Review Article

A Mechanistic Review on Plant-derived Natural Inhibitors of Human Coronaviruses with Emphasis on SARS-COV-1 and SARS-COV-2

Author(s): S.K. Guguloth, A.R. Lakshmi, R. Rajendran, K. Rajaram, T. Chinnasamy, J.-D. Huang, H. Zhang, S. Senapati and S.S.K. Durairajan*

Volume 23, Issue 8, 2022

Published on: 05 October, 2021

Page: [818 - 835] Pages: 18

DOI: 10.2174/1389450122666211005115313

Price: $65

Abstract

Coronaviruses have been receiving continuous attention worldwide as they have caused a serious threat to global public health. This group of viruses is named so as they exhibit characteristic crown-like spikes on their protein coat. SARS-CoV-2, a type of coronavirus that emerged in 2019, causes severe infection in the lower respiratory tract of humans and is often fatal in immunocompromised individuals. No medications have been approved so far for the direct treatment of SARS-CoV-2 infection, and the currently available treatment options rely on relieving the symptoms. The medicinal plants occurring in nature serve as a rich source of active ingredients that could be utilized for developing pharmacopeial and non-pharmacopeial/synthetic drugs with antiviral properties. Compounds obtained from certain plants have been used for directly and selectively inhibiting different coronaviruses, including SARS-CoV, MERS-CoV, and SARS-CoV-2. The present review discusses the potential natural inhibitors against the highly pathogenic human coronaviruses, with a systematic elaboration on the possible mechanisms of action of these natural compounds while acting in the different stages of the life cycle of coronaviruses. Moreover, through a comprehensive exploration of the existing literature in this regard, the importance of such compounds in the research and development of effective and safe antiviral agents is discussed. We focused on the mechanism of action of several natural compounds along with their target of action. In addition, the immunomodulatory effects of these active components in the context of human health are elucidated. Finally, it is suggested that the use of traditional medicinal plants is a novel and feasible remedial strategy against human coronaviruses.

Keywords: Human Coronaviruses, SARS-CoV, SARS-CoV-2, MERS-CoV, COVID-19, natural inhibitors.

Graphical Abstract
[1]
Report WHO. Coronavirus disease 2019 (COVID-19): Situation Report 78. 2020.
[2]
Chen J. Pathogenicity and transmissibility of 2019-nCoV-A quick overview and comparison with other emerging viruses. Microbes Infect 2020; 22(2): 69-71.
[http://dx.doi.org/10.1016/j.micinf.2020.01.004] [PMID: 32032682]
[3]
Pillaiyar T, Meenakshisundaram S, Manickam M. Recent discovery and development of inhibitors targeting coronaviruses. Drug Discov Today 2020; 25(4): 668-88.
[http://dx.doi.org/10.1016/j.drudis.2020.01.015] [PMID: 32006468]
[4]
Chen Y, Liu Q, Guo D. Emerging coronaviruses: Genome structure, replication, and pathogenesis. J Med Virol 2020; 92(4): 418-23.
[http://dx.doi.org/10.1002/jmv.25681] [PMID: 31967327]
[5]
Chan JF, Kok KH, Zhu Z, et al. Genomic characterization of the 2019 novel human-pathogenic coronavirus isolated from a patient with atypical pneumonia after visiting Wuhan. Emerg Microbes Infect 2020; 9(1): 221-36.
[http://dx.doi.org/10.1080/22221751.2020.1719902] [PMID: 31987001]
[6]
Hoffmann M, Kleine-Weber H, Schroeder S, et al. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell 2020; 181(2): 271-280.e8.
[http://dx.doi.org/10.1016/j.cell.2020.02.052] [PMID: 32142651]
[7]
Shibata S, Arima H, Asayama K, et al. Hypertension and related diseases in the era of COVID-19: A report from the japanese society of hypertension task force on COVID-19. Hypertens Res 2020; 43(10): 1028-46.
[http://dx.doi.org/10.1038/s41440-020-0515-0] [PMID: 32737423]
[8]
Xia S, Liu M, Wang C, et al. Inhibition of SARS-CoV-2 (previously 2019-nCoV)A infection by a highly potent pan-coronavirus fusion inhibitor targeting its spike protein that harbors a high capacity to mediate membrane fusion. Cell Res 2020; 30(4): 343-55.
[http://dx.doi.org/10.1038/s41422-020-0305-x] [PMID: 32231345]
[9]
Wang Q, Zhang Y, Wu L, et al. Structural and functional basis of SARS-CoV-2 entry by using human ACE2. Cell 2020; 181(4): 894-904.e9.
[http://dx.doi.org/10.1016/j.cell.2020.03.045] [PMID: 32275855]
[10]
Lu R, Zhao X, Li J, et al. Genomic characterisation and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding. Lancet 2020; 395(10224): 565-74.
[http://dx.doi.org/10.1016/S0140-6736(20)30251-8] [PMID: 32007145]
[11]
Anand K, Ziebuhr J, Wadhwani P, Mesters JR, Hilgenfeld R. Coronavirus main proteinase (3CLpro) structure: basis for design of anti-SARS drugs. Science 2003; 300(5626): 1763-7.
[http://dx.doi.org/10.1126/science.1085658] [PMID: 12746549]
[12]
Zhang L, Lin D, Sun X, et al. Crystal structure of SARS-CoV-2 main protease provides a basis for design of improved Iñ-ketoamide inhibitors. Science 2020; 368(6489): 409-12.
[http://dx.doi.org/10.1126/science.abb3405] [PMID: 32198291]
[13]
Ratia K, Pegan S, Takayama J, et al. A noncovalent class of papain-like protease/deubiquitinase inhibitors blocks SARS virus replication. Proc Natl Acad Sci USA 2008; 105(42): 16119-24.
[http://dx.doi.org/10.1073/pnas.0805240105] [PMID: 18852458]
[14]
Ivanov KA, Thiel V, Dobbe JC, van der Meer Y, Snijder EJ, Ziebuhr J. Multiple enzymatic activities associated with severe acute respiratory syndrome coronavirus helicase. J Virol 2004; 78(11): 5619-32.
[http://dx.doi.org/10.1128/JVI.78.11.5619-5632.2004] [PMID: 15140959]
[15]
Kim MK, Yu MS, Park HR, et al. 2,6-Bis-arylmethyloxy-5-hydroxychromones with antiviral activity against both hepatitis C virus (HCV) and SARS-associated coronavirus (SCV). Eur J Med Chem 2011; 46(11): 5698-704.
[http://dx.doi.org/10.1016/j.ejmech.2011.09.005] [PMID: 21925774]
[16]
Lee C, Lee JM, Lee NR, et al. Aryl diketoacids (ADK) selectively inhibit duplex DNA-unwinding activity of SARS coronavirus NTPase/helicase. Bioorg Med Chem Lett 2009; 19(6): 1636-8.
[http://dx.doi.org/10.1016/j.bmcl.2009.02.010] [PMID: 19233643]
[17]
Tanner JA, Zheng BJ, Zhou J, et al. The adamantane-derived bananins are potent inhibitors of the helicase activities and replication of SARS coronavirus. Chem Biol 2005; 12(3): 303-11.
[http://dx.doi.org/10.1016/j.chembiol.2005.01.006] [PMID: 15797214]
[18]
Adedeji AO, Singh K, Calcaterra NE, et al. Severe acute respiratory syndrome coronavirus replication inhibitor that interferes with the nucleic acid unwinding of the viral helicase. Antimicrob Agents Chemother 2012; 56(9): 4718-28.
[http://dx.doi.org/10.1128/AAC.00957-12] [PMID: 22733076]
[19]
Tanner JA, Watt RM, Chai YB, et al. The severe acute respiratory syndrome (SARS) coronavirus NTPase/helicase belongs to a distinct class of 5′ to 3′ viral helicases. J Biol Chem 2003; 278(41): 39578-82.
[http://dx.doi.org/10.1074/jbc.C300328200] [PMID: 12917423]
[20]
Shu T, Huang M, Wu D, et al. SARS-Coronavirus-2 Nsp13 possesses NTPase and RNA helicase activities that can be inhibited by bismuth salts. Virol Sin 2020; 35(3): 321-9.
[http://dx.doi.org/10.1007/s12250-020-00242-1] [PMID: 32500504]
[21]
Subissi L, Imbert I, Ferron F, et al. SARS-CoV ORF1b-encoded nonstructural proteins 12-16: replicative enzymes as antiviral targets. Antiviral Res 2014; 101: 122-30.
[http://dx.doi.org/10.1016/j.antiviral.2013.11.006] [PMID: 24269475]
[22]
Imbert I, Guillemot JC, Bourhis JM, et al. A second, non-canonical RNA-dependent RNA polymerase in SARS coronavirus. EMBO J 2006; 25(20): 4933-42.
[http://dx.doi.org/10.1038/sj.emboj.7601368] [PMID: 17024178]
[23]
Chu CK, Gadthula S, Chen X, et al. Antiviral activity of nucleoside analogues against SARS-coronavirus (SARS-coV). Antivir Chem Chemother 2006; 17(5): 285-9.
[http://dx.doi.org/10.1177/095632020601700506] [PMID: 17176633]
[24]
Wu C, Liu Y, Yang Y, et al. Analysis of therapeutic targets for SARS-CoV-2 and discovery of potential drugs by computational methods. Acta Pharm Sin B 2020; 10(5): 766-88.
[http://dx.doi.org/10.1016/j.apsb.2020.02.008] [PMID: 32292689]
[25]
Waziri HM. Plants as antiviral agents. J Plant Pathol Microbiol 2015; 6(2): 1.
[http://dx.doi.org/10.4172/2157-7471.1000254]
[26]
Ravindra PV, Tiwari AK, Sharma B, Chauhan RS. Newcastle disease virus as an oncolytic agent. Indian J Med Res 2009; 130(5): 507-13.
[PMID: 20090097]
[27]
Naithani R, Huma LC, Holland LE, et al. Antiviral activity of phytochemicals: A comprehensive review. Mini Rev Med Chem 2008; 8(11): 1106-33.
[http://dx.doi.org/10.2174/138955708785909943] [PMID: 18855727]
[28]
Mazumder PM, Pattnayak S, Parvani H, Sasmal D, Rathinavelusamy P. Evaluation of immunomodulatory activity of Glycyrhiza glabra L roots in combination with zing. Asian Pac J Trop Biomed 2012; 2(1): S15-20.
[http://dx.doi.org/10.1016/S2221-1691(12)60122-1]
[29]
Sher A. Antimicrobial activity of natural products from medicinal plants. J Med Sci 2009; 7(1): 72.
[30]
Mattio LM, Catinella G, Pinto A, Dallavalle S. Natural and nature-inspired stilbenoids as antiviral agents. Eur J Med Chem 2020; 202: 112541.
[http://dx.doi.org/10.1016/j.ejmech.2020.112541] [PMID: 32652408]
[31]
Kapoor R, Sharma B, Kanwar SS. Antiviral phytochemicals: An overview. Biochem Physiol 2017; 6(2): 7.
[http://dx.doi.org/10.4172/2168-9652.1000220]
[32]
Nagaraja YP, Krishna V. Hepatoprotective effect of the aqueous extract and 5-hydroxy, 7, 8, 2′ trimethoxy flavone of Andrographis alata Nees. in carbon tetrachloride treated rats. Achievements in the life sciences 2016; 10(1): 5-10.
[33]
Nyeem MA, Mannan MA, Nuruzzaman M, Kamrujjaman KM, Das SK. Indigenous king of bitter (Andrographis paniculata): A review. J Med Plants Stud 2017; 5(2): 318-24.
[34]
Naithani R, Mehta RG, Shukla D, Chandersekera SN, Moriarty RM. Antiviral activity of phytochemicals: a current perspective. Dietary Components and Immune Function 2010; 421-68.
[http://dx.doi.org/10.1007/978-1-60761-061-8_24]
[35]
Ghildiyal R, Prakash V, Chaudhary VK, Gupta V, Gabrani R. Phytochemicals as antiviral agents: recent updates Plant-derived bioactives. Singapore: Springer 2020; pp. 279-95.
[36]
Zhou J, Huang J. Current findings regarding natural components with potential Anti-2019-nCoV activity. Front Cell Dev Biol 2020; 8: 589.
[http://dx.doi.org/10.3389/fcell.2020.00589] [PMID: 32719799]
[37]
Kamboj A, Saluja AK, Kumar M, Atri P. Antiviral activity of plant polyphenols. J Pharm Res 2012; 5(5): 2402-12.
[38]
Zakaryan H, Arabyan E, Oo A, Zandi K. Flavonoids: promising natural compounds against viral infections. Arch Virol 2017; 162(9): 2539-51.
[http://dx.doi.org/10.1007/s00705-017-3417-y] [PMID: 28547385]
[39]
Gattuso G, Barreca D, Gargiulli C, Leuzzi U, Caristi C. Flavonoid composition of Citrus juices. Molecules 2007; 12(8): 1641-73.
[http://dx.doi.org/10.3390/12081641] [PMID: 17960080]
[40]
Lalani S, Poh CL. Flavonoids as antiviral agents for Enterovirus A71 (EV-A71). Viruses 2020; 12(2): 184.
[http://dx.doi.org/10.3390/v12020184] [PMID: 32041232]
[41]
Abba Y, Hassim H, Hamzah H, Noordin MM. Antiviral activity of resveratrol against human and animal viruses. Adv Virol 2015; 2015: 184241.
[http://dx.doi.org/10.1155/2015/184241] [PMID: 26693226]
[42]
Bellavite P, Donzelli A. Hesperidin and SARS-CoV-2: new light on the healthy function of citrus fruits. Antioxidants 2020; 9(8): 742.
[http://dx.doi.org/10.3390/antiox9080742] [PMID: 32823497]
[43]
Meneguzzo F, Ciriminna R, Zabini F, Pagliaro M. Review of evidence available on hesperidin-rich products as potential tools against COVID-19 and hydrodynamic cavitation-based extraction as a method of increasing their production. Processes (Basel) 2020; 8(5): 549.
[http://dx.doi.org/10.3390/pr8050549]
[44]
Kiran G, Karthik L, Shree Devi M, Sathiyarajeswaran P, Kanakavalli K, Kumar K. In Silico computational screening of Kabasura Kudineer - Official Siddha Formulation and JACOM against SARS-CoV-2 spike protein. J Ayurveda Integr Med 2020; S0975-9476(20): 30024-33.
[45]
Jena AB, Kanungo N, Nayak V, Chainy GB, Dandapat J. Catechin and Curcumin interact with corona (2019-nCoV/SARS-CoV2) viral S protein and ACE2 of human cell membrane: insights from Computational study and implication for intervention. Sci Rep 2021; 11(1): 2043.
[http://dx.doi.org/10.1038/s41598-021-81462-7] [PMID: 33479401]
[46]
Ho TY, Wu SL, Chen JC, Li CC, Hsiang CY. Emodin blocks the SARS coronavirus spike protein and angiotensin-converting enzyme 2 interaction. Antiviral Res 2007; 74(2): 92-101.
[http://dx.doi.org/10.1016/j.antiviral.2006.04.014] [PMID: 16730806]
[47]
Bhuiyan FR, Howlader S, Raihan T, Hasan M. Plants metabolites: possibility of natural therapeutics against the COVID-19 pandemic. Front Med (Lausanne) 2020; 7: 444.
[http://dx.doi.org/10.3389/fmed.2020.00444] [PMID: 32850918]
[48]
Basu A, Sarkar A, Maulik U. Molecular docking study of potential phytochemicals and their effects on the complex of SARS-CoV2 spike protein and human ACE2. Sci Rep 2020; 10(1): 17699.
[http://dx.doi.org/10.1038/s41598-020-74715-4] [PMID: 33077836]
[49]
Das S, Singha Roy A. Naturally occurring anthraquinones as potential inhibitors of SARS-CoV-2 main protease: a molecular docking study. Chem Rxiv Cambridge Open Engage 2020.
[50]
Rathinavel T, Palanisamy M, Palanisamy S, Subramanian A, Thangaswamy S. Phytochemical 6-gingerol–a promising drug of choice for COVID-19. Int J Adv Sci Eng 2020; 6(4): 1482-9.
[http://dx.doi.org/10.29294/IJASE.6.4.2020.1482-1489]
[51]
Goswami D, Kumar M, Ghosh SK, Das A. Natural product compounds in alpinia officinarum and ginger are potent sars-cov-2 papain-like protease inhibitors. Chem Rxiv Cambridge Open Engage 2020.
[52]
Orhan IE, Senol Deniz FS. Natural products as potential leads against coronaviruses: could they be encouraging structural models against SARS-CoV-2? Nat Prod Bioprospect 2020; 10(4): 171-86.
[http://dx.doi.org/10.1007/s13659-020-00250-4] [PMID: 32529545]
[53]
Cheng PW, Ng LT, Chiang LC, Lin CC. Antiviral effects of saikosaponins on human coronavirus 229E in vitro. Clin Exp Pharmacol Physiol 2006; 33(7): 612-6.
[http://dx.doi.org/10.1111/j.1440-1681.2006.04415.x] [PMID: 16789928]
[54]
Swain SS, Panda SK, Luyten W. Phytochemicals against SARS-CoV as potential drug leads. Biomed J 2021; 44(1): 74-85.
[http://dx.doi.org/10.1016/j.bj.2020.12.002] [PMID: 33736953]
[55]
Goc A, Sumera W, Rath M, Niedzwiecki A. Phenolic compounds disrupt spike-mediated receptor-binding and entry of SARS-CoV-2 pseudo-virions. PLoS One 2021; 16(6): e0253489.
[http://dx.doi.org/10.1371/journal.pone.0253489] [PMID: 34138966]
[56]
Utomo R, Ikawati M, Meiyanto E. Revealing the potency of citrus and galangal constituents to halt sars-cov-2 infection. Preprints 2020; 2020030214.
[http://dx.doi.org/10.20944/preprints202003.0214.v1]
[57]
Maurya D. Evaluation of yashtimadhu (glycyrrhiza glabra) active phytochemicals against novel coronavirus (SARS-CoV-2). Preprints 2020.
[http://dx.doi.org/10.21203/rs.3.rs-26480/v1]
[58]
Shahid M, Chowdhury M, Kashem M. Scope of natural plant extract to deactivate COVID-19. Preprints 2020.
[59]
Hoever G, Baltina L, Michaelis M, et al. Antiviral activity of glycyrrhizic acid derivatives against SARS-coronavirus. J Med Chem 2005; 48(4): 1256-9.
[http://dx.doi.org/10.1021/jm0493008] [PMID: 15715493]
[60]
Chen F, Chan KH, Jiang Y, et al. In vitro susceptibility of 10 clinical isolates of SARS coronavirus to selected antiviral compounds. J Clin Virol 2004; 31(1): 69-75.
[http://dx.doi.org/10.1016/j.jcv.2004.03.003] [PMID: 15288617]
[61]
Murck H. Symptomatic protective action of glycyrrhizin (Licorice) in Covid-19 infection? Front Immunol 2020; 11: 1239.
[http://dx.doi.org/10.3389/fimmu.2020.01239] [PMID: 32574273]
[62]
Luo P, Liu D, Li J. Pharmacological perspective: glycyrrhizin may be an efficacious therapeutic agent for COVID-19. Int J Antimicrob Agents 2020; 55(6): 105995.
[http://dx.doi.org/10.1016/j.ijantimicag.2020.105995] [PMID: 32335281]
[63]
Boukhatem MN, Setzer WN. Aromatic herbs, medicinal plant-derived essential oils, and phytochemical extracts as potential therapies for coronaviruses: future perspectives. Plants 2020; 9(6): 800.
[http://dx.doi.org/10.3390/plants9060800] [PMID: 32604842]
[64]
Breining P, FrA,lund AL, HA,jen JF, et al. Camostat mesylate against SARS-CoV-2 and COVID-19-Rationale, dosing and safety. Basic Clin Pharmacol Toxicol 2021; 128(2): 204-12.
[http://dx.doi.org/10.1111/bcpt.13533] [PMID: 33176395]
[65]
Baughn LB, Sharma N, Elhaik E, Sekulic A, Bryce AH, Fonseca R. Targeting tmprss2 in sars-cov-2 infection. Mayo Clin Proc 2020; 95(9): 1989-99.
[http://dx.doi.org/10.1016/j.mayocp.2020.06.018] [PMID: 32861340]
[66]
Balkrishna A, Pokhrel S, Singh J, Varshney A. Withanone from withania somnifera may inhibit novel coronavirus (covid-19) entry by disrupting interactions between viral s-protein receptor binding domain and host ace2 receptor. Preprints 2020.
[http://dx.doi.org/10.21203/rs.3.rs-17806/v1]
[67]
Kumar V, Dhanjal JK, Bhargava P, et al. Withanone and Withaferin-A are predicted to interact with transmembrane protease serine 2 (TMPRSS2) and block entry of SARS-CoV-2 into cells. J Biomol Struct Dyn 2020; 1-13.
[http://dx.doi.org/10.1080/07391102.2020.1775704] [PMID: 32469279]
[68]
Roomi M, Khan Y. Potential Compounds for the Inhibition of TMPRSS2. Chem Rxiv Cambridge Open Engage 2020.
[69]
Kandeil A, Mostafa A, Kutkat O, et al. Bioactive polyphenolic compounds showing strong antiviral activities against severe acute respiratory syndrome coronavirus 2. Pathogens 2021; 10(6): 758.
[http://dx.doi.org/10.3390/pathogens10060758] [PMID: 34203977]
[70]
Lin CW, Tsai FJ, Tsai CH, et al. Anti-SARS coronavirus 3C-like protease effects of Isatis indigotica root and plant-derived phenolic compounds. Antiviral Res 2005; 68(1): 36-42.
[http://dx.doi.org/10.1016/j.antiviral.2005.07.002] [PMID: 16115693]
[71]
Cheng L, Zheng W, Li M, Huang J, Bao S, Xu Q. Citrus fruits are rich in flavonoids for immunoregulation and potential targeting ace2. Preprints 2020.
[72]
Ryu YB, Jeong HJ, Kim JH, et al. Biflavonoids from Torreya nucifera displaying SARS-CoV 3CL(pro) inhibition. Bioorg Med Chem 2010; 18(22): 7940-7.
[http://dx.doi.org/10.1016/j.bmc.2010.09.035] [PMID: 20934345]
[73]
Barnard DL, Kumaki Y. Recent developments in anti-severe acute respiratory syndrome coronavirus chemotherapy. Future Virol 2011; 6(5): 615-31.
[http://dx.doi.org/10.2217/fvl.11.33] [PMID: 21765859]
[74]
Wen CC, Kuo YH, Jan JT, et al. Specific plant terpenoids and lignoids possess potent antiviral activities against severe acute respiratory syndrome coronavirus. J Med Chem 2007; 50(17): 4087-95.
[http://dx.doi.org/10.1021/jm070295s] [PMID: 17663539]
[75]
Chen CN, Lin CP, Huang KK, et al. Inhibition of SARS-CoV 3C-like protease activity by theaflavin-3, 3′-digallate (TF3). Evid Based Complement Alternat Med 2005; 2(2): 209-15.
[http://dx.doi.org/10.1093/ecam/neh081] [PMID: 15937562]
[76]
Panagiotopoulos AA, Kotzampasi DM, Sourvinos G, et al. The natural polyphenol fortunellin and its structural analogs are inhibitors of the SARS-CoV-2 main proteinase dimerization, as revealed by molecular simulation studies. arXiv e-prints 2020; arXiv-2007.
[77]
Fakhri S, Piri S, Majnooni MB, Farzaei MH, EcheverrA-a J. Targeting neurological manifestation of coronaviruses by candidate phytochemicals: A mechanistic approach. Front Pharmacol 2021; 11: 621099.
[http://dx.doi.org/10.3389/fphar.2020.621099] [PMID: 33708124]
[78]
Jo S, Kim S, Shin DH, Kim MS. Inhibition of SARS-CoV 3CL protease by flavonoids. J Enzyme Inhib Med Chem 2020; 35(1): 145-51.
[http://dx.doi.org/10.1080/14756366.2019.1690480] [PMID: 31724441]
[79]
Udrea AM, Mernea M, Buiu C, Avram S. Scutellaria baicalensis flavones as potent drugs against acute respiratory injury during sars-cov-2 infection: structural biology approaches. Processes (Basel) 2020; 8(11): 1468.
[http://dx.doi.org/10.3390/pr8111468]
[80]
Su H, Yao S, Zhao W, et al. Discovery of baicalin and baicalein as novel, natural product inhibitors of SARS-CoV-2 3CL protease in vitro BioRxiV 2020.
[http://dx.doi.org/10.1101/2020.04.13.038687]
[81]
Liu H, Ye F, Sun Q, et al. Scutellaria baicalensis extract and baicalein inhibit replication of SARS-CoV-2 and its 3C-like protease inA vitro. J Enzyme Inhib Med Chem 2021; 36(1): 497-503.
[http://dx.doi.org/10.1080/14756366.2021.1873977] [PMID: 33491508]
[82]
Enmozhi SK, Raja K, Sebastine I, Joseph J. Andrographolide as a potential inhibitor of SARS-CoV-2 main protease: An in silico approach. J Biomol Struct Dyn 2020; 1-7.
[http://dx.doi.org/10.1080/07391102.2020.1760136] [PMID: 32329419]
[83]
Sa-ngiamsuntorn K, Suksatu A, Pewkliang Y, et al. Anti-SARS-CoV-2 activity of Andrographis paniculata extract and its major component Andrographolide in human lung epithelial cells and cytotoxicity evaluation in major organ cell representatives. bioRxiv 2020.
[84]
Shi TH, Huang YL, Chen CC, et al. Andrographolide and its fluorescent derivative inhibit the main proteases of 2019-nCoV and SARS-CoV through covalent linkage. Biochem Biophys Res Commun 2020; 533(3): 467-73.
[http://dx.doi.org/10.1016/j.bbrc.2020.08.086] [PMID: 32977949]
[85]
Petushkova AI, Zamyatnin AA Jr. Papain-like proteases as coronaviral drug targets: Current inhibitors, opportunities, and limitations. Pharmaceuticals (Basel) 2020; 13(10): 277.
[http://dx.doi.org/10.3390/ph13100277] [PMID: 32998368]
[86]
Kim DW, Seo KH, Curtis-Long MJ, et al. Phenolic phytochemical displaying SARS-CoV papain-like protease inhibition from the seeds of Psoralea corylifolia. J Enzyme Inhib Med Chem 2014; 29(1): 59-63.
[http://dx.doi.org/10.3109/14756366.2012.753591] [PMID: 23323951]
[87]
Park JY, Yuk HJ, Ryu HW, et al. Evaluation of polyphenols from Broussonetia papyrifera as coronavirus protease inhibitors. J Enzyme Inhib Med Chem 2017; 32(1): 504-15.
[http://dx.doi.org/10.1080/14756366.2016.1265519] [PMID: 28112000]
[88]
Cho JK, Curtis-Long MJ, Lee KH, et al. Geranylated flavonoids displaying SARS-CoV papain-like protease inhibition from the fruits of Paulownia tomentosa. Bioorg Med Chem 2013; 21(11): 3051-7.
[http://dx.doi.org/10.1016/j.bmc.2013.03.027] [PMID: 23623680]
[89]
Attia YA, Alagawany MM, Farag MR, et al. Phytogenic products and phytochemicals as a candidate strategy to improve tolerance to coronavirus. Front Vet Sci 2020; 7: 573159.
[http://dx.doi.org/10.3389/fvets.2020.573159] [PMID: 33195565]
[90]
Tsai YC, Lee CL, Yen HR, et al. Antiviral action of tryptanthrin isolated from Strobilanthes cusia leaf against human coronavirus NL63. Biomolecules 2020; 10(3): 366.
[http://dx.doi.org/10.3390/biom10030366] [PMID: 32120929]
[91]
Yang CW, Lee YZ, Kang IJ, et al. Identification of phenanthroindolizines and phenanthroquinolizidines as novel potent anti-coronaviral agents for porcine enteropathogenic coronavirus transmissible gastroenteritis virus and human severe acute respiratory syndrome coronavirus. Antiviral Res 2010; 88(2): 160-8.
[http://dx.doi.org/10.1016/j.antiviral.2010.08.009] [PMID: 20727913]
[92]
Yang CW, Lee YZ, Hsu HY, et al. Targeting coronaviral replication and cellular JAK2 mediated dominant NF-I§B activation for comprehensive and ultimate inhibition of coronaviral activity. Sci Rep 2017; 7(1): 1-3.
[http://dx.doi.org/10.1038/s41598-017-04203-9] [PMID: 28127051]
[93]
Verma AK, Aggarwal R. Repurposing potential of FDA-approved and investigational drugs for COVID-19 targeting SARS-CoV-2 spike and main protease and validation by machine learning algorithm. Chem Biol Drug Des 2021; 97(4): 836-53.
[http://dx.doi.org/10.1111/cbdd.13812] [PMID: 33289334]
[94]
MA1/4ller C, Schulte FW, Lange-GrA1/4nweller K, et al. Broad-spectrum antiviral activity of the eIF4A inhibitor silvestrol against corona- and picornaviruses. Antiviral Res 2018; 150: 123-9.
[http://dx.doi.org/10.1016/j.antiviral.2017.12.010] [PMID: 29258862]
[95]
Cherian SS, Agrawal M, Basu A, Abraham P, Gangakhedkar RR, Bhargava B. Perspectives for repurposing drugs for the coronavirus disease 2019. Indian J Med Res 2020; 151(2 3): 160-71.
[http://dx.doi.org/10.4103/ijmr.IJMR_585_20] [PMID: 32317408]
[96]
Yu MS, Lee J, Lee JM, et al. Identification of myricetin and scutellarein as novel chemical inhibitors of the SARS coronavirus helicase, nsP13. Bioorg Med Chem Lett 2012; 22(12): 4049-54.
[http://dx.doi.org/10.1016/j.bmcl.2012.04.081] [PMID: 22578462]
[97]
Chen H, Du Q. Potential natural compounds for preventing SARS-CoV-2 (2019-nCoV) infection. Preprints 2020.
[98]
Li SY, Chen C, Zhang HQ, et al. Identification of natural compounds with antiviral activities against SARS-associated coronavirus. Antiviral Res 2005; 67(1): 18-23.
[http://dx.doi.org/10.1016/j.antiviral.2005.02.007] [PMID: 15885816]
[99]
Jin YH, Min JS, Jeon S, et al. Lycorine, a non-nucleoside RNA dependent RNA polymerase inhibitor, as potential treatment for emerging coronavirus infections. Phytomedicine 2021; 86: 153440.
[http://dx.doi.org/10.1016/j.phymed.2020.153440] [PMID: 33376043]
[100]
Fielding BC, da Silva Maia Bezerra Filho C, Ismail NS, Sousa DP. Alkaloids: therapeutic potential against human coronaviruses. Molecules 2020; 25(23): 5496.
[101]
Rogosnitzky M, Okediji P, Koman I. Cepharanthine: A review of the antiviral potential of a Japanese-approved alopecia drug in COVID-19. Pharmacol Rep 2020; 72(6): 1509-16.
[http://dx.doi.org/10.1007/s43440-020-00132-z] [PMID: 32700247]
[102]
Kim DE, Min JS, Jang MS, et al. Natural bis-benzylisoquinoline alkaloids-tetrandrine, fangchinoline, and cepharanthine, inhibit human coronavirus OC43 infection of MRC-5 human lung cells. Biomolecules 2019; 9(11): 696.
[http://dx.doi.org/10.3390/biom9110696] [PMID: 31690059]
[103]
Islam MT, Sarkar C, El-Kersh DM, et al. Natural products and their derivatives against coronavirus: A review of the non-clinical and pre-clinical data. Phytother Res 2020; 34(10): 2471-92.
[http://dx.doi.org/10.1002/ptr.6700] [PMID: 32248575]
[104]
McKee DL, Sternberg A, Stange U, Laufer S, Naujokat C. Candidate drugs against SARS-CoV-2 and COVID-19. Pharmacol Res 2020; 157: 104859.
[http://dx.doi.org/10.1016/j.phrs.2020.104859] [PMID: 32360480]
[105]
Lin SC, Ho CT, Chuo WH, Li S, Wang TT, Lin CC. Effective inhibition of MERS-CoV infection by resveratrol. BMC Infect Dis 2017; 17(1): 144.
[http://dx.doi.org/10.1186/s12879-017-2253-8] [PMID: 28193191]
[106]
Yang M, Wei J, Huang T, et al. Resveratrol inhibits the replication of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in cultured Vero cells. Phytother Res 2021; 35(3): 1127-9.
[http://dx.doi.org/10.1002/ptr.6916] [PMID: 33222316]
[107]
Kumar R, Khandelwal N, Chander Y, et al. Emetine as an antiviral agent suppresses SARS-CoV-2 replication by inhibiting interaction of viral mRNA with eIF4E: An in vitro study. bioRxiv 2020.
[108]
Shen L, Niu J, Wang C, et al. High-throughput screening and identification of potent broad-spectrum inhibitors of coronaviruses. J Virol 2019; 93(12): e00023-19.
[http://dx.doi.org/10.1128/JVI.00023-19] [PMID: 30918074]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy