]
[25]
Yu, R.K.; Tsai, Y.T.; Ariga, T.; Yanagisawa, M. Structures, biosynthesis, and functions of gangliosides--an overview. J. Oleo Sci., 2011, 60(10), 537-544.
[http://dx.doi.org/10.5650/jos.60.537] [PMID: 21937853]
[26]
Xiao, S.; Finkielstein, C.V.; Capelluto, D.G.S. The enigmatic role of sulfatides: New insights into cellular functions and mechanisms of protein recognition. Adv. Exp. Med. Biol., 2013, 991, 27-40.
[http://dx.doi.org/10.1007/978-94-007-6331-9_3] [PMID: 23775689]
[27]
Tracey, T.J.; Steyn, F.J.; Wolvetang, E.J.; Ngo, S.T. Neuronal lipid metabolism: Multiple pathways driving functional outcomes in health and disease. Front. Mol. Neurosci., 2018, 11, 10.
[http://dx.doi.org/10.3389/fnmol.2018.00010] [PMID: 29410613]
[28]
Dufourc, E.J. Sterols and membrane dynamics. J. Chem. Biol., 2008, 1(1-4), 63-77.
[http://dx.doi.org/10.1007/s12154-008-0010-6] [PMID: 19568799]
[29]
Ipsen, J.H.; Karlström, G.; Mouritsen, O.G.; Wennerström, H.; Zuckermann, M.J. Phase equilibria in the phosphatidylcholine-cholesterol system. Biochim. Biophys. Acta, 1987, 905(1), 162-172.
[http://dx.doi.org/10.1016/0005-2736(87)90020-4] [PMID: 3676307]
[30]
Ipsen, J.H.; Mouritsen, O.G.; Zuckermann, M.J. Theory of thermal anomalies in the specific heat of lipid bilayers containing cholesterol. Biophys. J., 1989, 56(4), 661-667.
[http://dx.doi.org/10.1016/S0006-3495(89)82713-4] [PMID: 2819232]
[31]
McMullen, T.P.W.; Lewis, R.N.A.H.; McElhaney, R.N. Cholesterol-phospholipid interactions, the liquid-ordered phase and lipid rafts in model and biological membranes. Curr. Opin. Colloid Interface Sci., 2004, 8(6), 459-468.
[http://dx.doi.org/10.1016/j.cocis.2004.01.007]
[32]
Simons, K.; Ikonen, E. Functional rafts in cell membranes. Nature, 1997, 387(6633), 569-572.
[http://dx.doi.org/10.1038/42408] [PMID: 9177342]
[33]
Filippov, A.; Orädd, G.; Lindblom, G. Sphingomyelin structure influences the lateral diffusion and raft formation in lipid bilayers. Biophys. J., 2006, 90(6), 2086-2092.
[http://dx.doi.org/10.1529/biophysj.105.075150] [PMID: 16387761]
[34]
Fantini, J.; Barrantes, F.J. How cholesterol interacts with membrane proteins: An exploration of cholesterol-binding sites including CRAC, CARC, and tilted domains. Front. Physiol., 2013, 4, 31.
[http://dx.doi.org/10.3389/fphys.2013.00031] [PMID: 23450735]
[35]
Dynarowicz-Latka, P.; Hac-Wydro, K. Edelfosine in membrane environment - the Langmuir monolayer studies. Anticancer. Agents Med. Chem., 2014, 14(4), 499-508.
[http://dx.doi.org/10.2174/1871520614666140309230722] [PMID: 24628234]
[36]
Edidin, M. The state of lipid rafts: From model membranes to cells. Annu. Rev. Biophys. Biomol. Struct., 2003, 32(1), 257-283.
[http://dx.doi.org/10.1146/annurev.biophys.32.110601.142439] [PMID: 12543707]
[37]
Simons, K.; Toomre, D. Lipid rafts and signal transduction. Nat. Rev. Mol. Cell Biol., 2000, 1(1), 31-39.
[http://dx.doi.org/10.1038/35036052] [PMID: 11413487]
[38]
Levental, I.; Veatch, S. The continuing mystery of lipid rafts. J. Mol. Biol., 2016, 428(24 Pt A), 4749-4764.
[http://dx.doi.org/10.1016/j.jmb.2016.08.022] [PMID: 27575334]
[39]
Munro, S. Lipid rafts: Elusive or illusive? Cell, 2003, 115(4), 377-388.
[http://dx.doi.org/10.1016/S0092-8674(03)00882-1] [PMID: 14622593]
[40]
Michel, V.; Bakovic, M. Lipid rafts in health and disease. Biol. Cell, 2007, 99(3), 129-140.
[http://dx.doi.org/10.1042/BC20060051] [PMID: 17064251]
[41]
Levental, I.; Levental, K.R.; Heberle, F.A. Lipid rafts: Controversies resolved, mysteries remain. Trends Cell Biol., 2020, 30(5), 341-353.
[http://dx.doi.org/10.1016/j.tcb.2020.01.009] [PMID: 32302547]
[42]
Feigenson, G.W.; Buboltz, J.T. Ternary phase diagram of dipalmitoyl-PC/dilauroyl-PC/cholesterol: Nanoscopic domain formation driven by cholesterol. Biophys. J., 2001, 80(6), 2775-2788.
[http://dx.doi.org/10.1016/S0006-3495(01)76245-5] [PMID: 11371452]
[43]
Fielding, C.J.; Fielding, P.E. Cholesterol and caveolae: Structural and functional relationships. Biochim. Biophys. Acta, 2000, 1529(1-3), 210-222.
[http://dx.doi.org/10.1016/S1388-1981(00)00150-5] [PMID: 11111090]
[44]
Pol, A.; Luetterforst, R.; Lindsay, M.; Heino, S.; Ikonen, E.; Parton, R.G. A caveolin dominant negative mutant associates with lipid bodies and induces intracellular cholesterol imbalance. J. Cell Biol., 2001, 152(5), 1057-1070.
[http://dx.doi.org/10.1083/jcb.152.5.1057] [PMID: 11238460]
[45]
Clejan, S.; Bittman, R.; Rottem, S. Effects of sterol structure and exogenous lipids on the transbilayer distribution of sterols in the mem-brane of Mycoplasma capricolum. Biochemistry, 1981, 20(8), 2200-2204.
[http://dx.doi.org/10.1021/bi00511a019] [PMID: 7236590]
[46]
Dietrich, C.; Bagatolli, L.A.; Volovyk, Z.N.; Thompson, N.L.; Levi, M.; Jacobson, K.; Gratton, E. Lipid rafts reconstituted in model mem-branes. Biophys. J., 2001, 80(3), 1417-1428.
[http://dx.doi.org/10.1016/S0006-3495(01)76114-0] [PMID: 11222302]
[47]
Dietrich, C.; Volovyk, Z.N.; Levi, M.; Thompson, N.L.; Jacobson, K. Partitioning of Thy-1, GM1, and cross-linked phospholipid analogs into lipid rafts reconstituted in supported model membrane monolayers. Proc. Natl. Acad. Sci. USA, 2001, 98(19), 10642-10647.
[http://dx.doi.org/10.1073/pnas.191168698] [PMID: 11535814]
[48]
Drevot, P.; Langlet, C.; Guo, X.J.; Bernard, A.M.; Colard, O.; Chauvin, J.P.; Lasserre, R.; He, H.T. TCR signal initiation machinery is pre-assembled and activated in a subset of membrane rafts. EMBO J., 2002, 21(8), 1899-1908.
[http://dx.doi.org/10.1093/emboj/21.8.1899] [PMID: 11953309]
[49]
Stillwell, W. Long-range membrane properties. In: An introduction to biological membranes, 2nd ed; Stillwell, W., Ed.; Elsevier B.V.: Amsterdam, 2016; pp. 221-245.
[http://dx.doi.org/10.1016/B978-0-444-63772-7.00011-7]
[50]
Alves, A.C.S.; Dias, R.A.; Kagami, L.P. das Neves, G.M.; Torres, F.C.; Eifler-Lima, V.L.; Carvalho, I.; de Miranda Silva, C.; Kawano, D.F. Beyond the “lock and key” paradigm: Targeting lipid rafts to induce the selective apoptosis of cancer cells. Curr. Med. Chem., 2018, 25(18), 2082-2104.
[http://dx.doi.org/10.2174/0929867325666180111100601] [PMID: 29332565]
[51]
Zaas, D.W.; Swan, Z.; Brown, B.J.; Wright, J.R.; Abraham, S.N. The expanding roles of caveolin proteins in microbial pathogenesis. Commun. Integr. Biol., 2009, 2(6), 535-537.
[http://dx.doi.org/10.4161/cib.2.6.9259] [PMID: 20195460]
[52]
Bukrinsky, M.I.; Mukhamedova, N.; Sviridov, D. Lipid rafts and pathogens: The art of deception and exploitation. J. Lipid Res., 2020, 61(5), 601-610.
[http://dx.doi.org/10.1194/jlr.TR119000391] [PMID: 31615838]
[53]
Zumerle, S.; Molon, B.; Viola, A. Membrane rafts in T cell activation: A spotlight on CD28 costimulation. Front. Immunol., 2017, 8, 1467.
[http://dx.doi.org/10.3389/fimmu.2017.01467] [PMID: 29163534]
[54]
Li, L.; Chen, H.; Wang, M.; Chen, F.; Gao, J.; Sun, S.; Li, Y.; Gao, D. NCAM-140 translocation into lipid rafts mediates the neuroprotecti-ve effects of GDNF. Mol. Neurobiol., 2017, 54(4), 2739-2751.
[http://dx.doi.org/10.1007/s12035-016-9749-x] [PMID: 27003822]
[55]
Robins, S.J. Cardiovascular disease with diabetes or the metabolic syndrome: Should statins or fibrates be first line lipid therapy? Curr. Opin. Lipidol., 2003, 14(6), 575-583.
[http://dx.doi.org/10.1097/00041433-200312000-00005] [PMID: 14624134]
[56]
Vereb, G.; Szöllosi, J.; Matkó, J.; Nagy, P.; Farkas, T.; Vígh, L.; Mátyus, L.; Waldmann, T.A.; Damjanovich, S. Dynamic, yet structured: The cell membrane three decades after the Singer-Nicolson model. Proc. Natl. Acad. Sci. USA, 2003, 100(14), 8053-8058.
[http://dx.doi.org/10.1073/pnas.1332550100] [PMID: 12832616]
[57]
Yang, Q.; Alemany, R.; Casas, J.; Kitajka, K.; Lanier, S.M.; Escribá, P.V. Influence of the membrane lipid structure on signal processing via G protein-coupled receptors. Mol. Pharmacol., 2005, 68(1), 210-217.
[http://dx.doi.org/10.1124/mol.105.011692] [PMID: 15837842]
[58]
Funari, S.S.; Barceló, F.; Escribá, P.V. Effects of oleic acid and its congeners, elaidic and stearic acids, on the structural properties of phosphatidylethanolamine membranes. J. Lipid Res., 2003, 44(3), 567-575.
[http://dx.doi.org/10.1194/jlr.M200356-JLR200] [PMID: 12562874]
[59]
Prades, J.; Funari, S.S.; Escribá, P.V.; Barceló, F. Effects of unsaturated fatty acids and triacylglycerols on phosphatidylethanolamine membrane structure. J. Lipid Res., 2003, 44(9), 1720-1727.
[http://dx.doi.org/10.1194/jlr.M300092-JLR200] [PMID: 12810821]
[60]
Martínez, J.; Vögler, O.; Casas, J.; Barceló, F.; Alemany, R.; Prades, J.; Nagy, T.; Baamonde, C.; Kasprzyk, P.G.; Terés, S.; Saus, C.; Escri-bá, P.V. Membrane structure modulation, protein kinase C α activation, and anticancer activity of minerval. Mol. Pharmacol., 2005, 67(2), 531-540.
[http://dx.doi.org/10.1124/mol.104.000778] [PMID: 15531732]
[61]
Perona, J.S.; Vögler, O.; Sánchez-Domínguez, J.M.; Montero, E.; Escribá, P.V.; Ruiz-Gutierrez, V. Consumption of virgin olive oil influen-ces membrane lipid composition and regulates intracellular signaling in elderly adults with type 2 diabetes mellitus. J. Gerontol. A Biol. Sci. Med. Sci., 2007, 62(3), 256-263.
[http://dx.doi.org/10.1093/gerona/62.3.256] [PMID: 17389722]
[62]
Myhill, S.; Booth, N.E.; McLaren-Howard, J. Chronic fatigue syndrome and mitochondrial dysfunction. Int. J. Clin. Exp. Med., 2009, 2(1), 1-16.
[PMID: 19436827]
[63]
Nicolson, G.L.; Settineri, R.; Ferreira, G.; Breeding, P. Reduction of pain, fatigue, gastrointestinal and other symptoms and improvement in quality of life indicators in fibromyalgia patients with membrane lipid replacement glycerolphospholipids and controlled-release caffeine. Int. J. Clin. Med., 2018, 9(7), 600-619.
[http://dx.doi.org/10.4236/ijcm.2018.97051]
[64]
Dyckman, A.J.; Dhar, T.G.; Xiao, H.; Gilmore, J.L.; Yang, M.G.; Xiao, Z.; Marcoux, D. Substituted bicyclic compounds., US Patent US10166249, 2019.
[65]
Esaki, K.; Balan, S.; Iwayama, Y.; Shimamoto-Mitsuyama, C.; Hirabayashi, Y.; Dean, B.; Yoshikawa, T. Evidence for altered metabolism of Sphingosine-1-phosphate in the corpus callosum of patients with schizophrenia. Schizophr. Bull., 2020, 46(5), 1172-118.
[http://dx.doi.org/10.1093/schbul/sbaa052] [PMID: 32346731]
[66]
Bravo, Y.; Baccei, C.S.; Broadhead, A.; Bundey, R.; Chen, A.; Clark, R.; Correa, L.; Jacintho, J.D.; Lorrain, D.S.; Messmer, D.; Stebbins, K.; Prasit, P.; Stock, N. Identification of the first potent, selective and bioavailable PPARα antagonist. Bioorg. Med. Chem. Lett., 2014, 24(10), 2267-2272.
[http://dx.doi.org/10.1016/j.bmcl.2014.03.090] [PMID: 24745969]
[67]
Monroy-Ramirez, H.C.; Galicia-Moreno, M.; Sandoval-Rodriguez, A.; Meza-Rios, A.; Santos, A.; Armendariz-Borunda, J. PPARs as meta-bolic sensors and therapeutic targets in liver diseases. Int. J. Mol. Sci., 2021, 22(15), 8298.
[http://dx.doi.org/10.3390/ijms22158298] [PMID: 34361064]
[68]
Ho, A.L.; Brana, I.; Haddad, R.; Bauman, J.; Bible, K.; Oosting, S.; Wong, D.J.; Ahn, M.J.; Boni, V.; Even, C.; Fayette, J.; Flor, M.J.; Ha-rrington, K.; Kim, S.B.; Licitra, L.; Nixon, I.; Saba, N.F.; Hackenberg, S.; Specenier, P.; Worden, F.; Balsara, B.; Leoni, M.; Martell, B.; Scholz, C.; Gualberto, A. Tipifarnib in head and neck squamous cell carcinoma with HRAS Mutations. J. Clin. Oncol., 2021, 39(17), 1856-1864.
[http://dx.doi.org/10.1200/JCO.20.02903] [PMID: 33750196]
[69]
Azaro, A.; Plummer, E.R.; Urruticoechea, A.; Rodon, J.; Haris, N.R.M.; Veal, G.; Perier, A.; Tur, V.; Escriba, P.V.; Busquets, X.; Alberti, J.; Sicart, E.; Collins, D.; Fernandez, R.; Bettenhaussen, E.; Klumper, E.; Lopez, J.S. Final report of a Phase I study of 2-Hydroxyoleic acid (2OHOA) a novel sphingomyelin synthase activator in patients (Pt) with advanced solid tumors (AST) including recurrent high grade gliomas (RHGG). J. Clin. Oncol., 2017, 35(15_suppl.), 2554.
[http://dx.doi.org/10.1200/JCO.2017.35.15_suppl.2554]
[70]
Martin, M.L.; Barceló-Coblijn, G.; de Almeida, R.F.; Noguera-Salvà, M.A.; Terés, S.; Higuera, M.; Liebisch, G.; Schmitz, G.; Busquets, X.; Escribá, P.V. The role of membrane fatty acid remodeling in the antitumor mechanism of action of 2-hydroxyoleic acid. Biochim. Biophys. Acta, 2013, 1828(5), 1405-1413.
[http://dx.doi.org/10.1016/j.bbamem.2013.01.013] [PMID: 23360770]
[71]
Wiktorowska-Owczarek, A.; Berezińska, M.; Nowak, J.Z. PUFAs: Structures, metabolism and functions. Adv. Clin. Exp. Med., 2015, 24(6), 931-941.
[http://dx.doi.org/10.17219/acem/31243] [PMID: 26771963]
[72]
Calder, P.C. Polyunsaturated fatty acids and inflammatory processes: New twists in an old tale. Biochimie, 2009, 91(6), 791-795.
[http://dx.doi.org/10.1016/j.biochi.2009.01.008] [PMID: 19455748]
[73]
Wall, R.; Ross, R.P.; Fitzgerald, G.F.; Stanton, C. Fatty acids from fish: The anti-inflammatory potential of long-chain omega-3 fatty acids. Nutr. Rev., 2010, 68(5), 280-289.
[http://dx.doi.org/10.1111/j.1753-4887.2010.00287.x] [PMID: 20500789]
[74]
Calder, P.C. Immunoregulatory and anti-inflammatory effects of n-3 polyunsaturated fatty acids. Braz. J. Med. Biol. Res., 1998, 31(4), 467-490.
[http://dx.doi.org/10.1590/S0100-879X1998000400002] [PMID: 9698798]
[75]
Das, U.N. Is there a role for bioactive lipids in the pathobiology of diabetes mellitus? Front. Endocrinol., 2017, 8, 182.
[http://dx.doi.org/10.3389/fendo.2017.00182]
[76]
Rasic-Milutinovic, Z.; Perunicic, G.; Pljesa, S.; Gluvic, Z.; Sobajic, S.; Djuric, I.; Ristic, D. Effects of N-3 PUFAs supplementation on insu-lin resistance and inflammatory biomarkers in hemodialysis patients. Ren. Fail., 2007, 29(3), 321-329.
[http://dx.doi.org/10.1080/08860220601184092] [PMID: 17497447]
[77]
Escribá, P.V.; Sastre, M.; García-Sevilla, J.A. Disruption of cellular signaling pathways by daunomycin through destabilization of nonla-mellar membrane structures. Proc. Natl. Acad. Sci. USA, 1995, 92(16), 7595-7599.
[http://dx.doi.org/10.1073/pnas.92.16.7595] [PMID: 7638236]
[78]
Vassar, R.; Kandalepas, P.C. The β-secretase enzyme BACE1 as a therapeutic target for Alzheimer’s disease. Alzheimers Res. Ther., 2011, 3(3), 20.
[http://dx.doi.org/10.1186/alzrt82] [PMID: 21639952]
[79]
Ben Halima, S.; Rajendran, L. Membrane anchored and lipid raft targeted β-secretase inhibitors for Alzheimer’s disease therapy. J. Alzheimers Dis., 2011, 24(S2)(Suppl. 2), 143-152.
[http://dx.doi.org/10.3233/JAD-2011-110269] [PMID: 21460437]
[80]
Diaz-Rohrer, B.; Levental, K.R.; Levental, I. Rafting through traffic: Membrane domains in cellular logistics. Biochim. Biophys. Acta, 2014, 1838(12), 3003-3013.
[http://dx.doi.org/10.1016/j.bbamem.2014.07.029] [PMID: 25130318]
[81]
Ben Halima, S.; Mishra, S.; Raja, K.M.P.; Willem, M.; Baici, A.; Simons, K.; Brüstle, O.; Koch, P.; Haass, C.; Caflisch, A.; Rajendran, L. Specific inhibition of β-secretase processing of the Alzheimer disease amyloid precursor protein. Cell Rep., 2016, 14(9), 2127-2141.
[http://dx.doi.org/10.1016/j.celrep.2016.01.076] [PMID: 26923602]
[82]
Rajendran, L.; Schneider, A.; Schlechtingen, G.; Weidlich, S.; Ries, J.; Braxmeier, T.; Schwille, P.; Schulz, J.B.; Schroeder, C.; Simons, M.; Jennings, G.; Knölker, H-J.; Simons, K. Efficient inhibition of the Alzheimer’s disease β-secretase by membrane targeting. Science, 2008, 320(5875), 520-523.
[http://dx.doi.org/10.1126/science.1156609] [PMID: 18436784]
[83]
Robinson, G.A.; Waddington, K.E.; Pineda-Torra, I.; Jury, E.C. Transcriptional regulation of T-Cell lipid metabolism: Implications for plasma membrane lipid rafts and T-cell function. Front. Immunol., 2017, 8, 1636.
[http://dx.doi.org/10.3389/fimmu.2017.01636] [PMID: 29225604]
[84]
Knapp, A.C.; Huang, J.; Starling, G.; Kiener, P.A. Inhibitors of HMG-CoA reductase sensitize human smooth muscle cells to Fas-ligand and cytokine-induced cell death. Atherosclerosis, 2000, 152(1), 217-227.
[http://dx.doi.org/10.1016/S0021-9150(99)00462-1] [PMID: 10996358]
[85]
Ehrenstein, M.R.; Jury, E.C.; Mauri, C. Statins for atherosclerosis-as good as it gets? N. Engl. J. Med., 2005, 352(1), 73-75.
[http://dx.doi.org/10.1056/NEJMe048326] [PMID: 15635116]
[86]
Jin, Y.; Tachibana, I.; Takeda, Y.; He, P.; Kang, S.; Suzuki, M.; Kuhara, H.; Tetsumoto, S.; Tsujino, K.; Minami, T.; Iwasaki, T.; Nakanis-hi, K.; Kohmo, S.; Hirata, H.; Takahashi, R.; Inoue, K.; Nagatomo, I.; Kida, H.; Kijima, T.; Ito, M.; Saya, H.; Kumanogoh, A. Statins de-crease lung inflammation in mice by upregulating tetraspanin CD9 in macrophages. PLoS One, 2013, 8(9), e73706.
[http://dx.doi.org/10.1371/journal.pone.0073706] [PMID: 24040034]
[87]
Preta, G. New insights into targeting membrane lipids for cancer therapy. Front. Cell Dev. Biol., 2020, 8, 571237.
[http://dx.doi.org/10.3389/fcell.2020.571237] [PMID: 32984352]
[88]
Kawano, D.F.; Carvalho, I. Targeting Trypanosoma cruzi platelet-activating factor receptors: Scope for the development of novel drugs to treat Chagas Disease. Mini Rev. Med. Chem., 2013, 13(7), 997-1004.
[http://dx.doi.org/10.2174/1389557511313070005] [PMID: 23544467]
[89]
Munder, P.G.; Westphal, O. Antitumoral and other biomedical activities of synthetic ether lysophospholipids. Chem. Immunol., 1990, 49, 206-235.
[http://dx.doi.org/10.1159/000418231] [PMID: 2190582]
[90]
van Blitterswijk, W.J.; Verheij, M. Anticancer alkylphospholipids: Mechanisms of action, cellular sensitivity and resistance, and clinical prospects. Curr. Pharm. Des., 2008, 14(21), 2061-2074.
[http://dx.doi.org/10.2174/138161208785294636] [PMID: 18691116]
[91]
Drings, P.; Günther, I.; Gatzemeier, U.; Ulbrich, F.; Khanavkar, B.; Schreml, W.; Lorenz, J.; Brugger, W.; Schick, H.D.; Pawel, J.V.; Nords-tröm, R. Final evaluation of a phase II study on the effect of edelfosine (an ether lipid) in advanced non-small-cell bronchogenic carcino-ma. Onkologie, 1992, 15, 375-382.
[92]
Vogler, W.R.; Berdel, W.E.; Geller, R.B.; Brochstein, J.A.; Beveridge, R.A.; Dalton, W.S.; Miller, K.B.; Lazarus, H.M. A phase II trial of autologous bone marrow transplantation (ABMT) in acute leukemia with edelfosine purged bone marrow. Adv. Exp. Med. Biol., 1996, 416, 389-396.
[http://dx.doi.org/10.1007/978-1-4899-0179-8_62] [PMID: 9131178]
[93]
van der Luit, A.H.; Vink, S.R.; Klarenbeek, J.B.; Perrissoud, D.; Solary, E.; Verheij, M.; van Blitterswijk, W.J. A new class of anticancer alkylphospholipids uses lipid rafts as membrane gateways to induce apoptosis in lymphoma cells. Mol. Cancer Ther., 2007, 6(8), 2337-2345.
[http://dx.doi.org/10.1158/1535-7163.MCT-07-0202] [PMID: 17699729]
[94]
Vogler, W.R.; Shoji, M.; Hayzer, D.J.; Xie, Y.P.; Renshaw, M. The effect of edelfosine on CTP:Cholinephosphate cytidylyltransferase activity in leukemic cell lines. Leuk. Res., 1996, 20(11-12), 947-951.
[http://dx.doi.org/10.1016/S0145-2126(96)00070-7] [PMID: 9009253]
[95]
Ausili, A.; Martínez-Valera, P.; Torrecillas, A.; Gómez-Murcia, V.; de Godos, A.M.; Corbalán-García, S.; Teruel, J.A.; Gómez Fernández, J.C. Anticancer agent edelfosine exhibits a high affinity for cholesterol and disorganizes liquid-ordered membrane structures. Langmuir, 2018, 34(28), 8333-8346.
[http://dx.doi.org/10.1021/acs.langmuir.8b01539] [PMID: 29924618]
[96]
Neto, X.A.O.; Alves, A.C.S.; Dias, R.A. Junior; Rodrigues, R.P.; Lancellotti, M.; Almeida, W.P.; Kawano, D.F. Molecular docking reveals the binding modes of anticancer alkylphospholipids and lysophosphatidylcholine within the catalytic domain of CTP:Phosphocholine cy-tidyltransferase (CCT). Eur. J. Lipid Sci. Technol., 2020, 122, 1900422.
[http://dx.doi.org/10.1002/ejlt.201900422]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy