Generic placeholder image

Current Protein & Peptide Science

Editor-in-Chief

ISSN (Print): 1389-2037
ISSN (Online): 1875-5550

General Research Article

Investigating the Mechanical Properties and Flexibility of N-BAR Domains in PICK1 by Molecular Dynamics Simulations

Author(s): Shenghan Song, Tongtong Li, Amy O. Stevens, Taha Raad and Yi He*

Volume 24, Issue 10, 2023

Published on: 26 September, 2023

Page: [865 - 877] Pages: 13

DOI: 10.2174/1389203724666230522093842

Price: $65

Abstract

Introduction: The proteins of the Bin/Amphiphysin/Rvs167 (BAR) domain superfamily are believed to induce membrane curvature. PICK1 is a distinctive protein that consists of both a BAR and a PDZ domain, and it has been associated with numerous diseases. It is known to facilitate membrane curvature during receptor-mediated endocytosis. In addition to understanding how the BAR domain facilitates membrane curvature, it's particularly interesting to unravel the hidden links between the structural and mechanical properties of the PICK1 BAR domain.

Methods: This paper employs steered molecular dynamics (SMD) to investigate the mechanical properties associated with structural changes in the PICK1 BAR domains.

Results: Our findings suggest that not only do helix kinks assist in generating curvature of BAR domains, but they may also provide the additional flexibility required to initiate the binding between BAR domains and the membrane.

Conclusion: We have observed a complex interaction network within the BAR monomer and at the binding interface of the two BAR monomers. This network is crucial for maintaining the mechanical properties of the BAR dimer. Owing to this interaction network, the PICK1 BAR dimer exhibits different responses to external forces applied in opposite directions.

Keywords: MD simulation, N-BAR domain, mechanical properties, helix kink, curvature key residues, PICK1 protein.

Graphical Abstract
[1]
Tian, T.; Zhu, Y.L.; Zhou, Y.Y.; Liang, G.F.; Wang, Y.Y.; Hu, F.H.; Xiao, Z.D. Exosome uptake through clathrin-mediated endocytosis and macropinocytosis and mediating miR-21 delivery. J. Biol. Chem., 2014, 289(32), 22258-22267.
[http://dx.doi.org/10.1074/jbc.M114.588046] [PMID: 24951588]
[2]
Faille, D.; El-Assaad, F.; Mitchell, A.J.; Alessi, M.C.; Chimini, G.; Fusai, T.; Grau, G.E.; Combes, V. Endocytosis and intracellular processing of platelet microparticles by brain endothelial cells. J. Cell. Mol. Med., 2012, 16(8), 1731-1738.
[http://dx.doi.org/10.1111/j.1582-4934.2011.01434.x] [PMID: 21883894]
[3]
Jorgensen, W.L.; Tirado-Rives, J. Potential energy functions for atomic-level simulations of water and organic and biomolecular systems. Proc. Natl. Acad. Sci., 2005, 6665-6670.
[http://dx.doi.org/10.1073/pnas.0408037102]
[4]
Zimmerberg, J.; Kozlov, M.M. How proteins produce cellular membrane curvature. Nat. Rev. Mol. Cell Biol., 2006, 7(1), 9-19.
[http://dx.doi.org/10.1038/nrm1784] [PMID: 16365634]
[5]
Sivadon, P.; Bauer, F.; Aigle, M.; Crouzet, M. Actin cytoskeleton and budding pattern are altered in the yeast rvs161 mutant: the Rvs161 protein shares common domains with the brain protein amphiphysin. Mol. Gen. Genet., 1995, 246(4), 485-495.
[http://dx.doi.org/10.1007/BF00290452] [PMID: 7891662]
[6]
Lichte, B.; Veh, R.W.; Meyer, H.E.; Kilimann, M.W. Amphiphysin, a novel protein associated with synaptic vesicles. EMBO J., 1992, 11(7), 2521-2530.
[http://dx.doi.org/10.1002/j.1460-2075.1992.tb05317.x] [PMID: 1628617]
[7]
Sakamuro, D.; Elliott, K.J.; Wechsler-Reya, R.; Prendergast, G.C. BIN1 is a novel MYC-interacting protein with features of a tumour suppressor. Nat. Genet., 1996, 14(1), 69-77.
[http://dx.doi.org/10.1038/ng0996-69] [PMID: 8782822]
[8]
Dharmalingam, E.; Haeckel, A.; Pinyol, R.; Schwintzer, L.; Koch, D.; Kessels, M.M.; Qualmann, B. F-BAR proteins of the syndapin family shape the plasma membrane and are crucial for neuromorphogenesis. J. Neurosci., 2009, 29(42), 13315-13327.
[http://dx.doi.org/10.1523/JNEUROSCI.3973-09.2009] [PMID: 19846719]
[9]
Lim, K.B.; Bu, W.; Goh, W.I.; Koh, E.; Ong, S.H.; Pawson, T.; Sudhaharan, T.; Ahmed, S. The Cdc42 effector IRSp53 generates filopodia by coupling membrane protrusion with actin dynamics. J. Biol. Chem., 2008, 283(29), 20454-20472.
[http://dx.doi.org/10.1074/jbc.M710185200] [PMID: 18448434]
[10]
Krugmann, S.; Jordens, I.; Gevaert, K.; Driessens, M.; Vandekerckhove, J.; Hall, A. Cdc42 induces filopodia by promoting the formation of an IRSp53:Mena complex. Curr. Biol., 2001, 11(21), 1645-1655.
[http://dx.doi.org/10.1016/S0960-9822(01)00506-1] [PMID: 11696321]
[11]
Ho, H.Y.H.; Rohatgi, R.; Lebensohn, A.M. Le Ma; Li, J.; Gygi, S.P.; Kirschner, M.W. Toca-1 mediates Cdc42-dependent actin nucleation by activating the N-WASP-WIP complex. Cell, 2004, 118(2), 203-216.
[http://dx.doi.org/10.1016/j.cell.2004.06.027] [PMID: 15260990]
[12]
Kamioka, Y.; Fukuhara, S.; Sawa, H.; Nagashima, K.; Masuda, M.; Matsuda, M.; Mochizuki, N. A novel dynamin-associating molecule, formin-binding protein 17, induces tubular membrane invaginations and participates in endocytosis. J. Biol. Chem., 2004, 279(38), 40091-40099.
[http://dx.doi.org/10.1074/jbc.M404899200] [PMID: 15252009]
[13]
Salazar, M.A.; Kwiatkowski, A.V.; Pellegrini, L.; Cestra, G.; Butler, M.H.; Rossman, K.L.; Serna, D.M.; Sondek, J.; Gertler, F.B.; De Camilli, P. Tuba, a novel protein containing bin/amphiphysin/Rvs and Dbl homology domains, links dynamin to regulation of the actin cytoskeleton. J. Biol. Chem., 2003, 278(49), 49031-49043.
[http://dx.doi.org/10.1074/jbc.M308104200] [PMID: 14506234]
[14]
Liu, S.; Xiong, X.; Zhao, X.; Yang, X.; Wang, H. F-BAR family proteins, emerging regulators for cell membrane dynamic changes—from structure to human diseases. J. Hematol. Oncol., 2015, 8(1), 47.
[http://dx.doi.org/10.1186/s13045-015-0144-2] [PMID: 25956236]
[15]
Bi, X.; Corpina, R.A.; Goldberg, J. Structure of the Sec23/24-Sar1 pre-budding complex of the COPII vesicle coat. Nature, 2002, 419(6904), 271-277.
[http://dx.doi.org/10.1038/nature01040] [PMID: 12239560]
[16]
Farsad, K.; Ringstad, N.; Takei, K.; Floyd, S.R.; Rose, K.; De Camilli, P. Generation of high curvature membranes mediated by direct endophilin bilayer interactions. J. Cell Biol., 2001, 155(2), 193-200.
[http://dx.doi.org/10.1083/jcb.200107075] [PMID: 11604418]
[17]
Masuda, M.; Takeda, S.; Sone, M.; Ohki, T.; Mori, H.; Kamioka, Y.; Mochizuki, N. Endophilin BAR domain drives membrane curvature by two newly identified structure-based mechanisms. EMBO J., 2006, 25(12), 2889-2897.
[http://dx.doi.org/10.1038/sj.emboj.7601176] [PMID: 16763557]
[18]
Gallop, J.L.; Jao, C.C.; Kent, H.M.; Butler, P.J.G.; Evans, P.R.; Langen, R.; McMahon, H.T. Mechanism of endophilin N-BAR domain-mediated membrane curvature. EMBO J., 2006, 25(12), 2898-2910.
[http://dx.doi.org/10.1038/sj.emboj.7601174] [PMID: 16763559]
[19]
Peter, B.J.; Kent, H.M.; Mills, I.G.; Vallis, Y.; Butler, P.J.G.; Evans, P.R.; McMahon, H.T. BAR domains as sensors of membrane curvature: The amphiphysin BAR structure. Science, 2004, 303(5657), 495-499.
[20]
Richnau, N.; Fransson, Å.; Farsad, K.; Aspenström, P. RICH-1 has a BIN/Amphiphysin/Rvsp domain responsible for binding to membrane lipids and tubulation of liposomes. Biochem. Biophys. Res. Commun., 2004, 320(3), 1034-1042.
[http://dx.doi.org/10.1016/j.bbrc.2004.05.221] [PMID: 15240152]
[21]
Weissenhorn, W. Crystal structure of the endophilin-A1 BAR domain. J. Mol. Biol., 2005, 351(3), 653-661.
[http://dx.doi.org/10.1016/j.jmb.2005.06.013] [PMID: 16023669]
[22]
Zhang, B.; Zelhof, A.C. Amphiphysins: Raising the BAR for synaptic vesicle recycling and membrane dynamics. Bin-Amphiphysin-Rvsp. Traffic, 2002, 3(7), 452-460.
[http://dx.doi.org/10.1034/j.1600-0854.2002.30702.x] [PMID: 12047553]
[23]
Stevens, A.O.; Kazan, I.C.; Ozkan, B.; He, Y. Investigating the allosteric response of the PICK1 PDZ domain to different ligands with all‐atom simulations. Protein Sci., 2022, 31(12), e4474.
[http://dx.doi.org/10.1002/pro.4474] [PMID: 36251217]
[24]
Hendrix, E.; Motta, S.; Gahl, R.F.; He, Y. Insight into the initial stages of the folding process in onconase revealed by UNRES. J. Phys. Chem. B, 2022, 126(40), 7934-7942.
[http://dx.doi.org/10.1021/acs.jpcb.2c04770] [PMID: 36179061]
[25]
Li, T.; Motta, S.; Stevens, A.O.; Song, S.; Hendrix, E.; Pandini, A.; He, Y. Recognizing the binding pattern and dissociation pathways of the p300 Taz2-p53 TAD2 complex. JACS Au., 2022, 2(8), 1935-1945.
[http://dx.doi.org/10.1021/jacsau.2c00358] [PMID: 36032526]
[26]
Stevens, A.O.; He, Y. Residue-level contact reveals modular domain interactions of PICK1 are driven by both electrostatic and hydrophobic forces. Front. Mol. Biosci., 2021, 7, 616135.
[http://dx.doi.org/10.3389/fmolb.2020.616135] [PMID: 33585564]
[27]
Li, T.; Stevens, A.O.; Gil Pineda, L.I.; Song, S.; Ameyaw Baah, C.A.; He, Y. Changes in structure and flexibility of p53 TAD2 upon binding to p300 Taz2. J. Theor. Comput. Chem., 2020, 19(4), 2040007.
[http://dx.doi.org/10.1142/S0219633620400076]
[28]
Gil Pineda, L.I.; Milko, L.N.; He, Y. Performance of CHARMM36m with modified water model in simulating intrinsically disordered proteins: A case study. Biophys. Rep., 2020, 6(2-3), 80-87.
[http://dx.doi.org/10.1007/s41048-020-00107-w]
[29]
He, Y.; Maisuradze, G.G.; Yin, Y.; Kachlishvili, K.; Rackovsky, S.; Scheraga, H.A. Sequence-, structure-, and dynamics-based comparisons of structurally homologous CheY-like proteins. Proc. Natl. Acad. Sci., 2017, 114(7), 1578-1583.
[http://dx.doi.org/10.1073/pnas.1621344114] [PMID: 28143938]
[30]
He, Y.; Mozolewska, M.A.; Krupa, P.; Sieradzan, A.K.; Wirecki, T.K.; Liwo, A.; Kachlishvili, K.; Rackovsky, S.; Jagieła, D.; Ślusarz, R.; Czaplewski, C.R.; Ołdziej, S.; Scheraga, H.A. Lessons from application of the UNRES force field to predictions of structures of CASP10 targets. Proc. Natl. Acad. Sci., 2013, 110(37), 14936-14941.
[http://dx.doi.org/10.1073/pnas.1313316110] [PMID: 23980156]
[31]
He, Y.; Liwo, A.; Weinstein, H.; Scheraga, H.A. PDZ binding to the BAR domain of PICK1 is elucidated by coarse-grained molecular dynamics. J. Mol. Biol., 2011, 405(1), 298-314.
[http://dx.doi.org/10.1016/j.jmb.2010.10.051] [PMID: 21050858]
[32]
Blood, P.D.; Voth, G.A. Direct observation of Bin/amphiphysin/Rvs (BAR) domain-induced membrane curvature by means of molecular dynamics simulations. Proc. Natl. Acad. Sci., 2006, 103(41), 15068-15072.
[http://dx.doi.org/10.1073/pnas.0603917103] [PMID: 17008407]
[33]
Blood, P.D.; Swenson, R.D.; Voth, G.A. Factors influencing local membrane curvature induction by N-BAR domains as revealed by molecular dynamics simulations. Biophys. J., 2008, 95(4), 1866-1876.
[http://dx.doi.org/10.1529/biophysj.107.121160] [PMID: 18469070]
[34]
Han, D.S.; Weinstein, H. Auto-inhibition in the multi-domain protein PICK 1 revealed by dynamic models of its quaternary structure. Biophys. J., 2008, 94, 67-76.
[35]
Tarricone, C.; Xiao, B.; Justin, N.; Walker, P.A.; Rittinger, K.; Gamblin, S.J.; Smerdon, S.J. The structural basis of Arfaptin-mediated cross-talk between Rac and Arf signalling pathways. Nature, 2001, 411(6834), 215-219.
[http://dx.doi.org/10.1038/35075620] [PMID: 11346801]
[36]
Jorgensen, W.L.; Chandrasekhar, J.; Madura, J.D.; Impey, R.W.; Klein, M.L. Comparison of simple potential functions for simulating liquid water. J. Chem. Phys., 1983, 79(2), 926-935.
[http://dx.doi.org/10.1063/1.445869]
[37]
Lee, J.; Cheng, X.; Swails, J.M.; Yeom, M.S.; Eastman, P.K.; Lemkul, J.A.; Wei, S.; Buckner, J.; Jeong, J.C.; Qi, Y.; Jo, S.; Pande, V.S.; Case, D.A.; Brooks, C.L., III; MacKerell, A.D., Jr; Klauda, J.B. Im, W. CHARMM-GUI input generator for NAMD, GROMACS, AMBER, OpenMM, and CHARMM/OpenMM simulations using the CHARMM36 additive force field. J. Chem. Theory Comput., 2016, 12(1), 405-413.
[http://dx.doi.org/10.1021/acs.jctc.5b00935] [PMID: 26631602]
[38]
Huang, J.; MacKerell, A.D., Jr CHARMM36 all-atom additive protein force field: Validation based on comparison to NMR data. J. Comput. Chem., 2013, 34(25), 2135-2145.
[http://dx.doi.org/10.1002/jcc.23354] [PMID: 23832629]
[39]
Humphrey, W.; Dalke, A.; Schulten, K. VMD: Visual molecular dynamics. J. Mol. Graph., 1996, 14(1), 33-38.
[http://dx.doi.org/10.1016/0263-7855(96)00018-5] [PMID: 8744570]
[40]
Pettersen, E.F.; Goddard, T.D.; Huang, C.C.; Couch, G.S.; Greenblatt, D.M.; Meng, E.C.; Ferrin, T.E. UCSF chimeraa visualization system for exploratory research and analysis. J. Comput. Chem., 2004, 25(13), 1605-1612.
[http://dx.doi.org/10.1002/jcc.20084] [PMID: 15264254]
[41]
Berendsen, H.J.C.; van der Spoel, D.; van Drunen, R. GROMACS: A message-passing parallel molecular dynamics implementation. Comput. Phys. Commun., 1995, 91(1-3), 43-56.
[http://dx.doi.org/10.1016/0010-4655(95)00042-E]
[42]
Abraham, M.J.; Murtola, T.; Schulz, R.; Páll, S.; Smith, J.C.; Hess, B.; Lindahl, E. GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX, 2015, 1-2, 19-25.
[http://dx.doi.org/10.1016/j.softx.2015.06.001]
[43]
Hess, B.; Bekker, H.; Berendsen, H.J.C.; Fraaije, J.G.E.M. LINCS: A linear constraint solver for molecular simulations. J. Comput. Chem., 1997, 18(12), 1463-1472.
[http://dx.doi.org/10.1002/(SICI)1096-987X(199709)18:12<1463:AID-JCC4>3.0.CO;2-H]
[44]
Darden, T.; York, D.; Pedersen, L. Particle mesh Ewald: An N · log(N) method for Ewald sums in large systems. J. Chem. Phys., 1993, 98(12), 10089-10092.
[http://dx.doi.org/10.1063/1.464397]
[45]
Essmann, U.; Perera, L.; Berkowitz, M.L.; Darden, T.; Lee, H.; Pedersen, L.G. A smooth particle mesh Ewald method. J. Chem. Phys., 1995, 103(19), 8577-8593.
[http://dx.doi.org/10.1063/1.470117]
[46]
Apostolakis, J.; Ferrara, P.; Caflisch, A. Calculation of conformational transitions and barriers in solvated systems: Application to the alanine dipeptide in water. J. Chem. Phys., 1999, 110(4), 2099-2108.
[http://dx.doi.org/10.1063/1.477819]
[47]
Costescu, B.I.; Gräter, F. Time-resolved force distribution analysis. BMC Biophys., 2013, 6(1), 5.
[http://dx.doi.org/10.1186/2046-1682-6-5] [PMID: 24499624]
[48]
Stacklies, W.; Seifert, C.; Graeter, F. Implementation of force distribution analysis for molecular dynamics simulations. BMC Bioinformatics, 2011, 12(1), 101.
[http://dx.doi.org/10.1186/1471-2105-12-101] [PMID: 21501475]
[49]
Abraham, M.J.; van der Spoel, D.; Lindahl, E.; Hess, B. GROMACS User Manual Version 2018; Royal Institute of Technology and Uppsala University, 2018.
[50]
Eisenhaber, F.; Lijnzaad, P.; Argos, P.; Sander, C.; Scharf, M. The double cubic lattice method: Efficient approaches to numerical integration of surface area and volume and to dot surface contouring of molecular assemblies. J. Comput. Chem., 1995, 16(3), 273-284.
[http://dx.doi.org/10.1002/jcc.540160303]
[51]
Kabsch, W.; Sander, C. Dictionary of protein secondary structure: Pattern recognition of hydrogen-bonded and geometrical features. Biopolymers, 1983, 22(12), 2577-2637.
[http://dx.doi.org/10.1002/bip.360221211] [PMID: 6667333]
[52]
Wilman, H.R.; Shi, J.; Deane, C.M. Helix kinks are equally prevalent in soluble and membrane proteins. Proteins, 2014, 82(9), 1960-1970.
[http://dx.doi.org/10.1002/prot.24550] [PMID: 24638929]
[53]
Laskowski, R.A.; Swindells, M.B. LigPlot+: Multiple ligand-protein interaction diagrams for drug discovery. J. Chem. Inf. Model., 2011, 51(10), 2778-2786.
[http://dx.doi.org/10.1021/ci200227u] [PMID: 21919503]
[54]
Yu, H.; Schulten, K. Membrane sculpting by F-BAR domains studied by molecular dynamics simulations. PLOS Comput. Biol., 2013, 9(1), e1002892.
[http://dx.doi.org/10.1371/journal.pcbi.1002892] [PMID: 23382665]
[55]
Mahmood, M.I.; Noguchi, H.; Okazaki, K. Curvature induction and sensing of the F-BAR protein Pacsin1 on lipid membranes via molecular dynamics simulations. Sci. Rep., 2019, 9(1), 14557.
[http://dx.doi.org/10.1038/s41598-019-51202-z] [PMID: 30626917]
[56]
Blundell, T.; Barlow, D.; Borkakoti, N.; Thornton, J. Solvent-induced distortions and the curvature of α-helices. Nature, 1983, 306(5940), 281-283.
[http://dx.doi.org/10.1038/306281a0] [PMID: 6646210]
[57]
Langelaan, D.N.; Wieczorek, M.; Blouin, C.; Rainey, J.K. Improved helix and kink characterization in membrane proteins allows evaluation of kink sequence predictors. J. Chem. Inf. Model., 2010, 50(12), 2213-2220.
[http://dx.doi.org/10.1021/ci100324n] [PMID: 21090591]
[58]
Law, E.C.; Wilman, H.R.; Kelm, S.; Shi, J.; Deane, C.M. Examining the conservation of kinks in alpha helices. PLoS One, 2016, 11(6), e0157553.
[http://dx.doi.org/10.1371/journal.pone.0157553] [PMID: 27314675]
[59]
Mim, C.; Cui, H.; Gawronski-Salerno, J.A.; Frost, A.; Lyman, E.; Voth, G.A.; Unger, V.M. Structural basis of membrane bending by the N-BAR protein endophilin. Cell, 2012, 149(1), 137-145.
[http://dx.doi.org/10.1016/j.cell.2012.01.048] [PMID: 22464326]
[60]
Yin, Y.; Arkhipov, A.; Schulten, K. Simulations of membrane tubulation by lattices of amphiphysin N-BAR domains. Structure, 2009, 17(6), 882-892.
[http://dx.doi.org/10.1016/j.str.2009.03.016] [PMID: 19523905]
[61]
Arkhipov, A.; Yin, Y.; Schulten, K. Membrane-bending mechanism of amphiphysin N-BAR domains. Biophys. J., 2009, 97(10), 2727-2735.
[http://dx.doi.org/10.1016/j.bpj.2009.08.051] [PMID: 19917226]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy